用户名: 密码: 验证码:
苎麻分子标记方法比较和遗传图谱的初步构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻(Boehmeria nivea(L.)Gaud),又叫“中国草”,起源于中国,属荨麻科苎麻属的多年生宿根性草本植物。中国是世界上种植和使用苎麻历史最悠久的国家。苎麻纤维优良,是纺织工业的重要原料。我国的苎麻栽培面积和总产量均占世界的90%以上,是重要的出口创汇产品之一。
     限制性位点扩增多态性(restriction site amplified polymorphism, RSAP)是一种新型的分子标记技术,为了明确该标记技术在苎麻上利用的可行性。首先对限制性位点扩增多态性(RSAP)-PCR反应体系利用正交试验进行优化。结果表明:PCR扩增的前5个循环采用35℃的退火温度,随后的35个循环采用48℃的退火温度;25μL体系中,其最优条件:Taq DNA聚合酶1U,dNTPs0.3mmol/L,引物0.25μmol/L,DNA浓度10ng。扩增产物在8%变性聚丙烯酰胺凝胶分离,银染显色。
     分别采用RSAP、SRAP和SSR3种分子标记和田间性状对16份苎麻种质进行亲缘关系聚类,结果表明:每对引物扩增出的多态性位点,SRAP标记最多,RSAP次之,SSR较少;基于SRAP标记和RSAP标记分类的结果都与RSAP+SRAP+SSR联合分类的结果基本一致,相关达到了极显著水平,而与SSR标记分类结果差异较大;分子标记聚类结果与田间性状的聚类结果接近程度,依次为SRAP+RSAP+SSR>SRAP>RSAP>>SSR。在检测苎麻种质亲缘关系中,SRAP标记效果最优,RSAP标记稍逊,SSR标记最差。RSAP标记能较好地显示苎麻种属间的多态性和亲缘关系。以RSAP、SRAP、SSR标记联合分析,能更好地揭示种质之间的亲缘关系。RSAP方法无需酶切,比以往基于限制性位点的标记技术操作简便,并具有中等产率、稳定可靠的特点和较广泛的适用性,在苎麻上利用是可行的。
     采用中苎1号x合江青麻F1分离群体的180个单株,利用JoinMap3.0软件对352个SSR、RSAP和SRAP标记进行分析后,得到了一张包含34个连锁群的苎麻遗传图。该图谱包含103个标记,其中RSAP标记55个,SSR标记40个,SRAP标记8个。标记间的最大图距为50.9cM,最小图距为0.8cM,平均图距为10.7cM,图谱覆盖基因组的总长度1089.0cM。标记在各连锁群上的分布数目为2~17个不等,17个标记、8个标记、6个标记、5个标记各有一个连锁群,有2个连锁群有4个标记标定,还有3个连锁群上有3个标记,25个是二联体(doublet),每个连锁群上平均有3.0个标记。
Ramie [Boehmeria nivea (L.) Gaud.], called "China grass", originated in China. Ramie is a kind ofratoon perennial herbs which belongs to nettle boehmeria. China has a long history to cultivate and useramie. Ramie with high quality bast fiber is a significant raw material for the textile industry. Itplays an indispensable role in national economy for its unique characteristic and usage. Ramieplanting area and total output in China take up more than90%of the world. It is an importantexport product of China.
     Restriction site amplified polymorphism (RSAP) is one of new molecular marker techniques. Inorder to identify the feasibility of RSAP for the utilization on ramie, restricted site of amplifiedpolymorphic (RSAP)-PCR reaction system was optimized at first and the result showed as following:Taq DNA polymerase1U, dNTPs0.3mmol/L, primer0.25μ mol/L, DNA concentration10ng.Amplification products were separated on6%denaturing polyacrylamide gel8%, and colored aftersilver staining.
     Then, three molecular markers-RSAP, SRAP and SSR were used to cluster16Ramie germplasm.The result showed that each pair of primers could provide polymorphic sites and the site number wasSRAP>RSAP>>SSR. Both results clustered based on SRAP and RSAP showed high consistency withthat clustering based on combination of SRAP, RSAP and SSR, and the highly significant correlationcoefficients were given. However, results of clustering based on SSR marker were quite different fromthe results based on combined markers. The rank order of similarities between the clustering resultsbased on the molecular marker and phenotype was SRAP+RSAP+SSR>SRAP>RSAP>>SSR. For thestudy of genetic relationship among ramie germplasm, the efficiency of SRAP marker was slightlyhigher than that of RSAP marker, but that of SSR was low. Based on RSAP marker could efficientlydisplay the polymorphism and genetic relationship among ramie varieties. Using the combined markersof RSAP&SRAP&SSR could be to reveal the genetic relationship of germplasm. RSAP method withoutrestriction enzyme is easier than markers based on restricted sites, which has the characteristics ofmedium yield, stability and reliability, and wider applicability, and it is feasible for the utilization oframie.
