用户名: 密码: 验证码:
高粘粒含量吹填土加固过程中结构强度的模拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着沿海城市经济的发展和城市基本建设的蓬勃开展,国内一些港口存在着严重的陆域不足现状,将疏浚出来的淤泥用于填海造陆,已成为沿海城市土地开发的重要手段。这种土的特点是含水率大、呈流塑状态、强度低、压缩性高,一般不能满足工程需要。如能将吹填土快速从泥浆状态转变为具有一定承载力的地基,将对填海造陆工程建设带来巨大的效益。
     边吹填边进行吹填土固结排水的方法为吹填土加固处理提供了新的思路,该方法可以大大提高工程进度、提高经济效益。但是,在吹填土吹填的同时进行加固处理时,由于吹填土处于流塑甚至悬浮状态,土颗粒之间粘聚力较低,在吹填土工程处理过程中,如果排水过程控制缺乏科学性,易造成吹填土结构强度未形成时,土颗粒被高孔隙水压差迁移到排水通道表面,在排水通道表面形成具有一定厚度的泥膜,从而影响排水通道的渗透性,严重地影响了吹填土工程处理质量,大大增加了能耗,提高了工程处理费用,延长了工程处理时间,同时给生产上带来了一定的盲目性和随机性。因此,本文结合国家自然科学基金项目“海积软土地基加固过程中有机质的作用和影响”(No.40372122),对高粘粒含量吹填土加固过程中结构强度的形成进行了模拟试验研究。
     本文以天津滨海新区高粘粒含量吹填土为研究对象,首先对天津滨海新区高粘粒含量吹填土的粒度成分、矿物成分、易溶盐含量、比表面积等性质进行了分析。其次,采用自制的室内模拟试验装置进行了室内模拟试验——量筒模拟试验和大型试验箱试验。量筒模拟试验包括自重沉降试验和排水试验,通过自重沉降试验得到不同土水比吹填土的沉降量与时间关系曲线,确定不同的静置时间,排水试验中根据自重沉降试验确定的不同静置时间控制吹填土试样静置后排水,通过排水总量与时间关系曲线发现,泥浆静置时间越长,排水量越大。通过大型试验箱试验对不同渗流压力下试样的孔隙水压力、沉降速率和渗流总量进行了研究,并在不同渗流压力下形成稳定结构试样的不同深度处取样,对其微观结构特征进行定性和定量研究,采用分形理论验证试样微观结构的分形特征,探讨了微观结构单元体和孔隙分形维数与渗流压力之间的关系。最后,应用颗粒流理论对不同静置时间试样在不同渗流压力下的渗流情况进行模拟研究,通过试样管壁处孔隙率和渗透系数的变化发现:试样结构强度的形成与静置时间有关,渗流压力不同,所需要形成的结构强度不同,并得到了不同渗流压力作用下使试样稳定渗流所需的结构强度需要静置的时间。
     本文为高粘粒含量吹填土加固过程中结构强度的形成研究提供了一种新的思路。
With the rapid development of economic construction, coast reclamation project has become one of the main measures for resolving the increasing shortage of the land resources of the coastal cities. So, it is a good idea of gaining two advantages by a single move to make full use of dredged silt in sea reclamation. But the grain of dredger fill is fine, with high water content, large void ratio, low penetrability, low strength, high compressibility, can not satisfy the engineering requirement. It is needed a long time to solidify naturally, it can be reinforced after the forming of surface duricrust, and it is influence on project progress. Therefore, how to find a method which can quickly change the serous fluid of dredger fill to foundation with bearing capacity has already been the urgent technological subject.
     Method which consolidation and drainage during dredger open up a new way for dredger fill reinforcement treatment. This method has advantage of short construction period, without pollution, is reasonable and economical. But, without guiding of scientific, drainage consolidation before dredger fill have not form a structural strength, the thick sludge membrane appeared around the drainage pipes. Then the efficiency of reinforcement is seriously influence. Blindness and randomness brought to production. Therefore, the study of stability structural strength during reinforce dredger fill is necessary. It can provide theory reference for dredger fill reinforcement and service to engineering.
