用户名: 密码: 验证码:
基于偏振的光时域反射技术(POTDR)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式光纤传感技术利用外界参量对光纤中信号的影响来测量它沿光纤传输路径的空间分布和时间分布。偏振敏感光时域反射技术(POTDR)是分布式光纤传感器的一种,它通过测量光纤中背向瑞利散射光偏振态的变化来检测外界物理量的变化。在POTDR提出后的30年中,虽然有了一定的进展,但距离成功应用还有很大距离。本文围绕POTDR技术的一些关键问题,首先对POTDR测量系统本身进行改进和完善,以便精确测定光纤中偏振态(本地双折射)的分布;然后对本地双折射与外界应力或者弯曲的关系进行了研究,将POTDR的测量结果与被传感的物理量直接联系起来。本文的工作对于完善POTDR分布式传感的理论有重要的学术价值,对于推动POTDR分布式传感的应用有重要的指导意义。
     本文的创新成果主要有:
     1.提出了一种利用挤压光纤式偏振控制器的POTDR系统(PPC-assisted POTDR),该系统中使用偏振态可以精确控制的PPC光纤偏振态发生器改变输入被测光纤的偏振态,输入光与散射光都经过PPC光纤偏振态发生器,光纤偏振器保证了测量系统的坐标一致性。通过改变PPC的驱动电压可以得到多条不同背向散射曲线,通过背向散射光信号可以分析光纤的偏振参数;通过该方法测得了光纤的双折射的空间分布。
     2.基于PPC-assisted POTDR系统对外应力和弯曲进行了传感实验。光纤受外力作用时,对外力的定位十分准确。提出了使用相关系数来计算光纤弯曲半径的方法,结果表明,对于确定弯曲半径,双折射分布的相关系数近似为一常数,弯曲半径变化时,相关系数呈指数形式变化。该方法对弯曲采样点足够少的情况十分有效,有利于推进POTDR的实用化。
     3.提出了一种将光纤在外应力和弯曲作用下的本地双折射分为固有双折射和感应双折射叠加的波片模型,利用该模型进行了仿真,结果表明,在光纤长度足够小的时候,两种双折射的叠加随主轴夹角的变化呈现一个“8”字型;在固有双折射与感应双折射接近的时候,双折射的叠加在很小范围内波动,叠加形成一个很小的“8”字;当感应双折射足够大的时候,固有双折射对叠加结果的影响十分小,叠加结果会在邦加球上形成一个大的“8”字。
     4.针对以往的POTDR信噪比低、分辨率差的问题,提出了一种干涉型POTDR测量系统,它采用两路光纤(参考光纤与被测光纤)中的背向瑞利散射光进行偏振态的相干检测,利用琼斯矩阵对双折射进行了理论计算,该矩阵的迹描述了被测光纤双折射的大小。与以往的POTDR技术相比在相同的脉宽的条件下,干涉型POTDR的分辨率明显提高,信噪比也显著提高。
Distributed optical fiber sensors make use of the changing of optical signals to measure the space and time distribution information of the physical parameter along the fiber. Polarization-sensitive optical time domain reflectometry (POTDR) is a kind of distributed optical fiber sensors, POTDR can measure the external physical changes by detecting the evolution of state of polarization (SOP) of Rayleigh scattering light. In 30 years after POTDR presented, the successful application of POTDR is difficult although many studies have been done. This dissertation focuses on some key issues of POTDR; the improving and perfecting of POTDR can exactly measure the distribution of SOP (local birefringence); the relationship between birefringence and stress or bending is studied, which connect the measurement results of POTDR and sensing parameters. This work has important academic value for improving the sensing theory of POTDR, and important guidance for promoting the application of POTDR. The main innovative points of this dissertation are presented as following:
     1. A piezoelectric-polarization-controller-assisted POTDR (PPC-assisted POTDR) system is proposed. In this system, PPC-SOP generator which can accurately control the SOP is used to change the input SOP of fiber under test, the input and scattering light all pass through the PPC-SOP generator, and the fiber polarizer ensures the consistency of measurement system. Many POTDR traces can be got by changing the driving voltage of PPC, then the polarization parameters can be analyzed; the spatial distribution of fiber birefringence is calculated.
     2. Sensing experiment of stress and bend have been done based on PPC-assisted POTDR. The location of stress can be detected exactly. Correlation coefficient is proposed to calculate the bend radius. The results show that the correlation coefficient is approximately a constant if the bend radius is determined, the correlation coefficient exponentially changes when the bend radius changes. This method is effective for few sampling points, and conducive to promoting the practical POTDR.