     Using JoinMap3.0software to analysis352polymorphism markers based on SSR, RSAP andSRAP marker, a piece of ramie genetic map contains34chain groups was acquired. The map containedaltogether103markers, which had55RSAP markers,40SSR markers and8SRAP markers. The mapcovered the total length of1089.0cM, the average interval distance between markers was10.7cM, thelargest interval distance was50.9cM, the smallest distance was0.8cM. Number of markers in eachlinkage group varied from2to17.4linkage groups had17markers,8markers,6markers and5makersrespectively, two linkage groups had4markers, but also there were3markers in three linkage groups,and25doublets, the average number makers in each linkage group was3.0.
引文
1.曹永国.玉米RELP遗传图谱的构建及矮生基因定位[博士学位论文].中国农业大学,1998.
    2.陈建华,栾明宝,许英等.苎麻种质资源核心种质构建[J].中国麻业科学,2011,33(2):59-64.
    3.丁明忠,潘光堂,张中华.用ISSR分析四川苎麻品种(系)间的遗传关系及雄性不育分子标记的建立.核农学报,2008,22(2):183-187.
    4.丁明忠.苎麻雄性不育的遗传机理及应用研究[博士学位论文].四川农业大学,2008.
    5.丁秀兰,江玲,刘世家等.利用重组自交系群体检测水稻条纹叶枯病抗性基因及QTL分析[J].遗传学报,2004,31(3):287-292.
    6.杜晓华,王得元,巩振辉.基于RSAP和SSR的辣椒优良自交系间遗传距离的估计与比较.西北农林科技大学学报(自然科学版),2007,35(7):97-102.
    7.杜晓华,王得元,巩振辉.一种新型分子标记技术-限制性位点扩增多态性(RSAP)的建立和优化.西北农林科技大学学报(自然科学版),2006,34(9):45-49.
    8.杜晓华.新型DNA标记技术RSAP的创建及其在辣椒遗传育种中的应用[博士学位论文].陕西杨凌:西北农业科技大学,2006.
    9.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001.
    10.郭安平,周鹏,黎小瑛等.17份苎麻栽培品种的RAPD分析[J].农业生物技术学报,2003,11(3):318-320.
    11.耿建峰,侯喜林,张晓伟等.利用DH群体构建不结球白菜遗传连锁图谱[J].南京农业大学学报,2007,30(2):23-28.
    12.巩鹏涛,木金贵,赵金荣等.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合[J].分子植物育种,2006,4(3):309-316.
    13.何祯祥,施季森,鄙进清,等林术遗传图谱构建的技术与策略[J].浙江林学院学报,1998,15(2):151-57.
    14.何正文,刘运生,陈立华,等.正交设计直观分析法优化PCR条件.湖南医科大学学报,1998。23(4):403-404.
    15.贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10
    16.姜廷波,李绍臣,高福铃等.白桦RAPD遗传连锁图谱的构建[J].遗传,2007,29(7):867-873.
    17.蒋洪蔚,刘春燕,高运来等.作物QTL定位常用作图群体[J].生物技术通报,2008,(z1):12-17.
    18.蒋彦波,揭雨成,周建林.苎麻基因组微卫星的分离与鉴定.作物学报,2007,33(1):158-162.
    19.揭雨成,冷鹃.中国苎麻种质资源研究的现状和展望.中国麻作,2000,22(3):13-15.
    20.揭雨成,周青文,陈佩度.苎麻栽培品种亲缘关系的RAPD分析.作物学报,2002,28(2),254-259
    21.李媛媛,沈金雄,王同华等.利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱[J].中国农业科学,2007,40(6):1118-1126.
    22.李宗道.苎麻生理生化与遗传育种.北京:农业出版社,1989.
    23.林谦,毛孝强,杨德等.QTL作图主要统计方法及主要作图群体[J].云南农业大学学报,2004,19(2):121-127.
    24.林忠旭,张献龙,聂以春等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679.
    25.林忠旭,张献龙,聂以春等.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析[J].遗传学报,2004,31(6):622-626.
    26.刘博.中国对虾“黄海1号”遗传连锁图谱构建及生长相关QTL定位[博士学位论文].中国海洋大学,2009.
    27.刘飞虎,郭清泉,郑思乡,等.苎麻种质资源研究导论.北京:中国农业出版社,2002.
