用户名: 密码: 验证码:
生物降解型水平井钻井液研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水平井技术已经成为油气开采中的关键技术之,而有“钻井工程血液”之称的钻井液特别是水平井钻井液技术更是钻井液技术领域研究的热点和难点。相对于直井和常规定向井,水平井对钻井液的技术要求更为严格和苛刻,尤其表现在井眼净化能力、降摩阻、稳定井壁、防漏失和储层保护等方面。同时,随着世界各国包括我国环境保护意识日益增强,钻井液所带来的环境问题日益受到重视,尤其是在环境敏感地区,如海洋、湖泊和内河等,相应的环境法规和制约也越来越严格。因此,研究和开发环境友好的、符合水平井钻井作业要求的钻井液技术势在必行。
     论文依托中国海洋石油总公司科技攻关项目“水平井钻井液技术研究”和湖北省自然科学基金项目“泥页岩水化膨胀特性和防膨机理研究”,针对水平井钻井液中的关键技术,根据钻井水力学理论和钻井液流变学理论,开发出水平井钻井液关键处理剂,在此基础上构建出水平井钻井液体系,并对水平井钻井液流变性、润滑性、失水造壁性和抑制性等进行了研究与分析;运用生化耗氧量法和发光细菌法研究了水平井钻井液体系和其添加剂的生物可降解性和生物毒性;对利用生物酶降解钻井液技术以及影响酶降解效果的因素展开分析和研究;对生物酶降解钻井液机理进行了研究。
     通过研究取得以下主要技术成果:
     1.根据水平井井眼净化理论和钻井液流变学理论,研制出水平井钻井液关键处理剂;根据储层保护理论构建出无固相弱凝胶水平井钻井液体系;系统分析和研究了钻井液性能。
     (1)根据水溶性聚合物抗盐理论,开发出增稠效果优异而且耐盐的多糖类增粘剂VIS;
     (2)根据胶体化学理论,选择具有“浊点”效应的聚合醇作为水平井钻井液的防塌润滑剂。
     (3)根据储层保护理论,构建出无固相弱凝胶钻井液体系:配浆水+0.1%NaOH+0.2%Na_2CO_3+0.7%增稠剂VIS+2.0%降滤失剂DFD+3%聚合醇润滑剂JLX,用可溶性盐调节密度。
     (4)无固相水平井钻井液呈现出快速弱凝胶特性;流变性能独特,具有较高的动塑比和很高的低剪切速率粘度,其动塑比(YP/PV)可达到1.5,低剪切速率(0.3转/分)粘度达到了55000mPa.s;
     (5)温度对无固相弱凝胶钻井液流变性影响程度较小;钻井液具有优异的抗盐能力,矿化度对流变性能基本无影响;并具有较宽的pH适应能力,pH在6-12范围内性能稳定。
     (6)钻井液具有很强的抑制能力,润滑能力接近油基钻井液。
     2.利用生化耗氧量法和发光细菌法研究了无固相弱凝胶钻井液体系及其添加剂的生物可降解性和生物毒性。
     (1)利用生化耗氧量法研究了无固相弱凝胶钻井液体系及其添加剂的生物可降解性,结果表明,无固相弱凝胶钻井液体系和单一添加剂在海水中能够生物降解;淀粉类降滤失剂DFD生物降解速率最大,其次是增粘剂VIS,再次是润滑剂JLX。
     (2)利用发光细菌法研究了无固相弱凝胶钻井液体系和添加剂的生物毒性,结果表明,水平井钻井液体系可以达到排放标准,淀粉类降滤失剂DFD、增粘剂VIS和润滑剂JLX均为无毒级别。
     (3)生物降解性和生物毒性评价结果表明,无固相弱凝胶钻井液为环境友好型钻井液。
     3.研究了无固相弱凝胶钻井液的储层保护效果,分析了储层损害机理;对生物酶降解多糖类聚合物钻井液进行了试验;对生物酶降解效果影响因素进行了探讨;对生物酶和其它氧化剂降解聚合物进行了对比与分析;分析了生物酶保护储层的作用机理。
     (1)无固相弱凝胶钻井液的储层保护实验结果表明,聚合物堵塞是造成储层损害的主要原因。
     (2)研究了利用生物酶降解多糖类钻井液的可行性和方法。试验结果表明,生物酶是多糖类钻井液的高效破胶剂,具有加量小、活性高等优点,0.1%生物酶SWM-2破胶率可以达到98.4%,矿化度对SWM-2破胶效果基本无影响;较适宜的破胶条件为:pH在6-7,温度不超过90℃,作用时间不低于2h。
     (3)储层保护作用机理研究结果表明,无固相弱凝胶钻井液、生物酶破胶液与储层岩石具有良好的配伍性。
The technique of horizontal well has become one of the key techniques of oil and gas production, while the drilling fluid called "blood of well drilling engineering", especially for horizontal well drilling is the focus and also the problem in the area of drilling fluid technology. Related to the vertical well and conventional directional well, horizontal well has strict and severe requirements for drilling fluid techniques, such as hole cleaning ability, reduction of friction drag, well-bore stability, leaking prevention and reservoir protection. At the same time, with the enhancement of environmental protection in the world, including China, the environmental problems caused by drilling fluid are emphasized day by day, especially in the area sensitive to environmental change, such as in sea, lakes and inner rivers. The corresponding laws and constrains on drilling fluids are more and more strict. Therefore, it is imperative to develop and research on drilling fluid technique which could meet the requirement of both environment protection and horizontal well drilling.
