用户名: 密码: 验证码:
高功率因数VIENNA整流器控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力电子装置的广泛应用在给电能的变换及应用带来方便的同时,也给电力系统带来了严重的谐波和无功污染。为此,研究具有高功率因数和低输入电流畸变率(Total Harmonic Distortion, THD)的绿色无污染的PWM整流装置已成为电力电子应用技术中的一个重大研究课题。VIENNA整流器(三相三电平三开关boost整流器)具有功率因数高,输入电流THD低,开关器件少,开关应力低,可靠性高等特征,对该整流器控制问题的研究具有重要的理论意义和工程价值。
     首先,针对VIENNA整流器,提出了一种改进PODRCC方法。该调制方法引入了负载反馈机制,有效解决了轻载和空载输出电压不可控的问题。利用状态空间法,给出了VIENNA整流器在abc静止坐标系、αβ两相静止坐标系和dq两相旋转坐标系下的数学模型。通过对同相双载波补偿控制(PDDRCC)和反相双载波补偿控制(PODRCC)两种方法进行分析,得出PODRCC方法更易于实现且可靠性高。上述内容为后续研究奠定了基础。
     其次,提出了一种基于改进型ANF的三相EPLL控制策略,并用BF-PSO算法对控制器参数进行优化设计。BF-PSO算法将粒子群优化(PSO)算法作为一个变异算子引入细菌觅食(BF)优化算法,以此提高优化算法的搜索能力、搜索精度和搜索速度。在此基础上,提出了一种基于BF-PSO优化的改进型自适应陷波滤波器(ANF),解决了较大扰动和噪声情况下获取单相系统同步电压信息问题,并利用均值理论对其稳定性进行了分析。针对传统的三相锁相环(PLL)难以处理输入电压不平衡问题,提出了基于改进型自ANF的三相增强型锁相环(EPLL),对输入电压畸变条件下的EPLL非线性模型进行了推导,并用Lyapunov第二法对该模型稳定性和跟踪能力进行分析。
     然后,提出了基于模糊比例谐振(FLPR)控制的电流解耦控制算法,提高VIENNA整流器输入电流的跟踪特性。对VIENNA整流器的电流解耦控制方法进行分析,得出在αβ坐标系下可实现VIENNA整流器电流控制的解耦。将基于内模原理的比例谐振控制算法应用到电流跟踪控制环节中,实现了VIENNA整流器的电流无误差跟踪控制。为了增强控制系统的鲁棒性和抗干扰能力,设计了一个模糊调整器,可根据系统误差实时地调整比例谐振控制器参数,以取得良好的稳态精度与动态响应速度。
     再次,提出基于BF-PSO的分数阶控制器,提高了VIENNA整流器直流电压控制精度。将BF-PSO算法引入到控制器参数的求解当中,解决了分数阶控制器参数难以设计问题。然后将所提方法应用到VIENNA整流器直流母线电压控制中,提高了控制精度,并增强了系统的稳定性。同时,针对三电平变换器固有的电容中点电压波动问题,设计了基于BF-PSO算法的限幅比例因子的中点电压控制器,实现了中点电压的高精度平衡调节,并减少了中点平衡调节对电流THD的影响。
     最后,根据VIENNA整流器的性能指标和功能要求,给出了系统的总体设计方案,搭建了基于DSP 2812的控制平台和功率单元。在此基础上,应用前文所提方法设计了VIENNA整流器电压外环、电流内环以及中点平衡的控制器,并加以实现。系统实验结果表明,各项指标达到了设计要求,验证了所提控制策略的可行性和有效性。
Prevailing of power electronics brings convenience to energy conversion and utilization on one hand and also causes harmonics and reactive power problems on the other hand. Therefore the study on green and clean PWM rectifier with high power factor and low input current distortion has become an important issue for the technology of power electronics application. VIENNA rectifier, i.e. three-level three-switch boost rectifier is prevailing due to its merits such as high power factor , low Total Harmonic Distortion (THD) of input current, few switch devices, low switch stress and high reliability. And research on the controlling of VIENNA rectifier has important theory significance and engineering merit.