     So the structural strength of dredger fill in Tianjin Binhai New Area are studied in this paper associated with the project of "study on the influence of organic matter in the progress of marine soft soil foundation consolidation" sponsored by the national natural scientific fund. The study on the form of structural strength of dredger fill with high clay content during consolidation progress is studied on the basis of indoors physical and chemical properties, indoor simulation test, quantitative analysis of microstructure parameters, extracting of microstructure fractal parameters and pfc simulation.
     Following study is done in the paper:
     1. The granularity composition, mineral composition and soluble salt content of dredger fill in Tianjin Binhai New Area were introduced. Dredger fill in Tianjin Binhai New Area naming silt, when added dispersant, it naming light clay, with obviously sham silty soil in silt fraction. Mineral composition mainly is original mineral, subsidiary role is secondary mineral. Dredger fill with the property of moderate plastic, low liquid limit. Soluble salt content mainly is sodium ion and chloride ion. Sedimentary environment belongs to weak alkaline.
     2. Dredger fill with high clay content of Tianjin Binhai New Area was applied to do a series of indoor simulation experiments, graduated cylinder model test and large-scale apparatus test.
     ①Graduated cylinder model test
     Graduated cylinder model tests include self-weight consolidation test and drain test. Through self-weight consolidation test find the relationship curve between settlement and time of sample with the quality ratio of soil and water were 1:2.5 and 1:3, and ensure stewing time for drain test. Based on the stewing times, drain test was done after a period of the soil stewing time, and find the relationship curve between water discharge and time, by the curve we found the longer the stewing time, the more the final water discharge.
     ②The large-scale apparatus test
     The large-scale apparatus test was to be done. In different circumstances, the settlement, drainage rate and pore water pressure were studied under the different consolidation proceedings. In addition, the basic property of the upper and the lower part of the sample at different stress and at all levels of consolidation were analyzed. Seepage rate and pore water pressure increased with the seepage pressure increases, pore water pressure increased with the distance increases of drainage channel and piezometric tube. Moisture content of the dredger fill was decreased as the seepage pressure increases, and the upper was greater than the lower. The specimen surface area and cation exchange capacity were increased as the seepage pressure increases. The total amount of soluble salt of the upper dredger fill in the large-scale apparatus was more than the lower, and as the seepage pressure increases, the total amount of soluble salt was decreased. The organic content of the upper was higher than the lower part of dredger fill in the large-scale apparatus. With the seepage pressure increases, the value of the sample penetration, bearing capacity and compression modulus were increased, fluid index decreased, the strength increases, the strength of in the lower soil was greater than the upper.
     3. Through collecting the micro structural of the dredger fill photographs which formed a stable structure under different seepage pressure in large-scale apparatus test. Through qualitative, quantitative and fractal features analysis of microstructure, results show that:
     ①With the seepage pressure increases, the directionality of structural unit and pore increases. The structure changed gradually from the honeycomb-flocculation structure to agglomerated structure, and the contact type among the minerals is from edge to edge connection mainly to the transition to be edge to edge and edge to face connection.
     ②The large interval content of the particle diameter in the lower higher than in the upper. With the seepage pressure increases, the abundance ratio, circularity and mean shape coefficient of the structural unit decreases, the directionality increases.
     ③With the seepage pressure increases, the content of the large pore reduced, the content of the small pore increased, the abundance ratio, circularity and mean shape coefficient of the structural pore decreases, the directionality increases, and mainly concentrated on the 0°-10°.
     ④The morphology, orientation, pore morphology and plane distribution of the sample’s micro-structure units exist the self-similar fractal characteristics when formed stable structure under different seepage pressure.
     ⑤With the seepage pressure increased, the morphology fractal dimension of the microstructure unit particles increased, the content of small unit increased, the complex morphology of the particles is higher, the morphology fractal dimension in the lower less than in the upper. The directional fractal dimension of the structural unit tends to decrease, the directional fractal dimension of the microstructure unit body is between 0.6-0.8.