     On the basis of CNOOC technical development project " Technical Study on Drilling Fluid for Horizontal Well " and Natural Fund Project Sponsored by Hubei Province "Research on Hydration Expansion Characteristics of Shale and Mechanism of Expansion Prevention",in allusion to the key techniques used in drilling fluid of horizontal wells , the key treating agents for drilling fluid in horizontal wells were developed based on drilling hydraulic theory and theory of drilling fluid rheology. On the basis stated above, a drilling fluid system used for horizontal well is developed, and the rheological characteristics, lubricating properties, filtration and wall-cake-building characteristics, inhibition properties of drilling fluid for horizontal well were studied and analyzed. A method of biologic-chemical oxygen consumption and a method of luminescent biacteria are used to study the biologic degradation and biologic toxicity of the horizontal well drilling fluid and its additive. The technique of biologic enzyme degradating drilling fluid and factors influencing its degradation effect are analyzed and studied and analyzed. The mechanism of biologic enzyme degradating drilling fluid is studied.
     The follow technical achievements are obtained in the study:
     1. Based on theory of horizontal wellbore cleaning and theory of drilling fluid rheology, the key additives for drilling fluid in horizontal wells were developed, a solid-free and weak gel drilling fluid system was established based on throry of reservoir protection. the properties of drilling fluid are analyzed and studied ystematically.
     (1) Based on the theory of salt resistance of water soluble polymer, a polysaccharide thickness agent VIS with good thickening effect and salt resistance is developed.
     (2) According to the theory of collochemistry, it is proposed that polyalcohol JLX with "clout point'' effect is used as a anti-collapse lubricant in drilling fluid for horizontal well
     (3) According to the theory of reservoir protection, a solid-free and weak gel drilling fluid system was estblished including: water+0.1%NaOH+0.2%Na_2CO_3+0.7%thickener VIS+2.0%fluid loss additive DFD+3%lubricant JLX, soluble salt is used to adjust its density.
     (4) The drilling fluid has unique rheological characteristic with higher yield point-plastic viscosity ratio(YP/PV) and higher low shear rate viscosity(LSRV). Its YP/PV is as high as 1.5, its LSRV(0.3round/min) is 55000 mPa.s, the effect of temperature on rheology is less.
     (5) Drilling fluid has excellent salt resistance. There is no effect of salinity on rheological property. Its pH adaptability is wide, properties of drilling fluid are stable with the range of 6-12(pH).
     (6) It has strong inhibition ability, its lubricity is equal to oil based drilling fluid almost.
     2. Methods of bio-chemical oxygen consumption and luminescent bacterial are used to study the biodegradation and biological toxicity of the drilling fluid system and its additives.