     3. A fiber waveplate model is proposed for the superposition of intrinsic birefringence and induced birefringence under stress and bend. The local birefringence contains intrinsic and induced birefringence when the fiber is bend, the superposition is derived by matrix multiplication. Simulation results show that when fiber length is small enough, the superposition of two kinds of birefringence shows a'8'with the change of axis angle; if intrinsic birefringence and induced birefringence are close, the superposition with a small'8'fluctuate in a very small range; when induced birefringence is large enough, the effect of intrinsic birefringence is very small for superposition, the superposition will form a large'8'on the Poincare sphere.
     4. Because of low signal to noise ratio (SNR) and poor resolution of previous POTDR, a coherent POTDR system is proposed. The evolution of SOP is detected utilizing the coherent Rayleigh scattering light in two fibers (Reference fiber and fiber under test). The birefringence is calculated based on Jones matrix, and the trace of Jones matrix can describe the magnitude of birefringence. Compared with the previous POTDR in the same pulse, the resolution and SNR of coherent POTDR is significantly improved.
引文
[1]K. C. Kao, G. A. Hockham. Dielectric-fibre surface waveguides for optical frequencies. Proc. IEEE,1966,113(7):1151-1158.
    [2]Bernini, L. Crocco, A. Minardo, F. Soldoveieri. All frequency domain distributed fiber-optic Brillouin sensing. IEEE Sensors Journal,2003,3(1):36-43.
    [3]M. J. Garcia, J. A. Ortega, et al. A novel distributed fiber-optic strain sensor. IEEE transaction on Instrumentation and Measurement,2002,51(4):685-690.
    [4]张玉金,吴重庆,简水生.全分布式光纤传感器的研究进展.光纤与电缆及其应用技术,1996,6:54-57.
    [5]J. K. Barnoski, S. M. Jensen. Fiber waveguides:A novel technique for investigation attenuation characteristics. Appl. Opt,1976,15(9):2112-2115
    [6]Dakin J. P., Pratt D. J., Bibby G. W., Ross J. N.. Distributed optical fibre Roman temperature sensor using a semiconductor light source and detector. IEEE Photon. Technol. Lett.,1985, 21(13):569-570.
    [7]A. J. Rogers, et al. Distributed optical-fiber sensing. Proc. SPIE,1991,1508:2-24.
    [8]黄尚廉,梁大巍.分布式光纤温度传感系统的研究.仪器仪表学报,1991,12(4):359-364.
    [9]张在宣,刘天夫.激光喇曼型分布光纤温度传感系统.光学学报,1995,15(11):1585-1589.
    [10]M. A. Farahani, T. Gogolla. Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing. J. Lightwave Technol.,1999, 17(8):1379-1391.
    [11]ZHANG X. P., DONG Y. M, LU Y. G. Brillouin-scattering based fully distributed optical fiber sensing technology and its application in optical cable monitoring. Proceedings of the 5th International Conference on Optical Communication, Wuhan, China,2006:408-411.
    [12]Horiguchi T., Tateda M. Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave. Opt. Lett.,1990,15(2):352-357.
    [13]Marcelo A. S., Gabriele B., and Fabrizio Di P.. Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding. IEEE Photon. Technol. Lett.,2009,21(7):450-452.
    [14]Xiaoyi Bao. Optical Fiber Sensors based on Brillouin Scattering. Optics& Photonics News, 2009,9:41-45.
    [15]Kishida K., Li C. H.. Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system. Struct Health Monit Intell Inf. Shen Zhen:IEICE,2006:471-477.
    [16]Nishiguchi K., Kishida K.. Perturbation Analysis of Stimulated Brillouin Scattering in an Optical Fiber with a Finite Extinction Ratio. Technical Report of IEICE. Tokyo:IEICE,2004.
    [17]何玉钧,尹成群,李永倩,杨志.一个新型的基于全光纤Mach-Zehnder干涉仪BOTDR系统.光子学报,2004,33(6):721-724.
    [18]何玉钧,李永倩,杨志,尹成群,芳野俊彦.全光纤Mach-Zehnder干涉仪及其在光纤自发布里渊散射测量中的应用.光子学报,2002,31(7):865-869.
    [19]戴瑞,弓文平,石锦卫,刘大禾.基于布里渊散射的水下目标探测.激光与光电子学进展,
    2008,2:64-68.