     ⑥With the seepage pressure increased, the morphology fractal dimension of the microstructure pore increased, the plane distribution fractal dimension of the structural pore tends to decrease, the plane distribution fractal dimension of the microstructure pore is between 0.5-0.7.
     4. The indoor experiments are numerical simulated with the theory of particle flow code. The samples are under the condition of different seepage pressures and different stewing times. Results conclude the relationship curve between internal porosity and permeability coefficient with time steps. Through the numerical simulation, the flowing conclusions were obtained:
     ①The curve of porosity and permeability to time step fluctuate frequency from more to few, strength from strong to weak, with the stewing times increases. This illustrate that the structural strength of sample increase, and particles harder to recombine.
     ②When seepage pressure is 10KPa and 20KPa, porosity and permeability to time curve tends to be stable at the end in tube wall of the sample standing for 30 days. It means that stable seepage is formed. When seepage pressure is 40KPa and 80KPa, porosity and permeability to time curve tends to be stable at the end in tube wall of the sample standing for 60 days, the stable seepage is formed.
     ③When drainage consolidation under 20KPa seepage pressure, sample need to standing for 30 days. When drainage consolidation under 80KPa seepage pressure, sample need to standing for 60 days.
     ④Sample’s structure strength enhances as standing more days; the larger the seepage pressure, the greater the structure strength is needed to avoid sludge plugging effect of sample.
引文
[1]韦剑锋.天津市滨海新区吹填土工程处理现状及技术改进试验研究—吹填土水平辐射真空排水固结技术初探[J].工程勘察,2008(6):20-75.
    [2]文海家,严春风,汪东云.吹填软土的工程特性研究[J].重庆建筑大学学报,1999,21(2):79-83.
    [3]刘娉慧.快速加固吹填泥浆的室内模拟试验研究[D].长春:吉林大学硕士学位论文,2002.
    [4]杨顺安,张瑛玲,刘虎中,等.深圳地区吹填淤泥的工程特征[J].地质科技情报,1997,16(1):85-89.
    [5]彭涛,武威,黄少康,侯培丽.吹填淤泥的工程地质特性研究[J].工程勘察,1999,(5):1-5.
    [6]刘莹,王清,肖树芳.不同地区吹填土基本性质对比研究[J].岩土工程技术,2003,(4):197-200.
    [7] Been K, Sills G C. Self-weight consolidation of soft soils:an experimental and theoretical study [J]. Geotechnique,1981,31(4):519-535.
    [8]洪振舜.吹填土固结特性的试验研究[D].河海大学硕士论文,1986.
    [9]方开泽.青岛前湾港吹填土试验研究报告[R].河海大学土力学教研室,1988.
    [10]吴正友.连云港吹填泥浆在静水中沉积和固结性质现场观测与分析[J].水运工程,1990,(4):1-6.
    [11]王华敬,顾长存,苏慧.钱塘江吹填土的沉淀特性研究[J].连云港职业技术学院学报,2002,15(2):60-63.
    [12]刘莹,肖树芳,王清.吹填土室内模拟试验研究[J].岩土力学,2004,25(4):518-528.
    [13]杨坪,唐益群,王建秀,等.基于大变形的冲填土自重固结分析及离心模型试验[J].岩石力学与工程学报,2007,26(6):1212-1219.
    [14]詹良通,童军,徐洁.吹填土自重沉积固结特性试验研究[J].水利学报,2008,39(2):201-205.
    [15]刘莹,肖树芳,王清,等.吹填土沉积固化后结构强度增长的机理分析[J].同济大学学报,2003,31(11):1295-1298.
    [16]王清.海积软土和吹填土固化机理及地基处理机制研究[D].吉林大学博士后士研究报告2002.4.
    [17]王冠英,肖树芳,习春飞.海积软土前期固结压力与结构强度的关系及成因分析[J].世界地质,2004,23(1):69-74.
    [18]李振,王清,范建华,等.固化软土微观结构效应[J].吉林大学学报(地球科学版),2004,34(4):587-591.