     (1) Method of bio-chemical oxygen consumption is used to evaluate the biodegradation of the solid free weak gel drilling fluid and its additives. The results show that the drilling fluid system and its additive are all biodegradable. The biodegrading rate of starch loss control agent DFD is the highest, next is the thickening additive VIS, the last is lubricant JLX.
     (2) Method of luminescent bacterial is used to analyze the toxicity of the solid free weak gel drilling fluid and its additives. The results show that the toxicity of drilling fluid system can meet criterion of discharge, the toxicity of its additives including thickener VIS, fluid loss additive DFD andlubricant JLX are toxicity-free.
     (3) The results of biological degradation and toxicity evaluation indicate that the solid free weak gel drilling fluid is environment friendly.
     3. The effect of reservoir protection of the solid-free weak gel drilling fluid is studied, the mechanism of formation damage is analyzed. The degradation of polysaccharide polymer by biological enzyme is tested; the factors influencing the effect of enzyme degradation are discussed; biological enzyme and other oxidizing agent degrading polymer are compared. The mechanism of formation protection of biological enzyme is analyzed.
     (1) The result of experiment on reservoir protection of solid-free and weak gel drilling fluid shows that blocking by polymer is the major cause of formation damage.
     (2) The feasibility and methods of using the biological enzyme degradating polysaccharide drilling fluid are studied. The study result indicates that biological enzyme is a high efficient gel breaker for polysaccharide drilling fluid with low dosage and high activity. Factors of influencing the gel break of enzyme are studied. The results show that 0.10% of enzyme SWM-2 has a gel break rate 98.4%; there is no influence of salinity on the gel breaking effect, a more proper gel breaking condition is: pH value is within 6-7;temperature is lower than 90℃; the reaction time is not less than 2h.
     (3) The study result of reservoir protection mechanism indicates that the solid-free weak gel drilling fluid and the biological enzyme gel breaker fluid have a good compatibility with reservoir rocks.