     First, an improved Disposition Opposition Double Ramp Comparison Control (PDDRCC) method is proposed for the control of VIENNA rectifier. This modulation method effectively solves the problem of output voltage is not controllable with light load and no-load by the introduction of feedback mechanism to it. With state space method mathematic models of the rectifier are established on static coordinate system, two-phase static coordinate system and two-phase rotating coordinate system respectively. Analysis of Phase Disposition Double Ramp Comparison Control (PDDRCC) and PODRCC methods show that PODRCC method is easier to achieve and attains higher reliability. This is the foundation of the following researches.
     Second, an Enhanced Phase Locked Loop (EPLL) control strategy based on improved Adaptive Notch Filtering (ANF) is proposed, controller parameters are optimized using BF-PSO algorithm. In this method, particle swarm optimization (PSO) algorithm is introduced to Bacterial Foraging (BF) optimization algorithm as a mutation operator to enhance the global searching ability of optimization algorithm, obtaining a new BF-PSO hybrid optimization algorithm. On this basis, an improved adaptive notch filter based on BF-PSO hybrid optimization algorithm is given to solve the problem of obtaining synchronization voltage information of single-phase system under larger disturbances and noise. Then the stability of the improved adaptive notch filter is analyzed according to mean theory. Aiming at the input voltage imbalance of traditional three-phase PLL, three-phase EPLL is proposed based on improved ANF. The nonlinear model of EPLL is deduced under the condition of input voltage distortion. Then the stability and tracking ability of the model is analyzed according to Lyapunov’s second method.
     Third, a current decoupling method is proposed based on Fuzzy Logic Proportional Resonant (FLPR), which can improve the tracking characteristics of the input current of VIENNA rectifier. Through the analysis of the current decoupling control method of VIENNA rectifier, it can be obtained that the current control of the rectifier can be decoupled successfully on two-phase static coordinate system. A proportional resonant controller based on internal model theory is used in current tracking control of the rectifier, by which the zero error tracking control of the VIENNA rectifier is realized. In order to improve the robustness and anti-interference ability of the control system a fuzzy regulator is designed, which regulates the parameters of the generalized integral controller real-timely according to system error, and validates the proposed method through simulation.
     Four, fractional order controller is proposed based on BF-PSO algorithm to improve the DC voltage control precision of VIENNA rectifier. The BF-PSO algorithm is introduced to solve the problem of parameters design fractional order controller. Furthermore, the method is used to control the DC bus voltage of the VIENNA rectifier, with enhanced control accuracy and system stability. Moreover, aiming at the inherent problem of capacitor neutral-point voltage fluctuation in three-phase converters, a neutral-point potential controller is designed based on BF-PSO amplitude limit factor, which can attain the balance adjustment of the neutral-point potential with high precision and reduce the effect of the adjustment on current THD.
     At last, a general design scheme is given according to the performance index and functional requirements of VIENNA rectifier. The power unit and control configuration based on DSP2812 is established. Based on this, outer voltage loop, internal current loop and balancing neutral-point potential controller is designed according to the proposed methods and realized. Experimental results show that the performance indexes meet the design requirements and the proposed control strategy is viable and efficiency.