    [19]谢海澜,王清.粉煤灰加固处理吹填泥浆的试验研究[J].岩石力学与工程学报,2005,24 (10): 1811-1816.
    [20]刘娉慧,王清,石丙飞,等.快速加固吹填泥浆的试验研究与分析[J].岩土力学,2005,26(12):2023-2026.
    [21]陈慧娥,王清.有机质对水泥加固软土效果的影响[J].岩石力学与工程学报,2005,24(增2):5816-5821.
    [22]王国欣,肖树芳,黄宏伟.杭州海积软土应力—应变特征与结构强度损伤规律研究[J].岩石力学与工程学报,2005,24(9):1555-1560.
    [23]殷基钢,胡军,闫澍旺,等.工业废料皂化渣加固吹填软土的研究[J].港口技术,2006,(1):35-52.
    [24]龚镭,余文天.新吹填淤泥的工程性质变化特性研究[J].工程勘察,2008,(6):23-25.
    [25] Kjellman. Consolidation of clay by Means of Atmosphere Pressure.Proceedings of a conference on soil stabilization.Boston:MIT press,1952.
    [26] Holton G R. Vacuum stabilization of subsoil beneath runway extension at Philadelphia international airport.Proc.ⅥICSMFE,1965.
    [27]娄炎.真空排水预压法的加固机理及其特征的应力路径分析[J].水利水运科学研究,1990,(l):99-106.
    [28]李丽慧,王清,王剑平,等.真空排水预压下土体变形的应力路径分析[J].工程地质学报,2001,9(2):170-173.
    [29]李丽慧,王清,王年香,等.立体式真空降水法分层加固吹填土的可行性研究[J].岩土工程学报,2002,24(4):522-524.
    [30]徐锴,梅国雄,宰金珉,等.真空预压土体的变形研究[J].岩土力学,2007,28(11):2471-2474.
    [31]刘寒鹏,杜东菊,孙锐.真空预压软基处理沉降监测分析[J].工程地质学报,2009,17(1):111-114.
    [32]陈环.真空预压法机理研究十年[J].港口工程,1991,(4):17-25.
    [33]龚晓南.地基处理手册,第二版[M].北京:中国建筑工业出版社,2000.
    [34]陈建锋,石振明,张雷,等.排水板堆载预压地基沉降的试验研究[J].工程勘察,2000,(2):40-43.
    [35]雷华阳,李鸿琦,刘祥君,等.建筑垃圾堆山工程中软土地基稳定性评价探讨[J].岩土力学,2004,25,增2:589-593.
    [36]章丹峰,邓浩,杨彬.堆载预压法加固软基效果评价与测试分析[J].地下空间与工程学报,2006,2(8):1399-1402.
    [37]朱向荣,李振,王金昌.舟山国家石油储备基地堆载预压加固效果分析[J].岩土力学,2008,29(4):881-886.
    [38]高志义,张美燕,刘立钰,等.真空预压加固的离心模型试验研究[J].港口工程,1988,(1):18-24.
    [39] Cognon J M, Juran I, Thevanayagam S.Vacuum consolidation technology - principles and field experience[J].Geotechnical Special Publication, Publ by ASCE,New. 1994, 2 (40).
    [40] Bergado D T, Chai J C, Miura N, Balasubramaniam A S.PVD Improvement of soft Bangkok Clay with combined vacuurm and reduced sand Embankment preloading [J]. Geotechnical Engineering,1998,29(l):95-122.
    [41]杨顺安,吴建中.真空联合堆载预压法作用机理及其应用[J].地质科技情报,2000,19(3):77-80.
    [42]金小荣,俞建霖,龚晓南,等.含承压水软基真空联合堆载预压加固试验研究[J].岩土工程学报,2007,29(5):789-794.
    [43]卢力强,韩飞,欧阳惠敏,等.天津滨海新区吹填土快速结壳技术的试验研究[J].天津城市建设学院学报,2008,24(2):95-99.