引文
[1]樊世忠,鄢捷年,周大晨.《钻井液与完井液及保护油气层技术》[M].北京:石油工业工社,1996
    [2]张绍槐,罗平亚等编著.《保护储集层技术》[M].北京:石油工业出版社,1996
    [3]黄汉仁,杨坤鹏,罗平亚编.《泥浆工艺原理》[M].北京:石油工业出版社,1995
    [4]张克勤,陈乐亮主编.《钻井技术手册(二)钻井液》[M].北京:石油工业出版社,1988
    [5]鄢捷年.《钻井液工艺学》.东营:石油大学出版社,2003
    [6]李心一,李祥华,王建健,等.AFP 1水平井钻井液技术[J].钻井液与完井液,2002,19(6):95-97
    [7]何竹梅,马开良.C2P1水平井钻井液技术难点及对策[J].钻井液与完井液,2004,21(6):72-74
    [8]杨玉良,李爱军,蒋西平.C2133侧钻小井眼水平井钻井液技术[J].钻井液与完井液,2003,20(1):54-55
    [9]薛玉志,李公让,曹胜利等.CB6D-P3海水水平井钻井液技术[J].石油钻采工艺,2006,28(5):28-30
    [10]党良昌,刘金明,胥洪彪等.CB251E-P1井钻井液技术[J].钻井液与完井液,2004,21(6):60-63
    [11]龚厚平,肖曙东,李祥华等.DUKHAN油田水平井钻井液技术[J].钻井液与完井液,2002,13(6):107-108
    [12]杨玉良.HW702水平井钻井液完井液技术[J].西部探矿工程,1993,5(5):16-19
    [13]刘瑞文,丁海峰.PHP-CFH-MMH钻井液体系的研究与应用[J].石油钻探技术,2005,33(2):30-32
    [14]谢克姜,胡文军,方满宗.PRD储层钻井液技术研究与应用[J].石油钻采工艺,2007,29(6):99-101
    [15]李振杰,李忠宏,杨爱红等.TH302三维水平井钻井液技术[J].河南石油,2004,18(2):60-61
    [16]刘贵传,何伟国,李斌文等.TK424CH侧钻短半径深水平井钻井液技术[J].石油钻探技术,2003,31(2):64-65
    [17]何伟国.TK430H小井眼水平井钻井液技术[J].石油钻探技术,2001,29(4):42-43
    [18]孔庆明,常锋,孙成春等.ULTRADRIL~(TM)水基钻井液在张海502EH井的应用[J].钻井液与完井液,2006,23(6):71-73
    [19]张明海,陈永奇,王洪升等.WuM1-1羽状分支水平井充气钻井液技术[J].钻井液与完井液,2006,23(3):45-46
    [20]康凤伟.阿曼Daleel油田分支井钻井液技术研究[J].特种油气藏,2005,12(5):78-81
    [21]陈玉同,胡金鹏,赵善波等.宝浪油田宝北区块水平井钻井液技术[J].河南石油,2003,17(4):45-47
    [22]王宝田,范维庆,刘绍元等.草20-12一侧平13水平井钻井液技术[J].钻井液与完井液,1997,14(3):40
    [23]许永志,王波,郑韬等.侧钻水平井钻井液研究与应用[J].石油钻采工艺,1999,21(1):33-35
    [24]刘有成,肖登林,徐珍焱等.柴达木盆地第四系不成岩地层水平井钻井液技术[J].钻井液与完井液,2007,24(3):20-23
    [25]李再钧,任风君,马光阳.超深阶梯式水平井钻井液技术[J].石油天然气学报(江汉石油学院学报),2006,28(5):104-106
    [26]唐代绪,张敬辉,刘保双等.埕北243区块明化镇组保护油层的水平井钻井液研究[J].中国海上油气,2004,16(2):123-125
    [27]黄达全,陈少亮.大港油田水平井保护油层钻井液技术[J].钻井液与完井液,2007,24(3):20-23
    [28]汪海阁,刘希圣.大斜度井及水平井钻井液的选择[J].钻采工艺,1994,17(3):8-14
    [29]黎金明,陈在君,杨斌等.低固相不混油钻井液在CB1-1双分支水平井的应用[J].钻井液与完井液,2007,24(4):37-39
    [30]唐军,朱树兵.低渗透油层水平井钻井液工艺技术及现场应用[J].钻采工艺,1998,21(5):62-65
    [31]岳前升,向兴金,范山鹰等.东方1-1气田水平井钻井液技术[J].天然气工业,2005,25(12):62-64
    [32]张家栋,曲明生.杜84块超稠油成对水平井钻井液完井液技术[J].钻井液与完井液,1997,14(6):9-11
    [33]陈德铭,刘亚元,杨钢铁等.二连油田水平井钻井液技术[J].钻井液与完井液,2006,23(5):70-73
    [34]宗瑞国,鄢捷年,蒋官澄.官H-1水平井钻井液完井液设计与应用[J].钻井液与完井液,1994,11(5):33-39
    [35]苏常明,罗立公,王宝田.国内水平段最长的水平井钻井液技术[J].钻井液与完井液,1994,11(4):23-27
    [36]张成恩,王宝田.哈得4油田双台阶深水平井钻井液技术[J].钻井液与完井液,2004,21(6):70-74
