用户名: 密码: 验证码:
基于CDDP标记的牡丹遗传多样性分析及分子身份证构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牡丹(Paeonia suffruticosaAndr.),世界名花,不仅观赏价值极高,经济价值也较高。它起源于我国,野生种和品种众多,蕴藏着极为丰富的基因资源。利用DNA分子标记方法对牡丹野生种和栽培品种开展遗传多样性分析和品种鉴定研究,对牡丹种质资源的有效保护和种质创新具有重要的指导意义。CDDP是一种新型目标分子标记技术,偏向于产生候选功能标记,所得标记可能是目的基因的一部分或与目的基因紧密连锁,属于显性标记,多态性好、操作简单、费用低,探讨该技术在牡丹种质资源遗传多样性研究中的应用不仅能够为牡丹种质资源的研究提供新途径和新方法,也能为其他植物开展相关研究提供借鉴。
     本研究在探索适用于牡丹基因组CDDP-PCR反应体系的基础上,以9个野生种、8个国外品种和299个我国中原牡丹品种共316份材料为试材,利用18条CDDP标记引物对其进行了遗传多样性分析、品种特异性分析和一致性检验,筛选了区分牡丹种质资源的核心引物并探讨了分子身份证的构建方法。主要研究结果如下:
     1.通过正交试验设计和应用Mix试剂对比CDDP-PCR扩增效果后,确定了20L牡丹CDDP-PCR反应体系:2×Es Taq MasterMix(含染料)10L、10pmol/L引物1.0L、30ng/LDNA模板2L和ddH2O7L,并进一步对该体系进行稳定性和重复性试验,认为该体系可用于牡丹种质资源遗传多样性等的分析研究。
     2.从21条CDDP引物中筛选出18条多态性好、条带清晰的引物用于牡丹种质资源的遗传多样性分析,揭示了牡丹野生种、国外品种以及国内牡丹品种遗传多样性的差异。结果显示,22个国内外栽培品种的平均Nei s基因多样性H为0.1950,平均有效等位基因数Ne为1.3060,平均Shannon信息指数I是0.3128,不仅明显高于299个我国中原牡丹品种的相应指标(分别为0.1658、1.2569和0.2695),而且分别比野生种的平均值高出20.14%、5.42%和16.63%。这说明国外牡丹品种的遗传多样性最高,我国中原牡丹品种居其次,而野生种最低。聚类结果显示,牡丹栽培品种与野生种矮牡丹聚为一类,表明牡丹栽培品种可能起源于矮牡丹;来自不同国家的品种没有独自分别成类,日本品种与我国中原牡丹品种聚在了一起,而美国品种与法国品种聚在了一起。
     3.10大花色群体的遗传多样性分析表明:10个花色群体的平均Nei s基因多样性指数、平均有效等位基因数和平均Shannon信息指数依次为0.1451、1.2313和0.2306。综合分析各项指标得出:红色系和紫色系具有较高的遗传多样性,复色系和绿色系牡丹的遗传多样性较低。花色群体间的遗传距离较近,平均为0.0271;遗传一致度较高,平均为0.9735;遗传分化系数为0.1252,表明只有12.52%的遗传分化存在于群体间;群体间还具有较大基因流值(3.4939)。遗传多样性分析和UPGMA聚类结果在分子水平上验证了牡丹品种资源的花色演化趋势:以粉色系和红色系为中心,渐渐演化出紫红、紫、蓝和白色系,再进化出黄色系和黑色系,绿色系和复色系属于退化的色系。
     4.综合分析品种间遗传距离的平均值、最大值和最小值,最后确定遗传距离临界阈值T=0.20为牡丹品种特异性评判的标准,即品种间遗传距离大于0.20时,则表明2个品种具有特异性。按此标准,对分别由12个单株构成的8个品种群体进行了品种内遗传距离的计算和分析,结果表明,供试牡丹品种具有较好的遗传一致性。
     5.对18条引物的多态性指标进行综合分析,将Pr2、Pr5、Pr12、Pr19、Pr20和Pr21确定为进行品种区分和鉴定的核心引物,并分别统计核心引物中单引物、双引物及三引物对牡丹种质资源的区分情况,筛选出了Pr2+Pr19+Pr20三引物组合用于构建分子身份证,并运用十进制数字串条形码的形式构建了316份牡丹种质资源的18位分子身份证,可以为实现牡丹种质资源的数字化检索提供参考。
Tree peony (Paeonia suffruticosa Andr.) is a famous flower in the world for its highornamental and economic value with origin in China. There are many wild species and lots ofcultivars containing abundant gene resources. Study on the genetic diversity and cultivaridentification of tree peony by DNA markers will has an important guiding significance to theeffective protection for tree peony germplasm resources and its germplasm innovation. CDDPis a kind of new method belonging to gene-targeted markers technique. This method tends togenerate candidate function markers which may be a part of or linked with the gene targeted.It is a kind of dominant marker with good polymorphism, easy operation and low cost.Researches on tree peony germplasm genetic diversity by CDDP technique can provide notonly a new way or method for tree peony researches but also an available reference for otherplants to carry out related researches.
     In this study, optimized CDDP-PCR reaction system for tree peony was established and316genome DNA templates composed of9wild species,8foreign cultivars and299Zhongyuan tree peony cultivars were amplified with18informative and reliable CDDPprimers. Then, the amplification results were used to analyze the genetic diversity, the cultivardistinctness and uniformity of tree peony. At last, core primers were selected to indentifydifferent tree peony germplasm resources and to set up their molecular ID codes. The mainresults were as following:
     1. After comparing the results of orthogonal experimental design and PCR-Mix reagentapplication, the optimized CDDP-PCR reaction system(20L) were2×Es Taq MasterMix(dyed)10L,10pmol/L primer1.0L,30ng/L DNA template2L and ddH2O7L.Researches on the stability and repeatability of the above reaction system resulted that it couldbe used for genetic diversity analysis and its follow-up studies of tree peony.