    [44] Casagrande.A.The structure of clay and its importance in foundation engineering [J].J.Boston Soc.Civ.Engris,1932,19(4):168-209.
    [45]胡瑞林,李向全,官国琳,等.粘性土微结构定量模型及其工程地质特征研究[M].北京:地质出版社,1995.
    [46]施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996,4(1):39-44.
    [47] Sergeev E M. Engineering Geology[M]. Moscow State Univ.Publ.House,Moscow,1979.
    [48]王常明.海积软土微观结构定量化及固结模型研究[D].吉林:长春科技大学博士学位论文,1999.
    [49] Osipov V I.Microstucture and changes associated with thixotropic phenolmena in clay soils [J].Geotechnique,1984,34(2):293-303.
    [50] Bai X, Smart P. Change in microstructure of Kailin in consolidation and undrained chear. Geotechnique, 1997, 47(5):1009-1017.
    [51] Bai X, Smart P, Leng X.Polarizing microphpto metric anlysis[J]. Geotechanique, 1994, 44(4): 175-180.
    [52] Kuo C Y,Fost J D,A Chameau J L. Image analysis determination of stereology based fabrictensors [J].Geotechnique,1998,48(4):515-525.
    [53]谭罗荣.粘性土微结构定向性的X射线衍射研究[J].科学通报,1981,(4):236-239.
    [54]吴义祥.工程粘性土微观结构的定量评价[J].中国地质科学院院报,1991,(23):143-150.
    [55] Wu Y X.Quantitative approach on microstructure of engineering clay.In:6th Congress of IAEG, Amsterdam,1990.
    [56]施斌.粘性土微观结构定向性的定量研究[J].地质学报,1997,71(1):36-44.
    [57]王清.几种粘性土的微观结构特征及变形与强度的时效研究[D].吉林:长春科技大学博士学位论文,1997.
    [58]蒋明镜,沈珠江.结构性粘土剪切带的微观分析[J].岩土工程学报,1998,20(2):102-108.
    [59]雷华阳.海积软土结构性模型的试验研究及其在基坑开挖工程中的应用[D].吉林:吉林大学博士学位论文,2000.
    [60]齐吉琳,谢定义.孔隙分布曲线及其在土的结构性分析中的应用[J].西安公路交通大学学报,2000,20(2):6-26.
    [61]王清,王凤艳,肖树芳.土微观结构特征的定量研究及其在工程中的应用[J].成都理工学院学报,2001,28(2):148-153.
    [62]汤连生.黄土湿陷性的微结构不平衡吸力成因论[J].工程地质学报,2003,11(1):30-35.
    [63]何开胜,沈珠江.结构性土的微观变形和机理研究[J].河海大学学报(自然科学版),2003,31(2):161-165.
    [64]刘莹,王清.吹填土沉积后微观结构特征定量化研究[J].水文地质工程地质,2006(3):124-128.
    [65]成玉祥,杜东菊,李忠良.结构性吹填土压缩变形微观机理试验[J].煤田地质与勘探,2008,36(4):46-53.
    [66]赵安平.季冻区路基土冻胀的微观机理研究[D].长春:吉林大学博士学位论文,2008.
    [67]刘松玉,方磊.试论粘土粒度分布的分析结构[J].工程勘察,1992,(2):1-4.
    [68]孔令伟,罗鸿禧,谭罗荣.红粘土孔隙分布的分形特征研究[A].第七届土力学及基础工程学术会议论文集[C].北京:中国建筑工业出版社,1994,276-279.
    [69]胡瑞林,官国琳,李向全,等.黄土湿陷性的微结构效应[J].工程地质学,1999,7(2):161-167.
    [70]王清,王剑平.土孔隙的分形几何研究[J].岩土工程学报,2000,22(4):496-498.
    [71]杨书燕,刘春原.高塑限粘土微结构分析与强度机理的研究[J].河北工业大学学报,2002,31(5):116-118.
    [72]李向全,胡瑞林,张莉.软土固结过程中的微观结构变化特征[J].地学前缘,2003,7(1):147-152.