引文
1 B. K. Bose. Power Electronics– An Emerging Technology. IEEE Trans. on Industrial Electronics. 1989, 36(3): 403~412
    2 John Stones, Alan Collinson. Power Quality. Power Engineering Journal. 2001, (4): 58~64
    3王兆安,杨军,刘进军.谐波抑制和无功功率补偿.机械工业出版社, 1998: 21~40, 172~198
    4 A.R.Prasad, P.D.Ziogas, S.Manias. An Active Power Factor Correction Technique for Three-phase Diode Rectifier. IEEE Transactions on Power Electronics, 1991,6(1):83~92
    5 H. Akagi, H. Fujita. A New Power Line Conditioner for Harmonic Compensation in Power Systems. IEEE Transactions on Power Delivery. 1995, 10(3): 1570~1575
    6 L.H.Tey, P.L.So, Y.C.Chu. Improvement of Power Quality Using Adaptive Shunt Active Filter. IEEE Transactions on Power Delivery. 2005, 20(2): 1558~1568
    7李玉玲,吴健儿.功率因数校正技术的控制策略综述.通信电源技术. 2003, (6):24~28
    8 B. Singh, B. N. Singh, A. Chandra, et al. A review of single-phase improved power quality AC-DC converters. IEEE Transactions on Industrial Electronics. 2003, 50(5):962-981
    9 Mao Hengchun, C. Y. Lee, D. Boroyevich, et al. Review of High-Performance Three-Phase Power-Factor Correction Circuit. IEEE Transactions on Industrial Electronics. 1997, 44(4): 437~46
    10 B. Singh, N. B. Singh, A. Chandra, et al. A review of Three-Phase Improved Power Quality AC/DC Converters. IEEE Transactions on Industrial Electronics. 2004, 51(3): 641~660
    11张崇巍,张兴. PWM整流器及其控制.机械工业出版社, 2003:3-6
    12 Nabae A, Takahashi I, Akagi H. A New Neutral-Point-Clamped PWM Inverter. IEEE Transactions on Industry Applications.1981 ,17(5):518~523
    13 Y.Zhao, Y.Li, T.A.Lipo. Force Commutated Three-Level Boost-Type Rectifier.IEEE Transactions on Industry Applications. 1995,31 (1):155~161
    14李永东,肖曦,高跃.大容量多电平变换器-原理、控制、应用.科学出版社, 2005:9~15
    15 J. W. Kolar, Zach. F. C.A Novel Three-Phase Utility Interface Minimizing Line Current Harmonics of High-Power Telecommunications Rectifier Modules. IEEE Transactions on industrial electronics, 1997, 44(4): 456~467
    16 S. Round, P. Karutz, M. L. Heldwein, J. W. Kolar. Towards a 30 kW/liter, Three-Phase Unity Power Factor Rectifier. Proc. Power Conversion Conf, 2007 :1251~1259,
    17 G. Laimer. Ultra-Compact 10kW/500kHz Three-Phase Rectifier.Ph.D.Thesis, Swiss Federal Institute of Technology Zurich, 2005:5~15