     2. Eighteen out of21CDDP primers with good polymorphism and clear bands wereselected to reveal the differences among genetic diversities of wild species, foreign cultivarsor Zhongyuan cultivars in China. Results showed that the average Nei s gene diversity (H),average Shannon information index (I) and average effective number of alleles of22individuals composed of abroad and Zhongyuan cultivars was0.1950,0.3128and1.3060,respectively. As for299Zhongyuan cultivars, the above indexes were0.1658,1.2569and 0.2695in turn, which were all lower than those of22cultivars. And the values of299Zhongyuan cultivars were higher than those of wild species by20.14%,5.42%and16.63%inturn. These results indicated that the genetic diversity of abroad cultivars was the mostabundant and that of Zhongyuan cultivars was more while that of the wild species was thelowest. In addition, clustering results showed that the22foreign and domestic cultivars wereall clustered with P. spontanea, indicating that tree peony cultivars should originate from P.spontanea, while cultivars from different countries didn t get into a class respectively. As forforeign cultivars, Japan cultivars were in together with Zhongyuan cultivars in China andUSA or France cultivars were clustered together.
     3. There were10populations with different color. Results of their genetic diversityanalysis showed that average Nei s gene diversity (H), average Shannon information index (I)and average effective number of alleles was0.1451,1.2313and0.2306, respectively.Comprehensive analysis results indicated that the genetic diversity of red or purple populationwas higher while that of multicolor or green population was lower. The genetic distanceamong10populations was close with an average of0.0271and the genetic identity was highwith an average of0.9735. The coefficient of gene differentiation among them was0.1252,showing that there were12.52%genetic variation among populations. The gene flow among10populations was high and its value was3.4939. Results obtained from genetic diversityanalysis and UPGMA dendrogram based on Nei s genetic identity proved the evolutionarytrend of tree peony s flower color at molecular level: pink and red cultivars might be at thecenter of Zhongyuan tree peony resources, then gradually fuchsia, purple, blue, white, yellowor black cultivars were evolved, while green or multicolor cultivars might be degraded.
     4. After comprehensively analyzing the average, the maximum and the minimum valuesof genetic distances between an arbitrary cultivar and the others cultivars, the criticalthreshold T=0.20was determined as the evaluation criteria of tree peony cultivar distinctness,meaning that when the genetic distance between2cultivars was higher than0.20, they wereregarded as2different individuals. Then the genetic distance among12individuals belongingto the same cultivar were calculated and8cultivars were involved. According to the abovecriteria, tree peony cultivars used in this study had good genetic uniformity.5. Several polymorphism indexes of18CDDP primers showed that Pr2, Pr5, Pr12, Pr19, Pr20or Pr21could be core primers to identify tree peony germplasm resources. Based on theirability to distinguish tree peony gemplasm alone, two or three different primers combination,three primers combination of Pr2+Pr19+Pr20was selected and applied to set up the molecularID of tree peony. In the end, the IDs with18decimal numbers of316tree peony germplasm resources were structured and provided a new method for the realization of digital searchingfor tree peony resources.
引文
艾侠,王莲英.分子标记技术在牡丹研究中的应用.陕西农业科学,2007(2):85-87
    艾呈祥,张力思,魏海蓉,苑克俊,金松南,刘庆忠.甜樱桃品种SSR指纹图谱数据库的建立.中国农学通报,2007,23(5):55-58