    [20]A. J. Rogers. Polarization-optical time domain reflectometry:a technique for the measurement of field distributions. Appl. Opt.,1981,20(6):1060-1074.
    [21]A. Galtarossa, L Palmieri. Theoretical analysis of reflectometric measurements in optical fiber links affected by polarization dependent loss. J. Lightwave Technol.,2003,21(5):1233-1241.
    [22]A. Galtarossa, L. Palmieri. Spatially resolved PMD measurements. J. Lightwave Technol.,2004, 22(4):1103-1115.
    [23]倪东,吴重庆,付松年.基于FPGA的偏振敏感时域反射信号采集处理系统.光子技术,2005,3:131-133,137.
    [24]董贤子,吴重庆,付松年等.基于P-OTDR分布式光纤传感中信息提取的研究.北方交通大学学报,2003,27(6):106-110.
    [25]F. Corsi, A. Galtarossa, and L. Palmieri. Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique. J. Lightwave Technol.,1998,16(10): 1832-1843.
    [26]F. Corsi, A. Galtarossa, and L. Palmieri. Beat-length characterization based on backscattering analysis in randomly perturbed single-mode fibers. J. Lightwave Technol.,1999,17(7): 1172-1178.
    [27]A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso. Measurements of beat length and perturbation length in long single-mode fibers. Opt. Lett.,2000,25(6):384-386,.
    [28]A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso. Statistical characterization of fiber random birefringence. Opt. Lett.,2000,25(18):1322-1324.
    [29]J. G. Ellison and A. S. Siddiqui. Using polarization optical time domain reflectometry to extract spun fiber parameters. IEE Proc. Optoelectron.,2001,148:176-182.
    [30]A. Galtarossa and L. Palmieri. Theoretical analysis of reflectometric measurements in optical fiber links affected by polarization dependent loss. J. Lightwave Technol.,2003,21(5): 1233-1241.
    [31]J.G Ellison and A.S. Siddiqui; A fully polarimetric optical time-domain reflectometer. IEEE Photon. Technol. Lett.,1998,10(2):246-248.
    [32]Marc Wulipart, et.al, Measurement of the spatial distribution of birefringence in optical fibers. IEEE Photon. Technol. Lett.,2001,13(8):836-838.
    [33]付松年.单模光纤中偏振问题及全光缓存器的研究.博士论文.北京交通大学.2004:96.
    [34]S. V. Shatalin and A. J. Rogers. Location of High PMD Sections of Installed System Fiber. J. Lightwave Technol.,2006,24(11):3875-3881.
    [35]Ming Han, Yunjing Wang, and Anbo Wang. Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing. Opt. Lett.,2007,32(14):2028-2030.
    [36]D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K.Gregory, C. A. Puliafito, J. G. Fujimoto. Optical coherence tomography. Science,1991, 254:1178-1181.
    [37]Mostafa Ahangrani Farahani, Torsten Gogolla. Spontaneous Raman Scattering in Optical Fiber with Modulated Probe Light for Distributed Temperature Raman Remote Sensing. J. Lightwave Technol.,1999,17(8):1379-1391
    [38]Dieter Garus, Katerina Krebber, Frank Schliep. Distributed sensing technique based on
    Brillouin optical-fiber frequency-domain analysis. Opt. Lett.,1996,21(17):1402-1404
    [39]Wegmuller M., Legre M., and Gisin N.. Distributed Beatlength Measurement in Single-Mode Fibers With Optical Frequency-Domain Reflectometry. J. Lightwave technol.,2002,20(5): 800-807.
    [40]Galtarossa A., Grosso D., et al. spin-profile characterization in randomly birefringent spun fibers by means of frequency-domain reflectomutry. Opt. Lett.,2009,34(9):1078-1080.
    [41]Johannes F. de Boer, Thomas E. Milner, et al, two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett.,1997, 22(12):934-936.
    [42]Nate J. Kemp, Haitham N. Zaatari, Jesung Park, H. Grady Rylander Ⅲ, and Thomas E. Milner. Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT). Opt. Exp.,2005,13(12):4611-4628.
    [43]Tilman Schmoll, Erich Gotzinger, Michael Pircher, Christoph K. Hitzenberger, and Rainer A. Leitgeb, single-camera polarization-sensitive spectral-domain OCT by spatial frequency encoding. Opt. Lett.,2010,35(2):241-243.