    28.刘甲,彭士琪,刘孟军,等.分子标记在果树上的应用及前景展望[J].河北农业大学报,2002,25(1):100-105.
    29.刘立军,陈荷泉,蒙祖庆等.44个苎麻栽培品种亲缘关系的RAPD分析[C].//云南农业大学学报.2006:107-112.
    30.刘旭.遗传标记和遗传图谱构建[J].作物品种资源,1997,3:29-32.
    31.刘贤德,张国范.运用拟测交策略构建遗传图谱的理论依据及研究进展[J].海洋科学,2008,32(10):81-85.
    32.卢钢,曹家树,陈杭等.芸薹属植物分子标记技术和基因组研究进展--文献综述[J].园艺学报,1999,26(6):384-390.
    33.卢浩然等.中国麻类作物栽培学.北京:农业出版社,1992.
    34.卢江.基因定位及其在园艺作物遗传育种中的应用诩.匿艺学年评,北京:科学出版社,
    1995.
    35.栾明宝,陈建华,许英,王晓飞,孙志民.苎麻核心种质构建方法研究.作物学报,2010,36(12):2099-2106.
    36.栾明宝,郭香墨,张永山等.利用陆地棉置换系进行海岛棉主要性状基因的染色体定位[J].棉花学报,2008,20(1):70-72.
    37.毛健民,李俐俐.植物基因分离的图位克隆技术[J].生物学通报,2002,37(4):32-33.
    38.蒙祖庆,刘立军,彭定祥.利用RAPD和ISSR标记分析苎麻野生种质资源的遗传多样性.分子植物育种,2009,7(2):365-370.
    39.潘俊松,王刚,李效尊.黄瓜SRAP遗传图谱的构建及始花节位的基因定位[J].自然科学进展,2005,15(2):167-172.
    40.乔利仙,翁曼丽,孔凡娜. RSAP标记技术在紫菜遗传多样性检测及种质鉴定中的应用.中国海洋大学学报(自然科学版),2007,37(6):951-956.
    41.邱财生,程超华,赵立宁.用RAPD标记研究苎麻属植物的亲缘关系.湖北农业科学,2011,50(7):1499-1501.
    42.任羽,王得元,张银东.相关序列扩增多态性(SRAP)一种新的分子标记技术[J].中国农学通报,2004,20(6):11-13,22.
    43.宋国立,崔荣霞,王坤波.改良CTAB法快速提取棉花DNA.棉花学报,1998,10(5):273275
    44.田敏,谭晓风,胡芳名.林木分子遗传图谱的构建佣.生命科学研究,2000,4(1):14-20.
    45.万怡震,王跃进,张今今.多年生果树植物分子遗传作图[J].园艺学报,2002,29(增刊):629-634.
    46.王晓飞,陈建华,栾明宝等.苎麻种质资源分子身份证构建的初步研究[J].植物遗传资源学报,2010,11(6):802-805,810.
    47.王源秀.响叶杨×银白杨遗传图谱构建及杨属图谱比较研究[博士学位论文].南京林业大学,2008.
    48.温岚,喻春明,王延周.苎麻多胚苗遗传多样性的SRAP标记分析.湖南农业大学学报(自然科学版),2011,37(3):243-247.
    49.向道权,曹海河,曹永国等.玉米SSR遗传图谱的构建及产量性状基因定位[J].遗传学报,2001,28(8):778-784.
    50.邢秀龙.苎麻微卫星引物开发与杂种优势预测初步研究[硕士学位论文].湖北武汉:华中农业大学,2008.
    51.熊和平.麻类作物育种学.北京:中国农业科学技术出版社,2008.
    52.杨金水编著.基因组学[M].北京:高等教育出版社,2002.2005,15(2):167-172.
    53.杨素丽,明军,刘春.基于EST信息的百合SSR标记的建立.园艺学报,2008,35,(7):1069-1074.
    54.叶要妹.利用RAPD和ISSR分析百日草自交系间的种质遗传多样性.中国林业科技大学学报,2008,28(4):36-41.
    55.尹佟明,沈永宝,郑阿宝.林木遗传图谱构建研究概述[J].江苏林业科技,2000,27(6):38-43.
    56.张军,武耀廷,郭旺珍.棉花微卫星标记的PAGE/银染快速检测.棉花学报,2000,12(5):267269.
    57.赵中伟,徐玲玲,李同建.利用SSR分子标记分析苎麻居群的取样策略.安徽农业科学,2009,37(19):8901-8903.
    58.郑丽珊,石玉真.棉花EST-SSRs在香蕉中的通用性.中国农学通报,2008,24(1):33-37.