    陈红,刘伟,郑金贵.我国植物新品种DUS测试指南研制策略探讨.福建农林大学学报(哲学社会科学版),2011,14(3):25-29
    陈昌文,曹珂,王力荣,朱更瑞,方伟超.中国桃主要品种资源及其野生近缘种的分子身份证构建.中国农业科学,2011,44(10):2081-2093
    陈向明,郑国生,孟丽.不同花色牡丹品种亲缘关系的RAPD-PCR分析.中国农业科学,2002,35(5):546-551
    陈向明,郑国生,张圣旺.牡丹栽培品种的RAPD分析.园艺学报,2001,28(4):370-372
    陈一华,张超良,王泽立,贾建航,孙致,金德敏,王斌.玉米种子的DNA指纹计算机化鉴定.应用与环境生物学报,2000,6(3):223-226
    成仿云,李嘉珏.中国牡丹的输出及其在国外的发展Ⅰ:栽培牡丹.西北师范大学学报(自然科学版),1998a,34(1):109-116
    成仿云,李嘉珏.中国牡丹的输出及其在国外的发展Ⅱ:野生牡丹.西北师范大学学报(自然科学版),1998b,34(1):103-108
    褚嘉祐,李绍武,张亚平.努力推动中国的遗传多样性研究.遗传,2012,34(11):1349-1350
    丁俊杰,姜翠兰,顾鑫,杨晓贺,赵海红,申宏波,仕相林,刘春燕,胡国华,陈庆山.利用与大豆灰斑病抗性基因连锁的SSR标记构建大豆品种(系)的分子身份证.作物学报,2012,38(12):2206-2216
    杜淑辉,臧德奎,孙居文.我国观赏植物新品种保护与DUS测试研究进展.中国园林,2010(9):78-81
    杜晓云,张青林,黄建民,罗正荣. SSAP逆转座子分子标记在柿属植物遗传分析中的应用.农业生物技术学报,2010,18(4):682-688
    冯夏莲,何承忠,张志毅,安新民,王冬梅.植物遗传多样性研究方法概述.西南林学院学报,2006,26(1):69-74
    高运来,朱荣胜,刘春燕,李文福,蒋洪蔚,李灿东,姚丙晨,胡国华,陈庆山.黑龙江部分大豆品种分子ID的构建.作物学报,2009,35(2):211-218
    辜大川,邱东峰,殷明珠,焦春海,杨金松,张再君,刘春萍.水稻优异资源分子身份证的建立.湖北农业科学,2012,51(24):5579-5584
    关媛,鄂文弟,王丽侠,关荣霞,刘章雄,常汝镇,曲延英,邱丽娟.以湖南和湖北大豆为例分析影响遗传多样性评价的因素.作物学报,2007,33(3):461-468
    韩凤龙,李正玲,胡琳,许为钢.用于河南省小麦品种特异性和一致性鉴定的SSR分子标记研究.中国农业科学,2010,43(18):3698-3704
    韩科厅,赵莉,唐杏姣,胡可,戴思兰.菊花花青素苷合成关键基因表达与花色表型的关系.园艺学报,2012,39(3):5165-24
    郝冬梅,邱财生,于文静,邓欣,贾婉琪,陈信波,龙松华,郭媛,王玉富.亚麻RAPD标记分子身份证体系的构建与遗传多样性分析.中国农学通报,2011,27(5):168-174
    洪艳,白新祥,孙卫,贾锋炜,戴思兰.菊花品种花色表型数量分类研究.园艺学报,2012,39(3):1330-1340
    洪德元,潘开玉.芍药属牡丹组的分类历史和分类处理.植物分类学报,1999,37(4):351-368
    侯小改,王娟,郭大龙,刘改秀,马慧丽,王小燕.牡丹EST资源的SSR信息分析.湖南农业大学学报(自然科学版),2011b,37(2):172-176
    侯小改,王娟,贾甜,张钰乾,侯娟,李嘉珏.牡丹SCoT分子标记正交优化及引物筛选.华北农学报,2011a,26(5):92-96
    侯小改,尹伟伦,李嘉珏,王华芳.部分牡丹品种遗传多样性的AFLP分析.中国农业科学,2006a,39(8):1709-1715
    侯小改,尹伟伦,李嘉珏,王华芳.牡丹矮化品种亲缘关系的AFLP分析,北京林业大学学报,2006b,28(5):73-77
    黄方,迟英俊,喻德跃.植物MADS-box基因研究进展.南京农业大学学报,2012,35(5):9-18
    贾怀志,刘艳红,渠慎春,高志红,王昆,章镇.苹果IRAP技术体系的建立及优化.果树学报,2009,26(2):254-257
    李涛,尹蓁,裴颜龙.用RAPD技术进行牡丹品种鉴定初探.植物引种驯化集刊,1995,10:46-54
    李保印,周秀梅,蒋细旺,张启翔.牡丹种及品种亲缘关系的分子生物学研究进展.河南农业大学学报,2008,42(1):121-126
    李保印.中原牡丹品种遗传多样性与核心种质构建研究.北京林业大学博士学位论文,2007
    李春苑,阮美煜,贾海燕,王崇英.同源异型盒基因I类KNOX的表达调控及在植物形态建成中的作用.细胞生物学杂志,2009,31(5):635-640
    李宏伟,高丽锋,刘曙东,李永强,贾继增.用EST-SSRs研究小麦遗传多样性.中国农业科学:2005,38(1):7-12
    李嘉珏,张西方,赵孝庆.中国牡丹.北京:中国大百科全书出版社,2011
    林启冰,周志钦,赵宣,潘开玉,洪德元.基于Adh基因家族序列的牡丹组(Sect. MoutanDC.)种间关系.园艺学报,2004,31(5):627-632
    刘何,谢令琴,赵建军.植物抗性相关基因的研究.华北农学报,2007,22(增刊):17-20
    刘萍,芦锰.7种不同花色35个牡丹品种遗传多样性的AFLP分析.河南中医学院学报,2009,24(3):30-32
    刘萍,王子成,尚富德.河南部分牡丹品种遗传多样性的AFLP分析.园艺学报,2006,33(6):1369-1372
    刘二明,肖一龙,易有金,庄杰云,郑康乐,罗峰.水稻品种抗瘟性表型与抗病基因同源序列相似性关系.中国水稻科学,2005,19(3):209-216
    刘会超,贾文庆,尤扬.9个牡丹品种叶片、叶柄中总酚含量及多酚氧化酶活性的测定.广东农业科学,2010(8):170-171
    刘慧民,刘一佳,吕贵娥,车代弟.18种绣线菊分子身份证的构建和SCAR标记转化.植物生理学通讯,2009,5(12):1171-1176
    刘林娟,刘会娟,王晓萍.皇冠草细胞色素P450相似基因的研究.中国农学通报,2011,27(15):224-228
    刘新龙,马丽,陈学宽,应雄美,蔡青,刘家勇,吴才文.云南甘蔗自育品种DNA指纹身份证构建.作物学报,2010,36(2):202-210
    娄群峰,刘强,陈劲枫.黄瓜SSAP标记技术的建立.江苏农业科学,2007(4):82-85
    陆才瑞,喻树迅,于霁雯,范术丽,宋美珍,王武,马淑娟.功能型分子标记(ISAP)的开发及评价.遗传,2008,30:1207-1216
    陆光远,伍晓明,张冬晓,刘凤兰,陈碧云,高桂珍,许鲲. SSR标记分析国家油菜区试品种的特异性和一致性.中国农业科学,2008,41(1):32-42
    陆徐忠,从夕汉,刘海珍,倪金龙,马琳,李莉,倪大虎,杨剑波.杂交水稻亲本分子身份证及SSR指纹数据库的建立.核农学报,2012,26(6):0853-0861
    马克平.试论生物多样性的概念.生物多样性,1993,1(1):20-22
    孟丽,郑国生.部分野生与栽培牡丹种质资源亲缘关系的RAPD研究.林业科学,2004,40(5):110-115
    莫纪波,李大勇,张慧娟,宋凤鸣. ERF转录因子在植物对生物和非生物胁迫反应中的作用.植物生理学报,2011,47(12):1145-1154
    潘园园,徐祥彬,王春玲,马杰,王慧中. WRKY转录因子的研究概况.浙江农业科学,2012(2):253-257,261
    潘兆娥,王希文,孙君灵,周忠丽,贾银华,何守朴,王杰,王立如,庞保印,杜雄明.中棉所48的SSR数字指纹图谱的构建.中国农学通报,2010,26(7):31-35
    裴颜龙,邹喻苹,尹蓁,汪小全,张志宪,洪德元.矮牡丹与紫斑牡丹RAPD分析初报.植物分类学报,1995,33(4):350-356
    秦国新,何桥,梁国鲁,雷家军,郭启高.草莓属植物SCoT分析体系的建立及优化.果树学报,2012,29(3):393-397
    任洪艳,孙霞,郑成淑,王文莉,孙宪芝,束怀瑞.利用cDNA-AFLP技术筛选菊花开花相关基因.中国农业科学,2011,44(16):3386-3394
    任鄄胜,肖培村,陈勇,黄湘,王玉平,李仕贵.水稻品种稻瘟病抗性和抗病基因同源序列多态性分析.中国农业科学,2009,42(1):1-9
    沈玉英,高志红,王飞,佟兆国,张计育,房伟民,章镇.梅REMAP分子标记技术体系的优化及其应用.西北植物学报,2011,31(4):0848-0855