    [37]陈彦平,周友元,张革新.哈德地区长裸眼双台阶水平井钻井液技术[J].钻井液与完井液,2002,19(2):41-43
    [38]卢淑芹,李家库,张淑霞等.冀东油田6104-5区块水平井油气层保护技术[J].石油钻探技术,2005,33(4):45-48
    [39]王文广,翟应虎,黄彦等.冀东油田大斜度井及水平井岩屑床厚度分析[J].石油钻采工艺,2007,29(5):5-7
    [40]邓增库,左洪国,夏景刚等.冀东油田水平井钻井液技术[J].钻井液与完井液,2005,22(4):72-77
    [41]王思友,庞永海,王伟忠等.家H2分支水平井钻井液技术[J].钻井液与完井液,2005,22(增刊):24-28
    [42]李益寿,王卫国,黄承建等.甲酸盐钻井液技术在吐哈油田水平井的应用[J].钻井液与完井液,2006,23(6):5-8
    [43]刘亚元,刘焕玉,左凤江等.京11平1井钻井液技术[J].钻井液与完井液,2007,24(5):33-35
    [44]王文勇,李建成,柳颖等.静31-59双分支侧钻水平井钻井液技术[J].钻井液与完井液,2003,20(1):29-30
    [45]李才雄,孔庆明,关键等.聚硅氟钻井液在G29-P1井的应用[J].钻井液与完井液,2004,21(6):64-66
    [46]荆昌澄,刘漩.聚合醇一正电胶聚合物钻井液在中原油田水平井中的设计与应用[J].内蒙古石油化工,2005,(3):83-86
    [47]王洪宝,王庆,孟红霞等.聚合醇钻井液在水平井钻井中的应用[J].油田化学,2003,20(3):200-201
    [48]李益寿,许尾,王卫国等.勒平一 1井乳化原油甲酸盐钻井液技术[J].吐哈油气,2006,11(4):352-356
    [49]范维庆,张海亭,王宝田等.两口短半径水平井钻井液技术介绍[J].石油钻探技术,1998,26(4):20-21
    [50]吴旭林,夏景刚,左洪国等.留西地区深水平井高密度防塌钻井液技术[J].钻井液与完井液,2007,24(5):76-77
    [5l]于进海,冯富斌,李井矿等.路43-P1水平井高密度钻井液难点技术的解决[J].钻井液与完井液,2007,24(5):78-79
    [52]冯学荣,周华安,贾兴明等.罗家寨构造水平井钻井液技术[J].钻井液与完井液,2005,22(4):8-11
    [53]夏会平,马世昌,杨玉良等.莫北油田MBWH02水平井钻井液技术[J].钻井液与完井液,2002,19(2):48-50
    [54]余庆.耐温抗盐聚合物正电胶钻井液在濮2 一平 1井中的应用[J].江汉石油学院学报,2004,26(增刊):109-110
    [55]张辉,杨振杰,郭京华.耐温抗盐聚合物钻井液在中原油田水平井的研究与应用[J].钻井液与完井液,2002,19(6):39-42
    [56]杨虎,郭振义.泡沫钻井液在水平井段中的应用[J].石油钻采工艺,2001,23(1):16-18
    [57]乔永,庄义江,郭明贤等.濮2 一平 1井钻井液技术[J].钻井液与完井液,2002,19(5):40-42
    [58]周风山,蔺志鹏,马来选等.塞平一井钻井液技术研究[J].西安石油学院学报,1995,10(2):39-42
    [59]石秉忠.深井水平井钻井液技术难点与工艺措施[J].西部探矿工程,1998,10(5):29-31
    [60]李云波,乌效鸣,黄志文等.生物酶在水平井钻井液中的应用[J].新疆石油学院学报,2003,15(4):45-47
    [61]董明鉴,石学强,丁海峰.胜利油田草南地区水平井钻井液技术[J].钻井液与完井液,2002,19(2):46-47
    [62]王宝田,何兴华.胜利油田大位移井钻井液技术研究与应用[J].钻井液与完井液,2006,23(2):80-82
    [63]刘艳,张琰.适用于大斜度井及水平井钻进的MEG钻井液研究[J].地质与勘探,2005,41(1):93-96
    [64]周光正,许绍营,王治霞等.适用于水平预探井的聚硅氟钻井液[J].钻井液与完井液,2003,20(5):26-28
    [65]许明标,马美娜,张峰等.适于生物酶破胶的新型水平井钻开液体系[J].石油天然气学报(江汉石油学院学报),2006,28(6):130-132
    [66]刘宝锋,李海滨,李公让等.水平3井钻井液技术[J].钻井液与完井液,2003,20(1):56-58
    [67]摊贵明,刘德辉,侯福秋等.水平井大斜度井钻井液流变参数调控技术的实验研究[J].大庆石油学院学报,1997,21(1):134-137
    [68]敬增秀,郑涛,孙宪军.水平井硅基阳离子钻井液体系[J].钻井液与完井液,2005,22(5):72-74
    [69]岳前升,向兴金,舒福昌等.水平井裸眼完井条件下的油基钻井液滤饼解除技术[J].钻井液与完井液,2005,22(3):32-33
    [70]罗春芝,向兴金,王昌军.水平井水基钻井液体系室内研究[J].钻井液与完井液,2001,18(3):9-11