    59.郑先武,陈伯望,唐谦.应用RAPD标记构建马尾松单株树遗传连锁图谱[J].应用基础与工程科学学报,1997,5(2):181-186.
    60.周建林,揭雨成,蒋彦波.用微卫星DNA标记分析苎麻品种的亲缘关系.作物学报,2004,30(3):289-292.
    61. Ajisaka H, Kuginuki Y, Enomoto S, et al. Mapping of loci affectingthe cultural efficiency ofmicrospore culture of Brassic rapa L.(syn. rapa L) using DNA polymorphism[J]. BreedingScience,1999,49:187-192
    62. Akkaya M S, A A Bhagwat, B Cregan. Length polymorphisms of simple sequence repeatDNA in soybean[J]. Genetics,1992,132:1131-1139
    63. Botstein D, White RL, Skolnick MH, et al. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms [J]. Am J Hum Genet,1980,32(3):314-333
    64. Bryan G J,A J Collins, P Stephenson et al.. Isolation and characterisation of microsatellitesfrom hexaploid bread wheat[J]. Theor. Appl. Genet.,1997,93:190-1980
    65. Budak, H,Shearman, RC,Parmaksiz, I et al.Comparative analysis of seeded and vegetativebiotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, andSRAPs[J].Theoretical and Applied Genetics,2004,109(2):280-288
    66. Chen FQ, M R Foolad, J. Hyman1, et al. Mapping of QTLs for Iycopene and other fruit traitsin a Lycopersicon esculentum×L. Pimpinellifolium cross and comparison of QTLs acrosstomato species [J]. Molecular Breeding,1999,5:283-299.
    67. Chen J H, Luan M B, Song S F. Isolation and characterization of EST-SSRs in the Ramie.African Journal of Microbiology Research.2011,5(16)
    68. David Metzgar, Jeffrey Bytof, Christopher Wills. Selection Against Frameshift MutationsLimits Microsatellite Expansion in Coding DNA[J]. Genome Research,2000,72-80
    69. David Metzgar, Jeffrey Bytof, Christopher Wills. Selection Against Frameshift MutationsLimits Microsatellite Expansion in Coding DNA[J]. Genome Research,2000,72-80
    70. Dib C, Faure S, et al. A comprehensive genetic map of the human genome based on5264microsatellites [J]. Nature,1996,380:149-152
    71. Du X-Y,Zhang L-Q,Luo Z-R.Comparison of four molecular markers for genetic analysis inDiospyros L.(Ebenaceae).Plant Syst Evol,2009,281:171-181
    72. Echt C S, DeVerno L L, Anzidei M et al. Chloroplast microsatellite reveal population geneticdiversity in red pine, Pinus resinosa Ait[J]. Molecular Ecology,1998,7:307-316
    73. Ferreira M E, Williams P H, Osborn T C. RFLP mapping of Brassica napus usingdoubled-haploidlines[J]. Theor Appl Genet,1994,89:553-557
    74. Gerald A.Tuskan, Lee E.Gunter, Zamin K.Yang et al., Characterization of microsatellitesrevealed by genomic sequencing of Populus trichocarpa.2000[J], NRC Canada J. ForResearch,34:85-94
    75. Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptusurophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics1994137:1121-1137
    76. Guo, W.Z,Cai ping, Chang biao Wang,et al. A microsatellite-based,gene-rich linkage mapreveals genome structure,function,and evolution in Gossypium.Genetics,2007,176:547-541
    77. Hemmat M,Weeden N F,Manganaris A G,et a1.Molecular marker linkage forapple[J].TheJournal of Heredity,1994:85(1):4-11
    78. Hulbert S, Ilott T, Legg EJ, Lincoln S, Lander E, Milchelmore R Genetic analysis of thefungus,Bremia lactucae, using restriction length polymorphisms. Genetics,1988,120:947–958
    79. Kahler A L, Wehrhahr C F. Associations between quantitative trains and enzyme loci in the F2population of a maize hybrid [J]. Theor Appl Genet,1986,72:15-26
    80. Kumar L S. DNA markers in plant improvement: An overview [J]. BiotechnologyAdvances,1999,17:143-182
    81. Lander E S, Green P, Abrahamson J. MAPMARKER: an interactive computer package forconstructing primary genetic linkage maps of experimental and naturalpopulations[J].Genomics,1987,1:174-181
    82. Lange K, Boehnke M How many polymorphic genes will it take to span the human genome?Am J Hum Genet,1982,24:842–845
    83. Li G, Quiros C F.Sequence-related amplified polymorphisim(SRAP), a new marker systembased on a simple PCR reaction: Its application to mapping and gene tagging in Brassica.Theor Appl Genet,2001,103:455-461