    石颜通,周波,张秀新,江海东,薛璟祺,王顺利.牡丹89个不同种源品种遗传多样性和亲缘关系分析.园艺学报,2012,39(12):2499-2506
    史倩倩,王雁,周琳,黄国伟.十大花色中原牡丹传统品种核型分化程度.林业科学研究,2012,25(4):470-476
    史倩倩,王雁,周琳.牡丹传统品种特异性、一致性和稳定性研究.东北农业大学学报,2013,44(4):66-71
    苏雪,张辉,董莉娜,张建清,朱学泰,孙坤.应用RAPD技术对甘肃栽培牡丹品种的分类鉴定研究.西北植物学报,2006,26(4):0696-0701
    苏亚春,凌辉,王恒波,阙友雄,吴期滨,陈珊珊,许莉萍.甘蔗SCoT-PCR反应体系优化与多态性引物筛选及应用.应用与环境生物学报,2012,18(5):810-818
    孙霞,王秀峰,郑成淑,邢世岩,束怀瑞.菊花节律钟输出基因CmGI(GIGANTEA)的cDNA全长克隆、序列信息及定量表达分析.中国农业科学,2012,45(13):2690-2703
    孙雁,王云月,万瑞亭,朱有勇.黑龙江水稻品种抗病基因同源序列聚类分析.云南农业大学,2001,16(2):107-110
    索志立,张会金,张治明,紫斑牡丹与牡丹种间杂交后代的DNA分子证据.云南植物研究,2005,27(1):42-48
    索志立,周世良,张会金,张治明.杨山牡丹和牡丹种间杂交后代的DNA分子证据.林业科学研究,2004,17(6):700-705
    索志立.利用DNA ISSR分子标记技术对芍药属植物栽培品种的分类鉴定方法.生物技术通报,2008(s),109-113
    唐琴,曾秀丽,廖明安,潘光堂,扎西,龚君华,次仁卓嘎.大花黄牡丹遗传多样性的SRAP分析.林业科学,2012,48(1):70-76
    田素波,林桂玉,郑成淑,孙霞,任洪艳,温立柱.菊花花发育基因CmCO和CmFT的克隆与表达分析.园艺学报,2011,38(6):1129-1138
    万志兵,陈燕,闫莹莹,陈黎.菊花EST-SSR分析及标记开发.西南林业大学学报,2013,33(1):39-43
    王佳,胡永红,张启翔.牡丹ISSR-PCR反应体系正交优化设计.安徽农业科学,2006,34(24):6465-6466,6484
    王佳.杨山牡丹遗传多样性与江南牡丹品种资源研究.北京林业大学硕士学位论文,2009
    王娟,郭大龙,侯小改,范丙友,刘改秀,李友军.不同花型牡丹品种亲缘关系的SRAP分析.中国农学通报,2011,27(28):167-171
    王俊,图力古尔,高兴喜.我国猴头栽培菌株的反转录转座子间扩增多态性.东北农业大学学报,2012,40(7):68-70
    王凤格,赵久然,戴景瑞,王璐,易红梅,郭景伦,孙世贤,廖琴,杨国航.利用SSR标记进行玉米品种一致性检测研究.分子植物育种,2007,5(1):95-104
    王海英,虞泓,李南高,和锐,张明宇.云南丽江山慈菇遗传多样性的DALP分析.云南植物研究,2005,27(2):156-162
    王惠鹏,李芳,侯小改,史国安,范丙友.基于分子标记的牡丹、芍药种质亲缘关系研究进展.湖北农业科学,2012,51(13):2657-2659
    王静毅,陈业渊,黄秉智,于飞,武耀廷.部分香蕉品种SSR指纹图谱的构建.果树学报,2009,26(5):733-738
    王黎明,焦少杰,姜艳喜,严洪冬,苏德峰,孙广全.142份甜高粱品种的分子身份证构建.作物学报,2011,37(11):1975-1983
    王立新,季伟,李宏博,葛玲玲,信爱华,王丽霞,常丽芳,赵昌平.以DNA位点纯合率评价小麦的一致性和稳定性.作物学报,2009,35(12):2197-2204
    王立新,李云伏,常利芳,黄岚,李宏博,葛玲玲,刘丽华,姚骥,赵昌平.建立小麦品种DNA指纹的方法研究.作物学报,2007,33(10):1738-1740
    王莲英.中国牡丹品种图志.北京:中国林业出版社,1997
    王晓飞,陈建华,栾明宝,祁建民,许英,孙志民.苎麻种质资源分子身份证构建的初步研究.植物遗传资源学报,2010,11(6):802-805
    王燕青,季孔庶.利用正交设计优化牡丹SRAP-PCR反应体系.分子植物育种,2009,7(1):199-203
    王燕青.利用SRAP标记构建菏泽牡丹优良品种指纹图谱.北京林业大学硕士学位论文,2008
    王忠华. DNA指纹图谱技术及其在作物品种资源中的应用.分子植物育种,2006,4(3):425-430
    熊发前,蒋菁,钟瑞春,韩柱强,贺梁琼,李忠,庄伟建,唐荣华.分子标记技术的两种新分类思路及目标分子标记技术的提出.中国农学通报,2010b,26(10):60-64
    熊发前,蒋菁,钟瑞春,韩柱强,贺梁琼,李忠,庄伟建,唐荣华.两种新型目标分子标记技术——CDDP与PAAP.植物生理学通讯,2010a,46(9):871-875
    颜静宛,田大刚,许彦,王锋.杂交稻主要亲本的SSR分子身份证数据库的构建.福建农业学报,2011,26(2):148-152
    杨阳,刘振,赵洋,梁国强.湖南省主要茶树品种分子指纹图谱的构建.茶叶科学,2010,30(5):367-373
    杨景华,王士伟,刘训言,杨加付,张明方.高等植物功能性分子标记的开发与利用.中国农业科学,2008,41(11):3429-3436
    杨淑达,施苏华,龚洵,周仁超.滇牡丹遗传多样性的ISSR分析.生物多样性,2005,13(2):105-111
    于玲,何丽霞,李嘉珏,成仿云.牡丹野生种间蛋白质谱带的比较研究.园艺学报,1998,25(1):99-101
    于潇,许修宏,刘华晶.黑龙江部分野生黑木耳菌株的分子ID构建.中国农学通报,2012,28(13):171-175
    于晓南,季丽静,王琪.芍药属植物分子水平遗传多样性研究进展.北京林业大学学报,2012,34(3):130-136
    喻衡.菏泽牡丹.济南:山东科学技术出版社,1980
    袁涛,王莲英.根据花粉形态探讨中国栽培牡丹的起源.北京林业大学学报,2002,24(1):5-11
    袁涛,王莲英.我国芍药属牡丹组革质花盘亚组的形态学研究.园艺学报,2003,30(2):187-191
    袁涛.中国牡丹部分种与品种(群)亲缘关系的研究.北京林业大学博士学位论文,1998
    张旭.彭州地区部分牡丹品种的遗传多样性及亲缘关系的RAPD分析.四川农业大学硕士学位论文,2010
    张金梅,王建秀,夏涛,周世良.基于系统发育分析的DNA条形码技术在澄清芍药属牡丹组物种问题中的应用.中国科学: C辑:生命科学,2008,38(12):1166-1176
    张晶晶,王亮生,刘政安,李崇晖.牡丹花色研究进展.园艺学报,2006,33(6):1383-1388
    张启翔,潘会堂.中国新花卉作物与城市园林绿化建设.中国园林,2009(1):71-74
    张肖雅,许修宏,刘华晶.11个灵芝菌株的分子ID构建.微生物学通报,2013,40(2):249-255
    张艳丽,李正红,马宏,王雁,李文娟,刘秀贤,万友名.滇牡丹花色类群性状变异分析.植物分类与资源学报,2011,33(2):183-190
    张艳丽,王雁,李正红,马宏.基于牡丹EST信息的滇牡丹SSR标记开发.林业科学研究,2011,24(2):171-175
    赵波,叶剑,金文林,曾潮武,吴宝美,濮绍京,潘金豹,万平.不同类型小豆种质SSR标记遗传多样性及性状关联分析.中国农业科学,2011,44(4):673-682
    赵宣,周志钦,林启冰,潘开玉,洪德元.芍药属牡丹组种间关系的分子证据: GPAT基因的PCR-RFLP和序列分析.植物分类学报,2004,42(3):236-244
    赵雪,谢华,马荣才.植物功能基因组研究中出现的新型分子标记.中国生物工程杂志,2007,27(8):104-110
    赵瑞强,高燕会,章晓玲,斯金平.铁皮石斛SCoT-PCR反应体系构建及优化.核农学报,2012,26(4):0648-0655
    赵新燕,黄莉,任小平,姜慧芳,陈玉宁.野生花生高油种质DNA指纹身份证构建.华北农学报,2010,25(6):64-70
    郑海燕,粟建光,戴志刚,李燕,陈基权,龚友才.利用ISSR和RAPD标记构建红麻种质资源分子身份证.中国农业科学,2010,43(17):3499-3510