    [73]王宝军,施斌,刘志彬.基于GIS的黏性土微观结构的分形研究[J] .岩土工程学报,2004,26(2):244-247.
    [74]刘熙媛,窦远明,闫澍旺,等.基于分形理论的土体微观结构研究[J].建筑科学,2005,21(5):21-25.
    [75]陈慧娥.有机质影响水泥加固软土效果的研究[D].长春:吉林大学博士学位论文,2006.
    [76]薛茹,胡瑞林,毛灵涛.软土加固过程中微结构变化的分形研究[J].土木工程学报,2006,39(10):87-91.
    [77]王宝军,施斌,唐朝生.基于GIS实现黏性土颗粒形态的三维分形研究[J].岩土工程学报,2007,29(2):309-312.
    [78]许勇,张季超,李伍平.饱和软土微结构分析特征的试验研究[J].岩土力学,2007,28(增):49-52.
    [79]马琳.游离氧化铁对花岗岩残积红土强度增长的试验及本构模型研究[D].长春:吉林大学博士学位论文,2007.
    [80]毛灵涛,薛茹,袁则循.软土路基微结构扫描电镜图像的分形[J].长安大学学报(自然科学版),2007,27(2):30-33.
    [81]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999,7.
    [82] Richards L A. Capillary conduction of liquids through porous medium [J]. Physics, 1931.
    [83] Bolger J C. Rheology of Kaolin Suspensions [D].Department of Chemical Engineering, Massachusetts Institute of Technology.1960.
    [84] Znidarcic D , Liu J C . Consolidation Characteristic Determination for Dredged Materials. Proceedings of the 22nd Annual Dredging Seminar, Tacoma, Washington, 1989: 45-65.
    [85] Liu J C. Determination of Soft Soil Characteristics[D]. University of Colorado at Boulder. 1990.
    [86] You Zhixian. Flow Channeling in Soft Clays and Its Influence on Consolidation [D]. University of Colorado at Boulder.1993.
    [87]阿列文等著.王仁东译.渗滤理论[M].北京:高等教育出版社,1958.
    [88]卡佳霍夫.油层物理基础[M].北京:石油工业出版社,1985.
    [89]刘俊丽,刘曰武,黄延章.渗流力学的回顾与展望[J].力学与实践,2008,(1):94-97.
    [90]王秀艳,刘长礼.对粘性土孔隙水渗流规律本质的新认识[J].地球学报,2003,24(1):91-95.
    [91]周健,姚志雄,张刚.砂土渗流过程的细观数值模拟[J].岩土工程学报,2007,29(7):977-981.
    [92]周宏伟,张亚衡,李爱民,等.孔隙介质中流体渗流边界演化过程的实验研究[J].科学通报,2008,53(3):351-358.
    [93]王亮,杨俊杰,刘强,等.表面渗流对生态边坡中客土稳定性影响研究[J].岩土力学,2008,29(6):1440-1450.
    [94] Cundall P A. A computer model for simulating progressive large scale movements in blocky rock systems[C].France Nancy:Proceeding of International SymponsorRock Fracture, 1971,(1): 8-12.
    [95] Cundall P A, Strack O D L. The distinct element method as a tool for research in granular media, Part II[R].Minnesota:University of Minnesota,1979.
    [96] Cundall P A, Strack O D L. A discrete numerical model for granular assembles[J]. Geotechniaue,1979,29(1):47-65.
    [97] Bardet J P, Proubet J. A numerical investigation of structure of persistent shear bands in granular media. Geotechnique, 1991,41(4): 599-613.
    [98] Bardet J P, Proubet J. Shear-band analysis in idealized granular material. J Engrg Mech, 1992,118(8):397-415.
    [99] Huang H, Detournay E, Bellier B. Discrete Element modelling of rock cutting. Rock Mechanics for Industry, 1999, 1: 123-130.
    [100] S Masson, J Martinez. Effect of particle mechanical properties on silo flow and stresses from distinct element simulations [J].Powder Technology,2000, 109:164- 178.