    84. Li Sishen, Jia Jizeng,. A intervarietal genetic map and QTL analysis for yield traits inwheat.Molecular Breeding,2007,20(2):167-178
    85. Liu L J,Peng D X,Wang B.Genetic Relation Analysis on Ramie [Boehmerianivea(L.)Gaud.]Inbred Lines by SRAP Markers.Agricultural Sciences inChina,2008,7(8):944-949
    86. M Morgante, AM Olivieri. PCR-amplified microsatellite as markers in plant genetics[J]..ThePlant Journal,1993,3(1),175-182
    87. Maliepaard C, Jansen J, Van Ooijen JW. Linkage analysis in a full-sid family of anoutbreeding plant specie:overview and consequences for applications[J]. Gen Res1997,70:237-250
    88. McCouch SR. Microsatellite marker development, mapping and applications in rice geneticsand breeding. Plant Molecular Biology1997,35(1):89-99
    89. Milena de Luna Alves Lima,Cláudio Lopes Souza,Dyeme Antonio Vieira Bento,Anete PereiraSouza,Luciana Aparecida Carlini-Garcia.Mapping QTL for Grain Yield and Plant Traits in aTropical Maize Population.Molecular Breeding,2006,17(3):227-239
    90. Murray J C, Buetow K H, Weber J L. A comprehensive human linkage map with centimorgandensity[J].Science,1994,265:2049-2054
    91. Nasu S., Suzuki J., Ohta R., Hasegawa K., Yui R., Kitazawa N. and Minobe Y.2002. Searchfor and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa,Oryzarufipogon)and establishment of SNP markers[J].(http://www.dna-res.kazusa.or.jp/9/5/03/HTMLA2002,11,18)
    92. Obrien S J, Menotiraymond M, Murphy W J, Nash W G, Wienberg J, Stanyon R, Copeland NG,Womack J E, Graves J A M. The promise of comparative genomics in mammals [J]. Science,1999,286(5439):458
    93. Rafalski, A."Applications of single nucleotide polymorphisms in crop genetics."[J]Curr OpinPlant Biol,2002,5(2):94-100
    94. Rus-Kortekaas W, Smulders M J M, Aens P. Direct comparison of levels of genetic variationin tomato detected by GACA-containing microsatellite probe and by randomamplifiedpolymorphic DNA[J]. Genome,1994(37):375-381
    95. Schlotterer C, Amos B, Tautz D. Conservation of polymorphic simple sequence loci incetacean.Nature1991,354:63-65
    96. Sokal, R. R., and F. J. Rohlf,1981Biometry: The Principles and Practice of Statistics inBiological Research, Ed.2. W. H. Freeman, New York
    97. Tanksley S D, Young N D, Paterson AH. RFLP Mapping in Plant Breeding: New Tools for anOldScience [J]. Bio Technology,1989,7:257-264
    98. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM,Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH,Pineda, Riider MS, Wing RA, Wu W and Young ND. High Density Molecular Linkage Mapsof the Tomato and Potato Genomes[J]. Genetics.1992,132:1141-1160
    99. Van Ooijen, J, W.&R.E, Voorrips. JoinMap3.0, Software for the calculation of geneticlinkagemaps(M). Wageningen, the Netherlands:Plant Research International,2001
    100.Vodenicharova M. Use of proteins as molecular-genetic markers in plants [J]. Genet Sel,1989,22:269-77
    101.Voorrips R E, Jomgerius M C, Kanne H J. Mapping of two genes for resistance toclubroot(Plasmodiphora brassicae)in a population of doubled haploid lines of Brassica oleraeaby means of RFLP and AFLP markers[J]. Theor Appl Genet,1997,94(1):75-82
    102.Wang S.,.Wang J.Jiang,J,.Mapping of centromeric regions on the molecular linkage map ofrice (Oryza sativa L.) using centromere-associated sequences.Molecular and GeneralGenetics,2000,263(1):165-172.
    103.Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitraryprimers are useful as genetic markers [J]. Nucleic Acids Research,1990,18(22):6531-6535
    104.Xu S J, Singh R J, Hymowitz T. Establishment of a cytogenetic map of soybean: progress andprospective[J]. Soybean Genet, Newslet,1997,24:121-122
    105.Zhang Jun, Guo Wang-Zhen, Zhang Tian-Zhen. Molecular linkage map of allotetraploidcotton(Gossypium Hirsutum L.×G. Barbadens L.). Theor Appl Genet.2002(in press)
    106.Zou,Y. P. G., S (2003)."A novel molecular marker—SNPs and its application." BiodiversityScience11(5):370-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700