    郑海燕.利用RAPD、ISSR和SRAP标记技术构建红麻(Hibiscus cannabinus L.)种质资源分子身份证.中国农业科学院硕士学位论文,2010
    周波,江海东,张秀新,薛璟祺,石颜通.部分引进牡丹品种的形态多样性.生物多样性,2011,19(5):543-550
    周兴文,杨秋生,李永华.牡丹基因组AFLP银染反应体系的建立和优化.2006,40(6):602-606
    朱月,毕晓丹,赵雪梅.“洛阳红”牡丹叶片多糖提取条件的研究.北方园艺,2011(04):149-151
    朱红霞.牡丹AFLP荧光反应体系的建立和优化.北方园艺,2007(10):164-167
    邹喻苹,蔡美琳,王子平.芍药属牡丹组的系统学研究:基于RAPD分析.植物分类学,1999,37(3):220-227
    左然,徐美玲,柴国华,周功克.植物MYB转录因子功能及调控机制研究进展.生命科学,2012,24(10):1133-1140
    Akhunov E D, Goodyear A W, Geng S, Qi L L, Echalier B, Gill B S, Miftahudin, Gustafson JP, Lazo G, Chao S, Anderson O D, Linkiewicz A M, Dubcovsky J, La Rota M, Sorrells ME, Zhang D, Nguyen H T, Kalavacharla V, Hossain K, Kianian S F, Peng J, Lapitan N LV, Gonzalez-Hernandez J L, Anderson J A, Choi D W, Close T J, Dilbirligi M, Gill KS,Walker-Simmons M K, Steber C. The organization and rate of evolution of wheatgenomes are correlated with recombination rates along chromosome arms. Genome Res,2003,13:753-763
    Alwala S, Suman A, Arro J A, Veremis J C, Kimbeng C A. Target region amplificationpolymorphism (TRAP) for assessing genetic diversity in sugarcane germplasmcollections. Crop Sci,2006,46:448-455
    Anai T, Miyata M, Kosemura S, Yamamura S, Tsuge T, Matsui M, Uchida H, Hasegawa K.Comparison of abp1primary sequences from monocotyledonous and dicotyledonousspecies. J Plant Physiol,1997,151:446-449
    Andersen J R, Lübberstedt T. Functional markers in plants. Trends Plant Sci,2003,8:554-560
    Bachem C W, van der Hoeven R S, de Bruijn S M, Vreugdenhil D, Zabeau M, Visser R G.Visualization of differential gene expression using a novel method of RNA fingerprintingbased on AFLP: analysis of gene expression during potato tuber development. Plant J,1996,9:745-53
    Bardini M, Lee D, Donini P, Mariani A. Tubulin-based polymorphism (TBP): a new tool,based on functionally relevant sequences, to assess genetic diversity in plant species.Genome,2004,291:281-291
    Branco C J S, Vieira E A, Malone G, Kopp M M, Malone E, Bernardes A, Mistura C C,Carvalho F I F, Oliveira C A. IRAP and REMAP assessments of genetic similarity in rice.J Appl Genet,2007,48:107-113
    Breviario D, Baird W V, Sangoi S, Hilu K, Blumetti P, GianìS. High polymorphism andresolution in targeted fingerprinting with combined β-tubulin introns. Mol Breeding,2007,20:249-259
    Breviario D, Nick P. Plant tubulins: a melting pot for basic questions and promisingapplications. Transgenic Res,2000,9:383-393
    Bryan G J, Stephenson P, Collins A, Kirby J, Smith J B, Gale M D. Low levels of DNAsequence variation among adapted genotypes of hexaploid wheat. Theor Appl Genet,1999,99:192-198
    Carvalho A, Guedes-Pinto H, Lima-Brito J E. Genetic diversity in old Portuguese durumwheat cultivars assessed by retrotransposon-based markers. Plant Mol Biol Rep,2011,30:578-589
    Cernák I, Taller J, Wolf I, Fehér E, Babinszky G, Alf ldi Z, Csanádi G, Polgár Z. Analysis ofthe applicability of molecular markers linked to the PVY extreme resistance gene Rysto,and the identification of new markers. Acta Biol Hun,2008,59:195-203
    Chen X M, Line R F, Leung H. Genome scanning for resistance-gene analogs in rice, barley,and wheat by high-resolution electrophoresis. Theor Appl Genet,1998,97(3):345-355
    Cho Y G, Ishii T, Trmnykh S, Chen X, Lipovich L, McCouch S R, Park W D, Ayres N,Cartinhour S. Diversity of microsatellites derived from genomic libraries and GenBanksequences in rice (Oryza sativa L.). Theor Appl Genet,2000,100:713-722
    Collard B C Y, Mackill D J. Conserved DNA-derived polymorphism (CDDP): a simple andnovel method for generating DNA markers in plants. Plant Mol Biol Rep,2009a,27:558-562
    Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism: a simple, novel DNAmarker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep,2009b,27:86-93