    [71]李健,杨柳,张健.水平井钻井过程中钻井液污染油层特点及保护对策[J].西南石油学院学报,1996,18(4):41-42
    [72]燕金友.水平井钻井技术在塔河油田9区的应用[J].西部探矿工程,2006,123:194-195
    [73]王永恒,康毅力,陈一健等.水平井钻井完井液损害实验评价技术新进展[J].钻井液与完井液,2006,23(1):72-75
    [74]陈乐亮,张孝远.水平井钻井液的特殊要求及国内简况[J].石油与天然气化工,1993,22(1):24-28
    [75]冉照辉,周林,崔玉娟等.水平井钻井液技术在克拉玛依油田百重7井区的应用[J].新疆石油天然气,2007,3(4):60-64
    [76]鄢捷年.水平井钻井液完井液技术新进展[J].钻井液与完井液,1995,12(2):11-18
    [77]张景富,俞庆森.水平井钻井液携屑理论模型[J].大庆石油学院学报,1998,22(4):19-22
    [78]汪海阁,刘希圣.水平井钻井液携岩机理研究[J].钻采工艺,1996,19(2):10-14
    [79]陈彦平.塔北地区水平井钻井液技术[J].钻井液与完井液,2000,17(5):41-43
    [80]张哲,刘庆来.塔河油田深水平井钻井液技术[J].石油钻探技术.2001,29(1):32-34
    [81]乔领良,杨勇,刘峰.塔河油田水平井钻井液技术探讨与实践[J].钻采工艺,2000,23(4):83-85
    [82]金军斌,李娟,李强.塔河油田中半径水平井钻井液技术难点与对策[J].石油钻探技术,2006,34(3):55-58
    [83]江如意,石玉鹏,王浦潭等.塔中4油田水平井打开油层钻井液评价[J].石油勘探与开发,1996,23(5):58-62
    [84]高建民,倪元勇,刘顺良等.台4平1井钻井液技术[J].钻井液与完井液,2004,21(4):58-60
    [85]王在明,邱正松,徐加放等.韦5径向井钻井液工艺技术[J].钻采工艺,2006,29(4):17-19
    [86]高建利.涠11-4 A 13水平井钻井液与完井液技术[J].中国海上油气(工程),1994,6(2):40-42
    [87]肖平,严新新.温度对O/W水平井钻井液流变性的影响[J].石油与天然气化工,1998,27(4):244-246
    [88]徐林,张东海.文92一平1深层水平井钻井液技术[J].西部探矿工程,2004,(5):65-68
    [89]范山鹰,向兴金,岳前声.无固相弱凝胶钻井液体系的室内试验研究[J].江汉石油学院学报,2004,26(1):69-70
    [90]任学军.无土相水平井钻井液体系的开发[J].华北科技学院学报,2005,2(2):55-58
    [91]龙芝辉,汪志明,郭晓乐.斜直井段和水平井段中环空岩屑运移机理的研究[J].石油大学学报(自然科学版),2005,29(5):42-45
    [92]蔺志鹏,陈恩让,胡祖彪等.杏平1水平分支井钻井液技术[J].钻井液与完井液,2007,24(2):15-17
    [93]王在明,邱正松,徐加放等.用生物聚合物XC解决水平井系列问题[J].钻采工艺,2007,30(4):121-124
    [94]崔远众,江桂娟.用于水平井储集层的钻井液性能评价[J].钻井液与完井液,1997,14(3):47-48
    [95]续丽琼,赵翰宝.用于钻水平井的低密度水包油乳化钻井液[J].油田化学,1993,10(3):204-208
    [96]胡景东,张明庆,李祥银等.有机硅防卡钻井液在G59-平2井的应用[J].钻井液与完井液,2005,22(5):75-77
    [97]王富华,吴明强.有机正电胶聚合物钻井液研制与应用[J].石油学报,2004,25(5):93-97
    [98]徐成金,杨海云.跃西2平1井钻井液技术[J].钻采工艺,2000,23(6):83-84
    [99]石凤歧,尹洪生,张东海等.云2一平1多台阶变方位水平井钻井液技术[J].钻井液与完井液,2002,19(3):33-35
    [100]郭京华,杨云鹏,田凤等.云2一平1井钻井液技术[J].内蒙古石油化工,2002,28:151-153
    [101]张民立,周建东,王志军等.正电胶磺化混油聚合物钻井液在长裸眼水平井中的应用[J].钻井液与完井液,2002,19(5):25-27
    [102]许振波,许振华,龚保强等.正电胶水平井钻井液体系的研究与应用[J].油田化学,2006,23(5):102-106
    [103]赵景山.正电胶钻井液水平井井眼净化及应用[J].胜利油田职工大学学报,2001,15(1):10-12
    [104]刘子先,张广磊,沈万清等.正电胶钻井液在蹼2一平1井中的应用[J].石油钻采工艺,2002,24(3):38-39
    [105]张东海.中原油田第一口深层超薄油藏水平井钻井液技术[J].特种油气藏,2004,11(1):66-68
    [106]马文英,王善举,孙举.中原油田水平井钻井液技术[J].精细石油化工进展,2007,8(6):4-7