    18 S.Beret. Recent Developments of High Power Converters for Industry and Traction Applicationas. IEEE Transactions on Power Electronics, 2000, 15(6): 1102~1117
    19 S.Eicher. S.Beret, et al.The 10kV IGCT-A New Device for Medium Voltage Drives. IEEE Industry Applications Conference.2000: 2859~2865
    20 J. W.Kolar, Hans Ertl, Zach . F. C. Design and Experimental Investigation of A Three-Phase High Power Density High Efficiency Unity Power Factor PWM (VIENNA) Rectifier Employing A Novel Integrated Power Semiconductor Module. APEC '96,San Jose,CA.IEEE.1996,2:514~523
    21 S.Malik, D.Kluge. ACS1000-World’s First Standard AC Drive for Medium Voltage Applications. ABB Review.1998,(2):4~11
    22 E.A.Lewis. Power Converter Building Blocks for Multi-megawatt PWM VSI Drives. IEE Seminar on PWM Medium Voltage Drives. 2000,4:1~19
    23 Y.Shakweh. New Breed of Medium Voltage Converters. IEE Power Engineering Journal. 2000:12~20
    24 W.A.Hill, C.D.Harbourt. Performance of Medium Voltage Multilevel Inverters. IEEE IAS Annual meeting. 1999,2:1186~1192
    25 P.W.Hammond. A New Approach to Enhance Power Quality for Mudium Voltage AC Drives. IEEE Transactions on Industrial Applications. 1999, 33(1):202~208
    26 B.Wu, F.DeWinter. Voltage Stress on Induction Motor in Medium Voltage (2300V to 9000V) PWM GTO CSI Drives. IEEE Transactions on Power Electronics, 1997, 12(2): 213~220
    27 A. R. Prasad, P. D. Ziogas, S. Manias. An Active Power Factor Correction Technique for Three-Phase Diode Rectifiers. IEEE Transactions on Power Electronics. 1991, 6(1):83~92
    28 R. Ayyanar, N. Mohan, J. Sun. Single-Stage Three-Phase Power Factor Correction Circuit Using Three Isolated Single-Phase SEPIC Converters Operating in CCM. PESC, Galway, 2000:18~23
    29 M. Tognolini, A. Rufer. A DSP Based Control for a Symmetrical Three-PhaseTwo-Switch PFC-Power Supply for Variable Output Voltage. IEEE PESC, Milan, 1996:1588~1594
    30何娜.电力系统谐波检测及有源抑制技术的研究.哈尔滨工业大学博士学位论文. 2008:5~12
    31徐金榜.三相PWM整流器控制技术的研究.华中科技大学博士学位论文. 2006:4~8
    32 Akagi,H. Fujita, H. A New Power Line Conditioner for Harmonic Compensation in Power Systems.Power Delivery. IEEE Transactions on. Power Electronics .1995,10(3):1570~1575
    33 Zhang.Z. C, Ooi.B. T. Multimodular Current-Source SPWM Converters for a Superconducting Magnetic Energy Storage System.IEEE Transactions on Power Electronics. 1993,8(3):250~256.