    Dangl G S, Yang J, Golino D A, Gradziel T. A practical method for almond cultivaridentification and parental analysis using simple sequence repeat markers. Euphytica,2009,168:41-48
    Desmarais E, Lanneluc I, Lagnel J. Direct amplification of length polymorphisms (DALP), orhow to get and characterize new genetic markers in many species. Nucleic Acids Res,1998,26:1458-1465
    Effendi Y, Rietz S, Fischer U, Scherer G F E. The heterozygous abp1/ABP1insertionalmutant has defects in functions requiring polar auxin transport and in regulation of earlyauxin-regulated genes. Plant J,2011,65:282-294
    Eivazi A R, Naghavi M R, Hajheidari M, Pirseyedi S M, Ghaffari M R, Mohammadi S A,Majidi I, Salekdeh G H, Maradi M. Assessing wheat (Triticum aestivum L.) geneticdiversity using quality traits, amplified fragment length polymorphisms, simple sequencerepeats and proteome analysis. Annals of Applied Biology,2008,152,81-91
    Eujayl I, Sledge M K, Wang L, May G D, Chekhovskiy K, Zwonitzer J C, Mian M A R.Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp.Theor Applied Genet,2004,108:414-422
    Feltus F A, Singh H P, Lohithaswa H C, Schulze S R, Silva T D, Paterson A H. A comparativegenomics strategy for targeted discovery of singlenucleotide polymorphisms andconserved-noncoding sequences in orphan crops. Plant Physiol,2006,140:1183-1191
    Ferguson D, Sang T. Speciation through homoploid hybridization between allotet raploids inpeonies (Paeonia). Proceedings of the National Academy of Sciences of the UnitedStates of America,2001,98(7):3915-3919
    Feschotte C, Jiang N, Wessler S R. Plant transposable elements: where genetics meetsgenomics. Nat Genet,2002,3:329-341
    Galasso I, Manca A, Braglia L, Martinelli T, Morello L, Breviario D. h-TBP: an approachbased on intron-length polymorphism for the rapid isolation and characterization of themultiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz. MolBreeding,2010,28:635-645
    García-Moreno M J, Velasco L, Pérez-Vich B. Transferability of non-genic microsatellite andgene-based sunflower markers to safflower. Euphytica,2010,175:145-150
    Gebhardt C, Valkonen J P. Organization of genes controlling disease resistance in the potatogenome. Ann Rev Phytopathol,2001,39:79-102
    Gentzbittel L, Mestries E, Mouzeyar S, Mazeyrat F, Badaoui S, Vear F, Tourvieille DeLabrouhe D, Nicolas P. A composite map of expressed sequences and phenotypic traitsof the sunflower (Helianthus annuus L.) genome. Theor Appl Genet,1999,99:218-234
    Gorji A M, Poczai P, Polgar Z, Taller J. Efficiency of arbitrarily amplified aominant markers(SCOT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am J Pot Res,2011,88:226-237
    Grzebelus D. Transposon insertion polymorphism as a new source of molecular markers. JFruit Ornam Plant Res,2006,14:21-29
    Gui Y, Yan G, Bo S, Tong Z, Wang Y, Xiao B, Lu X, Li Y, Wu W, Fan L. iSNAP: a smallRNA-based molecular marker technique. Plant Breeding,2011,130:515-520
    Guo D L, Hou X G, Zhang J. Sequence-related amplified polymorphism analysis of treepeony (Paeonia suffruticosa Andrews) cultivars with different flower colors. Journal ofHorticultural Science and Biotechnology,2009,84:131-136
    Guo D L, Zhang J Y, Liu C H, Zhang G H, Li M, Zhang Q. Genetic variability andrelationships between and within grape cultivated varieties and wild species based onSRAP markers. Tree Genetics&Genomes,2012,8:789-800
    Guo D L, Zhang J Y, Liu C H. Genetic diversity in some grape varieties revealed by SCoTanalyses. Mol Biol Rep,2012,39:5307-5313
    Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERFtranscription factors. Curr Opin Plant Biol,2004,7:465-471