    [101] P H S W Kulatilake, Bwalya Malama, Jialai Wang. Physical and particle flow modeling of jointed rock block behavior under uniaxial loading[J].Int.J.Rock Mech. Min. Sci. 2001,Vol. 38: 641 -657.
    [102] T Wanne, Swets, Zeitlinger. Lisse PFC3D simulation procedure for compressive strength testing of anisotropic hard rook.Numerical Modeling in Micromechanics Via Particle Methods. 2003:241-249.
    [103] C Wang, D D Tannant, P A Lilly. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D.Int.J.Rock Mech.Min.Sci.Vol.40,2003.415-424.
    [104] M J Jiang. An efficient technique for generating homogeneous specimens for DEM studies [J]. Computers and Geotechnics,2003,30:579-597.
    [105] E S Park, C Derek Martin, R Christiansson. Numerical simulation of the mechanical behavior of discontinuous rock masses[A].Numerical Modeling in Micromechanies via Particle Methods [C],Taylor&Francis Group,London.2004,85-91.
    [106] R M Holt, J Kjlaas, I Lasen etl. Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock.Int.J.Rock Mech. Min. Sci. Vol.42,2005.985-995.
    [107] Usama EI Shamy, Mourad Zeghal. Coupled Continuum-Discrete Model for Saturated Granular Soils[J]. Journal of Engineering Mechanics,Voll31,n4,2005:413-426.
    [108] H Bock, P Blumling, H.Konietzky. Study of the micro-mechanical behaviour of the Opalinus Clay:an example of co-operation across the ground engineering disciplines, Bull Eng Geol EnV, 2006,65:195-207.
    [109]周健,池永,池毓蔚,等.颗粒流理论及PFC2D程序[J].岩土力学,2000,21(3):271-274.
    [110]周健,徐建平,许朝阳.群桩挤土效应的数值模拟[J].同济大学学报,2000,6:721-725.
    [111]周健,池毓蔚.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704.
    [112]周健,池永.土的工程力学性质的颗粒流模拟[J].固体力学学报,2004,25(4):377-382.
    [113]刘文白,周健.扩底桩的上拔试验及其颗粒流数值模拟[J].岩土力学,2004,25(增2):201-206.
    [114]刘文白,周健.上拔荷载作用下扩展基础的颗粒流数值模拟[J].水利学报,2004,(12):69-76.
    [115]朱焕春.PFC及其在矿山崩落开采研究中的应用[J].岩石力学与工程学报,2006,25(9):1927-1931.
    [116]苏栋,李霞,李相菘.桩-土水平相互作用的颗粒流数值研究[J].深圳大学学报(理工版),2006,23(1):42-47.
    [117]李凡.岩土材料破损特性的颗粒流研究[J].土木工程学报,2007,40(9):78-81.
    [118]朱伟,钟小春,加瑞.盾构隧道垂直土压力松动效应的颗粒流模拟[J].岩土工程学报,2008,30(5):750-754.
    [119]尹小涛.岩土材料工程性质数值试验研究[D].中国科学院博士学位论文,2008.
    [120]罗勇,龚晓南,连峰.三维离散颗粒单元模拟无黏性土的工程力学性质[J].岩土工程学报,2008,30(2):292-297.
    [121]周健,王家全,曾远,等.土坡稳定分析的颗粒流模拟[J].岩土力学,2009,30(1):86-90.
    [122]中华人民共和国行业标准编写组.土工试验规程(SDS01–97)[S].北京:水利出版社,1981.
    [123]张国俊,王钢成,夏广卿.淤堵作用对高原水库坝基土体渗透性影响的试验研究[J].勘察科学技术,2008,(1):19-22.
    [124]唐大雄,刘佑荣,张文殊,等.工程岩土学[M].北京:地质出版社,1999.
    [125]齐吉琳,谢定义,石玉成.土结构性的研究方法及现状[J].西北地震学报,2001,23(1):99-103.
    [126]胡瑞林,王思敬,李向全.21世纪工程地质学生长点:土体微结构力学[J].水文地质工程地质,1999,(4):5-8.