    34 Habetler.T.G. A Space Vector-Based Rectifier Regulator for AC/DC/AC Converters.Power Electronics.IEEE Transactions on Power Electronics.1993, 8(1):30~36.
    35 Ooi.B.T, Wang.X. Voltage Angle Lock Loop Control of the Boost Type PWM Converter for HVDC Application Power Electronics.IEEE Transactions on Power Electronics.1990, 5(2):229~235
    36 E. L. M. Mehl , I. Barbi. An Improved High-Power factor and Low-Cost Three Phase Rectifier. IEEE Transactions on Industry Applications. 1997, 33(2): 485~492
    37 I. Barbi, J. C. Fagundes, C. M. T. Cruz. A low cost high power factor three-phase diode rectifier with capacitive load. IEEE APEC, 1994:745~751
    38 J. W. Kolar, F.C. Zach. A Novel Three-Phase Three-Switch Three-Level PWM Rectifier. Proc. Power Conversion Conf. 1994: 125~138
    39 J. W. Kolar, H. Ertl, F. C. Zach. A Comprehensive Design Approach for a Three-Phase High Frequency Single-Switch Discontinuous-Mode Boost Power Factor Corrector Based on Analitically Derived Normalized Converter Component Ratings. IEEE Transactions on Industry Applications. 1995, 31(3):569~582
    40 M. C. Klaubunde, Y. Zhao, T. A. Lipo. Current Control of a 3-level Rectifier/Inverter Drive System. Proc. Industry Applications Society Conf .1994:859~866
    41 G. Gong, M. Lobo Heldwein, U. Drofenik,el,at. Comparative Evaluation of Three-Phase High-Power-Factors AC-DC Converter Concepts for Applications in Future More Electric Aircrafts. IEEE Transactions on Industrial Electronics.2005, 52(3):688~695
    42 M. Karimi-Ghartemani , M. Iravani.A Method for Synchronization of Power Electronic Converters in Polluted and Variable-Frequency Environments. IEEE Transactions on Power Systems. 2004,19( 3):1263~1270
    43 M. Karimi-Ghartemani , M. R. Iravani .A Nonlinear Adaptive Filter for Online Signal Analysis in Power System: Applications. IEEE Transactions on Power Delivery.2002,17(2): 617~622
    44 H. Karimi, M. Karimi-Ghartemani, R. Iravani, el,at.An Adaptive Filter for Synchronous Extraction of Harmonics and Distortions. IEEE Transactions on Power Delivery .2003,18(4):1350-1353
    45 M. Mojiri, A. Bakhshai. An Adaptive Notch Filter for Frequency Estimation of a Periodic Signal. IEEE Transactions on Automatic Control. 49(2): 314~318
    46 M. Mojiri, M. Karimi-Ghartemani, A. Bakhshai.Time Domain Signal Analysis Using Adaptive Notch Filter. IEEE Transactions on Signal Processing. 2007,55(1):85~93
    47 M. Mojiri , A. Bakhshai. Estimation of N Frequencies Using Adaptive Notch Filter. IEEE Transactions on Circuit and Systems II: Express Briefs. 2007, 54(4):338~342
    48 M. Mojiri, M. Karimi-Ghartemani , A. Bakhshai. Estimation of Power System Frequency Using Adaptive Notch Filter. IEEE Transactions on Instrumentation and Measurement. 2007,56(6): 2470~2477
    49 D.Jovcic. Phase Locked Loop System for FACTS. IEEE Transactions on Power Systems. 2003,3(18):1116~1124
    50李彦栋,王凯斐,卓放.新型软件锁相环在动态电压恢复器中的应用.电网技术, 2004,28(8):42~45
    51 Vijay K. Sood. HVDC and FACTS Controllers Applications of Static Converters in Power Systems. Boston: Kluwer Academic, 2004, 100~112
    52 Guan-Chyun Hsieh, Hung J C. Phase-Locked Loop Techniques .A Survey. IEEE Transactions on Industrial Electronics. 1996, 6(43): 609~615
    53 F. Blaabjerg, R. Teodorescu, M. Liserre, et al. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Transactions on Industrial Electronics. 2006, 53,(5):1398~1409
    54 Changjiang Zhan, Fitzer C, Ramachandaramurthy,et al. Software Phase-Locked Loop Applied to Dynamic Voltage Restorer (DVR). IEEE Power Engineering Society Winter. 2001, 3:1033~1038