    Han X Y, Wang L S, Liu Z A, Janc D R, Shu Q Y. Characterization of sequence-relatedamplified polymorphism markers analysis of tree peony bud sports. ScientiaHorticulturae,2008a,115:261-267
    Han X Y, Wang L S, Shu Q Y, Liu Z A, Xu S X, Tetsumura T. Molecular characterization oftree peony germplasm using sequence-related amplified polymorphism. Markers.Biochem Genet,2008b,46:162-179
    Hao Q, Liu Z A, Shu Q Y, Zhang R E, Rick J D, Wang L S. Studies on Paeonia cultivars andhybrids identification based on SRAP analysis. Hereditas,2008,145(1):38-47
    Hill P, Burford D, Martin D M A, Flavell A J. Retrotransposon populations of Vicia specieswith varying genome size. Mol Gen Genom,2005,273:371-81
    Homolka A, Berenyi M, Burg K, Kopecky D, Fluch S. Microsatellite markers in the treepeony,Paeonia suffruticosa (Paeoniaceae). American Journal of Botany,2010,97(6):42-44
    Hosoki T, Hamadan N, Kando T, Moriwaki R, Inaba K. Comparative study of anthocyanins intree peony flowers. Journal of the Japanese Society Horticulture,1991,60(2):395-403
    Hosoki T, Kimura D, Hasegawa R, Nagasako T, Nishimoto K, Ohta K, Sugiyama M, HarukiK. Comparative study of Chinese tree peony cultivars by random amplified polymorphicDNA (RAPD) analysis. Scientia Horticulturae,1997,70:67-72
    Hou X G, Guo D L, Cheng S P, Zhang J Y. Development of thirty new polymorphicmicrosatellite primers for Paeonia suffruticosa. Biolofia Plantarum,2011a,55(4):708-710
    Hou X G, Guo D L, Wang J. Development and characterization of EST-SSR markers inPaeonia Suffruticosa (Paeoniaceae). American Journal of Botany,2011b,98(11):e303-e305
    Hu J, Vick B B A. Target region amplification polymorphism: a novel marker technique forplant genotyping. Plant Mol Biol Rep,2003:289-294
    Ji L J, Wang Q, Teixeira da Silva J A, Yu X N. The genetic diversity of Paeonia L.. ScientiaHorticulturae,2012,143:62-74
    Jiang C, Gu X, Peterson T. Identification of conserved gene structures and carboxy-terminalmotifs in the Myb gene family of Arabidopsis and Oryza sativa L. ssp. indica. GenomeBiol,2004,5: R46
    Kalendar R, Antonius K, Smykal P, Schulman A H. iPBS: a universal method for DNAfingerprinting and retrotransposon isolation. Theor Applied Genet,2010,121:1419-1430
    Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: two newretrotransposon-based DNA fingerprinting techniques. Theor Appl Genet,1999,98:704-711
    Kessmann H, Choudhary A, Dixon R. Stress responses in alfalfa (Medicago sativa L.) III:induction of medicarpin and cytochrome P450enzyme activities in elicitor-treated cellsuspension cultures and protoplasts. Plant Cell Rep,1990,9:38-41
    Kimura M. Rare variant alleles in the light of the neutral theory. Mol Biol Evol,1983,1:84-93
    Langar K, Lorieux M, Desmarais E, Griveau Y, Gentzbittel L, BervilléA. Combined mappingof DALP and AFLP markers in cultivated sunflower using F9recombinant inbred lines.Theor Applied Genet,2003,106:1068-1074
    Leister D, Ballvora A, Salamini F, Gebhardt C. A PCR-based approach for isolating pathogenresistance genes from potato with potential for wide application in plants. Nat Genet,1996,14:421-429
    Leister D, Kurth J, Laurice D, Yao M, Sasaki T, Graner A, Schulze-Lefert P. RFLP-andphysical mapping of resistance gene homologues in rice (O. sativa) and Barley (H.vulgare). Theoretical and Applied Genetics,1999,98:509-520
    Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for genecontrol. Gene Dev,2000,14:2551-2569
    Lim J, Moon Y H, An G, Jang S K. Two rice MADS domain proteins interact with OsMADS1.Plant Mol Biol,2000,44:513-527
    Lynch M. Intron evolution as a population-genetic process. PNAS,2002,99:6118-6123