    [107]李公让,刘宝锋,薛玉志等.桩1一支平1井钻井液工艺技术[J].钻井液与完井液,2002,19(1):26-27
    [108]赵道汉,陈娟,孙庆林等.钻井液用水基润滑剂NSR-1的研究与评价[J].油田化学,2007,24(2):97-99
    [109]彭建伟._大庆油田水平井水基钻井液体系研究[D].大庆石油学院,2004
    [110]姜伟.大位移井在渤海油田中的应用[D].西南石油学院,2002
    [111]Fischer,P.W.,Gallus,J.P.,Krueger,R.F.,Pye,D.S.,Simmons,F.J.,Talley,B.E.,Union Oil Co.of California,An Organic“Clay Substitute”for Nondamaging Water Base Drilling and Completion Fluids,1973,SPE4651-MS
    [112]Burba Ⅲ, J.L., Holman, W.E., Crabb, C.R., The Dow Chemical Co.Laboratory and Field Evaluations of Novel Inorganic Drilling Fluid Additive, SPE17198-MS, 1988
    [113]E.Lecolier, B.Herzhaft, L.Rousseau, and L.Neau, Institut Francais du Petrole, and B.Quillien and J.Kieffer, SNF-Floerger, Development of a Nanocomposite Gel for Lost Circulation Treatment, SPE94686-MS, 2005
    [114]Crabb, C.R., Burba Ⅲ, J.L., Dow Chemical Co.; Holman, W.E., Westbridge Oilfield Products Co., New Inorganic Attapulgite Extender Provides Stable Rheology and Supports Heavy Cuttings Even Under Severe conditions, SPE18482-MS, 1989
    [115]Philip J.Webb, Shell UK Ltd.; Oliver Kuhn, Shell China E&P Co.Ltd., Enhanced Scale Management through the Application of Inorganic Geochemistry and Statistics , SPE87458-MS, 2004
    [116]J.Arukhe, Shell Canada Ltd., and C.Uchendu and L.Nwoke, BJ Services Co.Nigeria Ltd., Horizontal Screen Failures in Unconsolidated, High-Permeability Sandstone Reservoirs: Reversing the Trend, SPE97299-MS
    [117]Md.Amanullah and Richard Boyle, CSIRO Petroleum , Experimental Evaluation of Formation-Strengthening Potential of a Novel Gel System, SPE 100436-MS, 2006
    119.Guoqiang Chen, David Burnett, Texas A&M University, Improving Performance of Low Density Drill in Fluids with Hollow Glass Spheres, SPE82276-MS
    [118]Efthim, F.P., Garner, J.J., Bilden, D.M., BJ-Titan Services; Kovacevich, ST., Pence, T.C., Oryx Energy Co.Evaluation and Treatment of Organic and Inorganic Damage in an Unconsolidated Asphaltic Crude Reservoir, SPE 19412-MS, 1990
    [119]唐仕忠,夏世明,夏先付等.宝平1水平井钻井液技术[J].钻井液与完井液,2003,20(6):64-65
    [120]Ramirez M A, Clapper D K.Aluminum-Based HP-WBM Successfully Replaces Oil-Based Mud to DrillExploratory.SPE94437
    [121]Van Ort E.Physics-Chemical Stabilization of Shale.SPE37263