    [44]汪毅,陈晓冬,胡智强,李乔,郁道银.光纤型偏振OCT系统中光偏振特性的研究.光电工程,2008,35(7):44-48.
    [45]E. Collett. Polarized Light:Fundamentals and Applications. Marcel Dekker,1993:Chap.1,4.
    [46]Max Born and E. Wolf. Principles of Optics. London. Cambridge University Press,1999:45.
    [47]R. C. Jones. A new calculus for the treatment of optical systems. J. Opt. Soc. Am. A,1941, 31(7):488-493.
    [48]吴重庆.光波导理论.第2版,北京:清华大学出版社,2005:155-158.
    [49]E. Wolf. Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A,2003,312:263-267.
    [50]H. Mueller. The foundation of optics. J. Opt. Soc. Am. A,1948,38:661.
    [51]N. Gisin. Statistics of polarization dependent losses. Opt. Commun.,1995,114:399-405.
    [52]C. D. Poole and R. E. Wagner. Phenomenological approach to polarization dispersion in long single-mode fibers. Electron. Lett.,1986,22(19):1029-1030.
    [53]E. S. Fry and G. W. Kattawar. Relationships between elements of the Stokes matrix. Appl. Opt., 1981,20(16):2811-2814.
    [54]R. Simon. The connection between Mueller and Jones matrices of polarization optics. Opt. Commun.,1982,42(5):293-297.
    [55]K. Kim, L. Mandel, and E. Wolf. Relationship between Jones and Mueller matrices for random media. J. Opt. Soc. Am. A,1987,4(3):433-437.
    [56]A. Galtarossa, L. Palmieri, M. Schiano, T. Tambosso. PMD in single mode fibers: measurements of local birefringence correlation length. OFC2001,4, ThA2-1-ThA2-3.
    [57]Y.Suetsugu, T.Kato, M.Kahui, M.Nishimura. Effects of random mode coupling on polarization mode dispersion and power penalty in single-mode fiber systems. Optical Fiber Technol.,1994, 1:81-86.
    [58]J. N. Ross. Birefringence measurement in optical fibers by polarization optical time-domain reflectometry. Appl. Opt.,1982,21(19):3489-3495.
    [59]A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso. Measurement of birefringence correlation length in long single-mode fibers. Opt. Lett.,2001,26(13):962-964.
    [60]Marc Wuilpart, Gautier Ravet, Patrice Megret, and Michel Blondel. Polarization Mode Dispersion Mapping in Optical Fibers With a Polarization-OTDR. IEEE Photon. Technol. Lett., 2002,14(12):1716-1718.
    [61]Marc Wuilpart, Cathy Crunelle, Patrice Megret. High dynamic polarization-OTDR for the PMD mapping in optical fiber links. Opt. Commun.,2007,269(26):315-321.
    [62]Takeshi Ozeki, Satoshi Seki, and Kimiaki Iwasaki. PMD Distribution Measurement by an OTDR With Polarimetry Considering Depolarization of Backscattered Waves. J. Lightwave Techonol.,2006,24(11):3882-3888.
    [63]董晖.单模光纤中偏振效应—双折射、偏振相关损耗和偏振模色散,博士论文,北京交通大学,2004:89.
    [64]R. E. Schuh, J. G. Ellison, A. S. Siddiqui, and D. H. O. Bebbington. Polarization OTDR measurements and theoretical analysis on fibers with twist and their implications for estimation of PMD. Elect. Lett.,1996,32(4):387-388.
    [65]A. Galtarossa, L. Palmieri, D. Sarchi. Experimental measurements of spin period in randomly-birefringent spun fibers. OFC2004:FA2.
    [66]B. L. Heffner. Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis. IEEE Photon. Technol. Lett.,1992,4:1066-1069.
    [67]R. M. Jopson, L. E. Nelson, and H. Kogelnik. Measurement of second-order polarization-mode dispersion vectors in optical fibers. IEEE Photon. Technol. Lett.,1999,11(9):1153-1155.
    [68]B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von derWeid. Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry. IEEE Photon. Technol. Lett.,1998,10(10):1458-1460.
    [69]M. Wegmuller, M. Legre, P. Oberson, O. Guinnard, C. Vinegoni, and N. Gisin. Analysis of the polarization evolution in a ribbon cable using high-resolution coherent OFDR. IEEE Photon. Technol. Lett.,2001,13(2):145-147.
    [70]N. Zou, M. Yoshida, Y. Namihira, and H. Ito. PMD measurement based on delayed self-heterodyne OFDR and experimental comparison with ITU-T round robin measurements. Electron. Lett.,2002,38(3):115-117.