    55 D. Yazdani, A. Bakhshai, G. Joos, et al. A Nonlinear Adaptive Synchronization Technique for Grid-Connected Distributed Energy Sources. IEEE Transactions on Power Electronics. 2008, 23(4):2181~2186
    56 V .Kaura , V.Blasko. Operation of A Phase Locked Loop System Under Distorted Utility Conditions. IEEE Transactions on Industry Applications. 1997,1(33): 58 ~63
    57盘宏斌,罗安,唐杰等.一种改进的基于最小二乘法的自适应谐波检测方法.中国电机工程学报. 2008, 28(13):144~41
    58 S -K Chung. Phase-Locked Loop for Grid-Connected Three-Phase Power Conversion Systems. IEE Proceedings Electric Power Applications. 2000,3(147): 213~219
    59 Samir Ahmad Mussa, Hari Bruno Mohr.Three-Phase Digital PLL for Synchronizing on Three-Phase/Switch/Level Boost Rectifier by DSP. 35th Annual IEEE Power Electronics Specialists Conferece. 2004: 3659~3664
    60 Hong-seok Song, Hyun-gyu Park, Kwangbee Nam. An Instantaneous Phase Angle Detection Algorithm under Unbalance Line Voltage Condition.IEEE PESC’99, South Carolina,1999,1:533~537
    61 Se-Kyo Chung. A Phase Tracking System for Three Phase Utility Interface Inverters.IEEE Transactions on Power Electronics.2000,15(3):431~438
    62 Lindsey W C, Chak Ming Chie. A Survey of Digital Phase-Locked Loops. IEEE Proceedings. 1981,4(64):410~431
    63 Su Chen, Geza Joos. A Novel DSP-Based Adaptive Line Synchronization System for Three-Phase Utility Interface Power Converters. PESC.IEEE 32nd Annual.2001,2:528~532
    64庞浩,俎云霄,王赞基.一种新型的全数字锁相环.中国电机工程学报. 2003, 23(2):37~41
    65 A Timbus, R Teodorescu, F Blaabjeg. Synchronization Methods for Three Phase Distributed Power Generation Systems. An Overview and Evaluation. PESC’05,2005:2474~2481
    66 Marian P. Kazmierkowski, Luigi Malesani. Current control techniques for three phase voltage-source PWM converters: A Survey. IEEE Transactions on Industrial Electronics.1998,45(5): 691~703
    67 L. Malesani, P. Tomasin. PWM Current Control Techniques of Voltage Source Converters - A Survey. Proc.Industrial Electronics, Control and Instrumentation Conf. 1993:670~673
    68 J.W.A.Wilson. The forced Commutate Dinverter as a Regenerative Rectifier. IEEE Trans. Industry Applications. 1978, 1A-14:335~340
    69 L. Malesani, P. Mattavelli, S. Buso. Robust Dead-Beat Current Control for PWM Rectifiers and Active Filters. IEEE Transactions on Industry Applications.1999, 35(3):613~620
    70 J. Dixon, S. Tepper, L. Moran. Practical Evaluation of Different Modulation Techniques for Current-Controlled Voltage Source Inverters. IEE procs. Electr. Power Appl. 1996, 143(4): 301~306
    71 Luis Moran, Juan W. Dixon, Rogel R. Wallace. A Three-Phase Active Power Filter Operating with Fixed Switching Frequency for Reactive Power and Current Harmonic Compensation. IEEE Transactions on Industrial Electronics. 1995, 42(4): 402~408
    72 Teresa Esther Nunez-Zuniga, Jose Antenor Pomilio. Shunt Active Power Filter Synthesizing Resistive Loads. IEEE Transactions on Power Electronics. 2002, 17(2): 273~278
    73 Marian P. Kazmierkowski, Luigi Malesani. Current Control Techniques for Three-Phase Voltage-Source PWM Converters: A Survey. IEEE Transactions on Industrial Electronics. 1998, 45(5): 691~703
    74 Rolf Ottersten, Jan Svensson. Vector Current Controlled Voltage Source Converter-Deadbeat Control and Saturation Strategies. IEEE Transactions on Power Electronics. 2002,17(2): 279~285
    75 Paolo Mattavelli. Synchronous-Frame Harmonic Control for High-Performance AC Power Supplies. IEEE Transactions on Industry Applications. 2001, 37(3): 864~872