    [122]Herzhaft B, Rousseau L.Development of a Nanocom-posite Gel for Lost Circulation Treatment.SPE94686
    [123]Morton K, Schiller M.Selection and Evaluation Crite-ria for High-Performance Drilling Fluids.SPE96342
    [124]Dye W, Daugereau D, and Xiang.New Water-BaseMud Balances High-Performance Drilling and Environ-mental Compliance.SPE92367
    [125]Sithole, Bishop B and Guy Robert D.Interactions of Secondary Amines with Bentonite Clay and Humic Ma-terials in Dilute Aqueous Systems, Environmental In-ternational,1985,11:499-504
    [126]Dye W,Clapper D,Hansen N.Leaper.Design Con-siderations for High Performance Water-Based Mud,AADE-04-DF-HO-14,AADE 2004 Drilling Fluids Conference,Houston,Texas,2004,4
    [127]Morton K,Bomar B,Schiller M,et al.Development and Learning Process Using New HPWBM on Gulf of Mexico Shelf Wells,AADE-05-NTCE-31,presented at the AADE 2005National Technical Conference and Exhibition,Houston,Texas,2005,5
    [128]Veil J.Drilling Waste Management:Past,Present and Future.SPE77338
    [129]Melton H R,et al.Environmental Aspects of the Use and Disposal of Non Aqueous Mud Associated withOffshore.SPE86696
    [130]岳前声,肖稳发,向兴金,等.聚合醇处理剂JLX作用机理研究[J].油田化学,2000,17(1):14-16
    [131]张景富,俞庆森,严世才.侧钻井钻井液携屑能力试验研究[J].石油钻采工艺,2000,22(2):12-16
    [132]汪海阁,刘希圣.大斜度井及水平井钻井液的选择[J].钻采工艺,1994,17(3):8-14
    [133]王玉芳.有机钻井液处理剂生物降解动力学研究[J].石油钻探技术,2006,34(4):52-54
    [134]吕开河,郭东荣,高锦屏.钻井液有机添加剂在自然海水中的生物降解性[J].石油钻探技术,2001,29(4):39-41
    [135]彭商平,蒲晓林,罗兴树,等.聚合醇PPG钻井液添加剂的环保性能研究[J].钻采工艺,2004,27(6):94-95
    [136]柏红梅.海洋钻井液有机物添加剂生物降解性实验研究[J].石油钻探技术,2003,31(5):77-79
    [137]黄雪静,崔茂荣,周长虹,等.钻井液生物毒性评价方法对比[J].油气田环境保护,2005,16(3):25-27
    [138]马文臣,易绍金.钻井液研究与使用应考虑的环境问题[J].石油钻采工艺,1998,20(3):37-40
    [139]黄晓东.国外钻井液毒性检测方法述评[J].石油钻探技术,1995,23(4):55-56
    [140]向兴金,易绍金,戴向东,等.海上钻井废弃物排放的法规与对策[J].油气田环境保护,1996,6(3):31-35
    [141]王丽莎,魏东斌,胡洪营.发光细菌毒性测试条件的优化与毒性参照物的应用[J].环境科学研究,2004,17(4):61-62,66
    [142]李欣.发光细菌法测定钻井液综合生物毒性[J].油气田环境保护,1999,9(1):29-30
    [143]蒋园芳.发光细菌检洲水中综合毒性[J].科技资讯,2008,(30):215,217
    [144]易绍金,向兴金,肖稳发.利用发光细菌法快速测定钻井液完井液的生物毒性[J].钻井液与完井液,2001,18(4):1-2
    [145]李秀珍,李斌莲,范俊欣等.油田化学剂和钻井液生物毒性检测新方法及毒性分级标准研究[J].钻井液与完井液,2004,21(6):44-46
    [146]易绍金,向兴金,肖稳发等.油田化学剂生物毒性测定及其分级标准[J].油气田环境保护,1996,6(3):45-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700