    [71]吴重庆.光波导理论.第2版,北京:清华大学出版社,2005:173-176.
    [72]吴重庆.光波导理论.第2版,北京:清华大学出版社,2005:119-122.
    [73]YANG Shuang-shou, WU Chong-qing, LI Zheng-yong, et al. Distributed measurement of birefringence by P-OTDR assisted with piezoelectric polarization controller. Chinese Physics Letters,2008,25(9):3304-3306.
    [74]Tomasz Blachowicz. Numerical calculations of rotational contributions to the scattering coefficient in a piezoelectric LiTaO3 crystal. J. Opt. Soc. Am. B,1998,15(10):2599-2606.
    [75]Kunimasa Saitoh, Masanori Koshiba, and Yasuhide Tsuji. Stress analysis method considering piezoelectric effects and its application to static strain optic devices. J. Lightwave Technol., 1999,17(9):1626-1633.
    [76]李政勇.光纤偏振态的高速控制与偏振编码通信.博士论文,北京交通大学,2008:25-42.
    [77]Zhengyong Li, Chongqing Wu, Hui Dong, et al. Stress distribution and induced birefringence analysis for pressure vector sensing based on single mode fibers. Opt. Exp.,2008,16(6):
    3955-3960.
    [78]Zhengyong Li, Chongqing Wu, Hui Dong and P. Shum. Cascaded dynamic eigenstates of polarization analysis for piezoelectric polarization control. Opt. Lett.,2007,32(19):2900-2901.
    [79]N. Gisin, J. P. Pellaux. Polarization Mode Dispersion:Time Versus Frequency Domains. Opt. Commun.,1992,89:316-323.
    [80]D. S. Waddy, L. Chen, X. Bao. Theoretical and Experimental Study of the Dynamics of Polarization-Mode Dispersion. IEEE Photon. Technol. Lett.,2002,14(4):468-470.
    [81]J. P. Elbers, C. Glingener, M. Dtiser, E. Voges. Modeling of Polarization Mode Dispersion in Single Mode Fibers. Electron. Lett.,1997,33(22):1894-1895.
    [82]B. Huttner, N. Gisin. Anomalous Pulse Spreading in Birefringent Optical Fibers with Polarization-Dependent Losses. Opt. Lett.,1997,22(8):504-506.
    [83]A. O. DalFomo, A. Paradisi, R. Passy, J. Pvonder Weid. Experimental and Theoretical Modeling of Polarization-Mode Dispersion in Single-Mode Fibers. IEEE Photon. Technol. Lett.,2000, 12(3):296-298.
    [84]P. K. A. Wai and C. R. Menyuk. Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence. J. Lightwave Technol.,1996,14(2): 148-157.
    [85]Chongqing Wu, Hui Dong. The General Solution of Noncircular Uniform Optical Waveguides in an Arbitrary Coordinate System and Its Applications. J. Lightwave Technol.,2002,20(8): 1604-1608.
    [86]Fu Songnian, Wu Chongqing, Liu Hai tao, Dong Hui. Study of the stability of polarization mode dispersion in fiber. Chinese Physics,2003,12(12):1423-1428.
    [87]张人元.单模光纤中偏振态的发生和检测研究.硕士论文,北京交通大学,2008:18-25.
    [88]王涛,王晓东,王立鼎.压电陶瓷快速响应特性与应用研究.传感技术学报,2009,22(6):785-789.
    [89]史荣昌,魏丰.矩阵分析.第2版,北京:北京理工大学出版社,2005:217-226.
    [90]H. Dong, Y. D. Gong, et al. Optimum input states of polarization for Mueller matrix measurement in a system having finite polarization-dependent loss or gain. Opt. Exp.,2009, 17(25):23044-23057
    [91]H. Dong, Y. D. Gong, et al. Effect of input states of polarization on the measurement error of mueller matrix in a system having small polarization-dependent loss or gain. Opt. Exp.,2009, 17(15):13017-13030.
    [92]董晖.单模光纤中偏振效应—双折射、偏振相关损耗和偏振模色散,博士论文,北京交通大学,2004:96.
    [93]吴重庆.光波导理论.第2版,北京:清华大学出版社,2005:159-160.
    [94]马克思·波恩,埃米尔·沃耳夫编著,杨葭荪译.光学原理.第7版,北京,电子工业出版社,2009:Ⅱ.