    76 Hu Jia-bing, He Yi-kang. Multi-Frequency Proportional-Resonant (MFPR) Current Controller for PWM VSC Under Unbalanced Supply Conditions. Journal of Zhejiang University SCIENCE A. 2007, 10 (8):1527~1531
    77 Dalessandro L, Round S D, Kolar J W. Center-Point Voltage Balancing of Hysteresis Current Controlled Three-Level PWM Rectifiers. IEEE Transactions on Power Electronics.2008, 23 (5): 2477~2488
    78 C.T. Pan, T.Y. Chang. An Improved Hysteresis Current Controller for Reducing Switching Frequency. IEEE Transactions on Industry Electronics. 1994, 41(9): 97~104
    79 I. Nagy. Novel Adaptive Tolerance Band Based PWM for Field Oriented Control of Induction Machines. IEEE Transactions on Industry Electronics. 1994, 41(9): 406~417
    80 E. Perssen, N. Mohan, B.Ben Banerjee. Adaptive Tolerance-band Control of Standby Power Supply Provides Load-current Harmonic Neutralization. Proceedings of IEEE PESC. Toledo. 1992: 320~326
    81 R. Greul , S. D. Round, J. W. Kolar.Analysis and Control of a Three-Phase Unity Power Factor Y Rectifier. IEEE Transactions on Power Electronics.2007, 22 (5): 1900~1912
    82 L.Malesani, P. Mattacelli, S.Buso. High-performance Hysteresis ModulationTechnique for Active Filters. IEEE Transactions on Power Electronics. 1997,12(5): 876~884
    83 B.H. Kwon, T.W. Kim, J.H. Youm. A Novel SVM-based Hysteresis Current Controller. IEEE Transactions on Power Electronics. 1998, 13(2): 297~307
    84曾江,焦连伟,倪以信等.有源滤波器定频率滞环电流控制新方法.电网技术, 2000, 24(6): 1~8
    85 Shoji Fukuda, Takehito Yoda. A Novel Current Tracking Method for Active Filters Based on A Sinusoidal Internal Model. IEEE Transactions on Industry Applications. 2001, 37(3): 888~895
    86 Mohammad Sedighy, Shashi B. Dewan, Francis P.Dawson. A Robust Digital Current Control Method for Active Power Filters. IEEE Trans. on IA. 2000, 36(4): 1158~1164
    87 Shih-Liang Jung, Hsiang-Sung Huang, Ying-Yu Tzou. A Three-Phase PWM AC-DC Converter with Low Switching Frequency and High Power Factor Using DSP-Based Repetitive Control Technique. PESC’98. 1998: 517~523
    88 Keliang Zhou, Danwei Wang, Guangyan Xu. Repetitive Controlled Three-Phase Reversible PWM Rectifier. Proceedings of the American Control Conference. 2000, Chicago, Illinois: 125~129
    89 K.M. Smedley, S. Cuk. Dynamics of One-Cycle Controlled Cuk Converters. IEEE Transactions on Power Electronics, 1995, 10(6): 634~639
    90 L. Zhou, K.M. Smedley. Unified Constant-Frequency Integration Control of Active Power Filters. IEEE Applied Power Electronics Conference and Exposition, New Orleans, 2000, 1: 406~412
    91章浩,谢运祥.基于滑模控制的三相高功率因数整流器.电气应用. 2008, 27 (10): 82~87
    92习伟,殷波,赵子岩等.三相四线制电力有源滤波器的滑模变结构控制.电网技术. 2004, 28(5): 18~21
    93赵葵银.整流器的模糊滑模变结构控制.电工技术学报. 2006, 21(7): 49~53
    94童梅,童杰,蒋静坪.有源滤波器的神经网络控制.电工技术学报. 2000, 15(1): 57~60
    95姜惠兰,李桂鑫,崔虎宝等. PWM整流器的径向基函数神经网络控制新方法.信息与控制. 2006, 35(3): 406~411
    96 Nishida K, Nakaoka M. Deadbeat Current Control with Adaptive Predictor for Three-phase Voltage-source Active Power Filter. 2004 IEEE 35th Annual Power Electronics Specialists Conference. Aachen, 2004: 1010~1016
    97李玉梅,马伟明.无差拍控制在串联电力有源滤波器中的应用.电力系统自动化. 2002, 26(5): 45~47
    98乔树通,姜建国.三相Boost型PWM整流器输出误差无源性控制.电工技术学报. 2007, 22(2): 68~74
    99钟庆,吴捷,杨金明.并联型有源电力滤波器的无源性控制.控制与决策. 2004, 19(1): 77~80
    100李剑,康勇,陈坚.带模糊调节的重复控制器在逆变器中的应用.电气传动. 2001, 31(6): 30~34
    101黄敏,查晓明,陈允平.并联型电能质量调节器的模糊变结构控制.计算机技术与自动化. 2001, 20(3): 8~12
    102唐欣,罗安,徐春鸣.基于递推积分PI的混合型有源电力滤波器电流控制.中国电机工程学报. 2003, 23(10): 38~41
    103徐万方,罗安,王丽娜等.采用智能控制器的混合型有源电力滤波系统.电力系统自动化. 2003, 27(10): 49~52
    104涂春鸣,罗安.基于广义积分迭代算法的有源滤波器三重变结构控制.电工电能新技术. 2004, 23(1): 34~38
    105武健,何娜,徐殿国.无变压器型并联混合有源滤波器设计及应用研究.中国电机工程学报, 2008, 28(12): 34~38.