    [127]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [128]王国欣.软土结构性及其扰动状态模型研究[D].长春:吉林大学博士学位论文,2003.
    [129]白冰,周建.扫描电子显微镜测试技术在岩土工程中的应用与进展[J].电子显微学报,2001,20(2):154-160.
    [130]杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998,7.
    [131]秦焱,吉林省黑土肥力质量评价及结构退化机理研究[D].长春:吉林大学博士学位论文,2007.
    [132]李振,王清,范建华,等.固化软土微观结构效应[J].吉林大学学报(地球科学版),2004,34(4):587-591
    [133]施斌.粘性土击实过程中微观结构的定量评价[J].岩土工程学报,1996,18(4):57-62.
    [134]王清,唐大雄,李洪玉.微结构理论的认识和发展趋势[J].水文地质工程地质,1991,18(4):45-47.
    [135]王清,陈慧娥,蔡可易.水泥土微观结构特征的定量评价[J].岩土力学,2003,24(增1):12-16.
    [136] B B Mandelbrot. How Long is the Coast of Britain,Statistical Self Similarity and Fractional Dimension[J].Science,1967,155:636-638.
    [137] B B Mandelbrot. Fractal character of farcture surfacesofmetals of metala [J]. Nature, 1984, 308:721-723.
    [138] J Feder. Fractals[M].Plenum Press,New York and London,1988.
    [139]孙霞,吴自勤,黄畇.分形原理及应用[M].合肥:中国科学技术大学出版社,2003.
    [140] Mandelbrot,B.B. The fractal geometry of nature[M].San Franciso:Freeman W H, 1982.
    [141] Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distribution analysis and limitations[J].Slio Sci Soc.Am.J.,1992,56:362-369.
    [142] McBrathney A B. Comments on Fractal distribution of soil aggregate size distribution calculated numberand mass[J].Soil Sci Soc Am J.1993,57:1393-1394.
    [143]谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992,14(1):14~24.
    [144] Moore C A, Donaldson C F. Quantifying soil microstructure usingfractal[J]. Geotechique, 1995,1(45):105-116.
    [145]肖树芳.泥化夹层的组构及强度蠕变特性[M].长春:吉林科学技术出版社,1991.
    [146]李向全,胡瑞林,张莉.粘性土固结过程中的微结构效应研究[J].岩土工程技术,1999,3:52-56.
    [147] Voegele M D, Fairhurst C. A Numerical Study of Excavation Support Loads in Jointed Rock Masses.Proc,23th Symp.on Rock Mechanics Berkeley,1982:673-683.
    [148] Lorig L T, Brady B H G. A Hybrid Discrete Element-Boundary Elememt Method of Stress Analysis, Proc.23th Symp.on Rock Mechanics,Berkeley,1982:628-635.
    [149] Brady B H G, Brown E L. Rock Mechanics for Underground Mining,Geolge Allen& Unwin,1985, 167-183.
    [150]王泳嘉,邢纪波.离散元法及其在矿山压力研究中的应用[J].阜新矿业学院学报,1986,5(4):1-12.
    [151]王泳嘉,邢纪波.离散元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991:60-89.
    [152]邢纪波,王泳嘉.离散元法的改进及其在颗粒介质研究中的应用[J].岩土工程学报,1990,12(5):51-57.
    [153]周健,张刚,孔戈.渗流的颗粒流细观模拟[J].水利学报,2006,37(1):28-32.
    [154]刘洋,李飞,柴小庆,等.渗流的PFC-CFD耦合细观数值模型[J].水文地质工程地质,2008,(2):66-70.
    [155] Bear Jacob.Hydraulics of Groundwater[M]. McGrao-Hill, New York, 1979.
    [156] Ergun,S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2):89-94.
    [157]岡村未対,竹村次朗,木村孟.砂地盤における円形及び帯基礎の支持力に関する研究[C] //土木学会論文集,1993,463/III-22:85-94.
    [158]徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报,1996,18(3):80-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700