    [95]SminthA. M.. Single-mode fiber pressure sensitivity. Electron. Lett.,1980,16(20):773-774.
    [96]S. C. Rashleigh. Origin and control of polarization effects in single-mode fibers. J. Lightwave Technol.,1983,1(2):312-331.
    [97]D. Q. Chowdhury and D. Nolan. Perturbation model for computing optical fiber birefringence from a two-dimensional refractive-index profile. Opt. Lett.,1995,20(19):1973-1975.
    [98]Frank F. Ruhl and Allan W. Snyder. Anistropic fibers studied by the Green's function method. J. Lightwave Technol.,1984,2(3):284-291.
    [99]Koshiba M, Hayata K, SuzukiM. Finite-element formulation in terms of the electric-field vector for electromagnetic waveguide problems. IEEE Transactions on Microwave Theory and Techniques.1985,33(10):900-905.
    [100]Tsai Kun-Hsieh, Ki m Kyung-Suk, Morse T. F.. General solutions for stress-induced polarization in optical fibers. J. Lightwave Technol.,1991,9(1):7-16.
    [101]Chu P. L., Sammut R. A.. Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber. J. Lightwave Technol.,1984,2 (5): 650-662.
    [102]M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch. Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers, J. Lightwave Technol.,1983,LT-1:332-339.
    [103]R. Ulrich, S. C. Rashleigh, and W. Eickhoff. Bending-induced birefringence in single-mode fibers. Opt. Lett.,1980,5(6):273-275.
    [104]Steve J. Garth. Birefringence in bent single-mode fibers. J. Lightwave Technol.,1988,6(3): 445-449.
    [105]Ueyn L. Block, Michel J. F. Digonnet, Martin M. Frjer, and Vinayak Dangui. Bending-induced birefringence of optical fiber cladding modes. J. Lightwave Technol.,2006,24(6):2336-2339.
    [106]A. M. Smith. Birefringence induced by bends and twists in single-mode optical fiber. Appl. Opt.,1980,19(15):2606-2611.
    [107]Markku Ilmari Oksanen. Perturbational analysis of curved anisotropic optical fibers. J. Opt. Soc.Am.A,1989,6(2):180-189
    [108]Fouad El-Diasty. Multiple-Beam Interferometric Determination of Poisson's Ratio and Strain Distribution Profiles Along the Cross Section of Bent Single-Mode Optical Fibers. Appl. Opt., 2000,39(19):3197-3201
    [109]Shuangshou Yang, Chongqing Wu, Zhengyong Li. Demonstration of piezoelectric-polarization-controller-assisted P-OTDR. OFC2009:483-485.
    [110]S. C. Rashleigh, R. Ulrich. High birefringence in tension-coiled single-mode fibers. Opt. Lett., 1980,5(8):354-356.
    [111]陈国霖.单模光纤应力双折射及干涉型光纤传感器器件的研究.博士论文,清华大学:31.
    [112]杨双收,吴重庆,李政勇等.基于压电偏振控制器辅助POTDR的光纤弯曲半径测量研究.铁道学报,已接收.
    [113]Govind P. Agrawal编著,贾东方,于震虹等译.非线性光纤光学原理及应用.第1版,电子工业出版社,2002:140-142.
    [114]Yahei Koyamada, Mutsumi Imahama, Kenya Kubota, and Kazuo Hogari. Fiber-Optic Distributed Strain and Temperature Sensing With Very High Measurand Resolution Over Long Range Using Coherent OTDR. J. Lightwave Technol.,2009,27(9):1142-1146.
    [115]Rudi Bratovich, Maddalena Ferrario, SilviaMaria Pietralunga, and Mario Martinelli. Spin Profiles Reconstruction in Spun Fibers by Long-Range Polarization-Sensitive Optical Coherence Tomography. IEEE Photon. Technol. Lett.,2006,18(13):1454-1456.
    [116]Shuichi Makita, Masahiro Yamanari, and Yoshiaki Yasuno. Generalized Jones matrix optical coherence tomography:performance and local birefringence imaging. Optics Express.2010, 18(2):854-876.
    [117]S.-Y. Lu and R. A. Chipman. Homogeneous and inhomogeneous Jones matrices. J. Opt. Soc. Am. A,1994,11(2):766-773.
    [118]吴重庆.光通信导论.北京:清华大学出版社,2008:26-32.
    [119]吴重庆.光波导理论.第2版,北京:清华大学出版社,2005:205-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700