    106李刚,沈沉,周谦之.并联型有源滤波器复合控制方法的仿真研究.电力自动化设备, 2007, 27(10): 64~68
    107付青,罗安,王莉娜.基于自适应智能控制的混合有源电力滤波器复合控制.中国电机工程学报, 2005, 25(14): 46~51
    108唐欣,罗安,涂春鸣.一种电力有源滤波器电流控制的新方法.电力系统自动化, 2008, 28(13): 31-34
    109唐杰,罗安,汤赐,杨晓.注入式混合型有源滤波器的复合型滞环控制方法研究.电力自动化设备, 2007, 27(10): 51~55
    110罗邵屏,罗安,周柯.注入式混合有源滤波器的复合变结构控制.高压电器, 2007, 43(6): 419~422
    111 Wanfeng Zhang, Guang Feng, Bin Wu. A Digital Power Factor Correction (PFC) Control Strategy Optimized for DSP. IEEE Transactions on Power Electronics. 2004,19(6):1474~1485
    112刘秀翀,张化光,褚恩辉.三相电压型PWM整流器功率控制方法.电机与控制学报. 2009, 13(1): 47~51
    113方宇,裘迅,邢岩等.三相高功率因数电压型PWM整流器建模与仿真.电工技术学报. 2006, 21(10): 44~49
    114廖晓钟,肖延磊,李爽.三相PWM整流器的模糊免疫PID控制.北京理工大学学报. 2007, 27(12): 1085~1089
    115王久和.电压型PWM整流器的非线性控制.北京:机械工业出版社, 2008:181~185
    116邵立伟,廖晓钟.自抗扰控制器再三相电压型PWM整流器中的应用.北京理工大学学报, 2008, 28(1): 50~53
    117 P. Ide, N. Froehleke, H. Grotstollen.Investigation of Low Cost Control Schemes for a Selected 3-Level Switched Mode Rectifier.Proc. INTELEC’97.1997 : 413~418
    118 P. Ide, N. Froehleke, H. Grotstollen.Enhanced Control Scheme for Three-Phase Three-Level Rectifiers at Partial Load. IEEE Transactions on Power Electronics.2005,52(3): 719~727
    119 U. Drofenik, J. W. Kolar. Comparison of Not Synchronized Sawtooth Carrier and Synchronized Triangular Carrier Phase Current Control for the VIENNA Rectifier. Proc. Symposium Industrial Electronics.1999: 13~19
    120王鸿雁,陈阿莲,邓焰等.基于控制自由度组合的多电平逆变器载波PWM控制方法.中国电机工程学报. 2004, 24(l):131~135
    121 Arijit Biswas, Sambarta Dasgupta, Swagatam Das, et al. A Synergy of Differential Evolution and Bacterial Foraging Algorithm for Global Optimization.Neural Network World. 2007, 6(17):607~626
    122 Passino K M. Biomimicry of Bacterial Foraging for Distributed Optimization and Control. IEEE Control Systems Magazine. 2002,3(22):52~67
    123 N. Celanovic, D. Boroyevich. A Comprehensive Study of Neutral-Point Voltage Balancing Problem in Three-Level Neutral-Point-Clamped Voltage Dource PWM Inverters. IEEE Transactions on Power Electronics. 2000, 15(2): 242~249
    124 J. Pou, D. Boroyevich, R. Pintado. New Feedforward Space-Vector PWM Method to Obtain Balanced AC Output Voltages in a Three-Level Neutral-Point-Clamped Converter. IEEE Trans. Industrial Electronics. 2002,49(5):1026~1034
    125 O. Ojo, S. Konduru. A Discontinuous Carrier-Based PWM Modulation Method for the Control of Neutral Point Voltage of Three-Phase Three-Level Diode Clamped Converters. Proc. Power Electronics Specialists Conf. 2005:1652~1658
    126 S.Busquets Monge, S. Somavilla, J. Bordonau, et al. Capacitor Voltage Balance for the Neutral-Point-Clamped Converter Using the Virtual Space Vector Concept with Optimized Spectral Performance. IEEE Transactions onPower Electronics, 2007 ,22(4):1128~1135
    127 D. Zhou , D. G. Rouaud. Experimental Comparisons of Space Vector Neutral Point Balancing Strategies for Three-Level Topology. IEEE Transactions on Power Electronics. 2001, 16(6):872~879
    128张邦楚,王少锋,韩子鹏等.飞航导弹分数阶PID控制及其数字实现.宇航学报. 2006, 26(5):653~656
    129 Enacheanu.O, Riu. D, Retiere. N, Enciu. P. Identification of Fractional Order Models for Electrical Networks. 32nd Annual Conference on IEEE Industrial Electronics, 2006: 5392~5396
    130薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计.控制理论与应用. 2007, 24(5): 771~77
    131 Podlubny I. Fractional Order Systems and PDμControllers. IEEE Transactions on Automatic Control, 1999, 50(9): 208~214
    132李远禄,于盛林.分数阶微分器的实现及其阶次对方法选择的影响.南京航空航天大学学报. 2007, 39(4):505~509

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700