    Ma Y S, Yu H, Li Y Y, Yan H, Cheng X. A study of genetic structure of Stephania yunnanensis(Menispermaceae) by DALP. Biochem Genet,2008,46:227-240
    Martin G B, Bogdanove A J, Sessa G. Understanding the functions of plant disease resistanceproteins. Ann Rev Plant Biol,2003,54:23-61
    McDermott J M, McDonald B A. Gene flow in plant pathosystems. Annu Rev Phytopathol,1993,31:353-373
    Mu Q, Sun X, Zhong G Y, Wang X C, Song C N, Fang J G. Employment of a new strategy foridentification of lemon (Citrus limon L.) cultivars using RAPD markers. African Journalof Agricultural Research,2012,7(14):2075-2082
    Nagasaki H, Sakamoto T, Sato Y, Matsuoka M. Functional analysis of the conserved domainsof a rice KNOX homeodomain protein, OSH15. Plant Cell,2001,13:2085-2098
    Nair A S, Teo C H,Schwarzacher T, Harrison P H. Genome classification of banana cultivarsfrom South India using IRAP markers. Euphytica,2005,144:285-290
    Pang M, Percy R G, Hughs E, Zhang J. Promoter anchored amplified polymorphism based onrandom amplified polymorphic DNA (PAAP-RAPD) in cotton. Euphytica,2008,167:281-291
    Pedersen A G, Baldi P, Chauvin Y, Brunak S. The biology of eukaryotic promoter prediction: areview. Computers Chem,1999,23:191-207
    Perrot-Minnot M J, Lagnel J, Migeon A, Navajas M. Tracking paternal genes with DALPmarkers in a pseudoarrhenotokous reproductive system: biparental transmission buthaplodiploid-like inheritance in the mite Neoseiulus californicus. Heredity,2000,84:702-709
    Poczai P, Cernák I, Gorji A M, Nagy S, Taller J, Polgár Z. Development of intron targeting (IT)markers for potato and cross-species amplification in Solanum nigrum (Solanaceae). AmJ Bot,2010,97: e142-e145
    Poczai P, Varga I, Bell N E, Hyv nen J. Genetic diversity assessment of bittersweet (Solanumdulcamara, Solanaceae) germplasm using conserved DNA-derived polymorphism andintron-targeting markers. Ann Appl Biol,2011,159:141-153
    Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen J P T, Hyv nen J. Advances in plantgene-targeted and functional markers: a review. Plant Methods,2013,9:6
    Raji A A J, Fawole I, Gedil M, Dixon A G O. Genetic differentiation analysis of Africancassava (Manihot esculenta) landraces and elite germplasm using amplified fragmentlength polymorphism and sample sequence repeat markers. Annals of Applied Biology,2009,155,187-199
    Ren H Y, Zhu F R, Zheng C S, Sun X, Wang W L, Shu H R. Transcriptome analysis revealsgenes related to floral development in chrysanthemum responsive to photoperiods.Biochem Genet,2013,51:20-32
    Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O,Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D,Sherman B K, Yu G L. Arabidopsis Transcription Factors: genome-wide comparativeanalysis among eukaryotes. Science,2000,290:2105-2110
    Roehe P, Alston F H, Maliepaard C, Evans K M, Vrielink R, Dunemann F, Markussen T,Tartarini S, Brown L M, Ryder C, King G J. RFLP and RAPD markers linked to the rosyleaf curling aphid resistance gene (Sdl) in apple. Theor APPl Genet,1997,94:528-533
    Sang T, Crawford D J, Stuessy T F. Chloroplast DNA phylogeny, reticulate evolution, andbiogeography of Paeonia (Paeoniaceae). American Journal of Botany,1997a,84(8):1120-1136
    Sang T, Crawford D J, Stuessy T F. Documentation of reticulate evolution in peonies(Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA:implications for biogeography and concerted evolution. Proceedings of the NationalAcademy of Sciences of the United States of America,1995,92(15):6813-6817
    Sang T, Donoghue M J, Zhang D. Evolution of alcoholdehydrogenase genes in peonies(Paeonia): phylogenetic relationships of putative nonhybrids species. Molecular Biologyand Evolution,1997b,14(10):994-1007
    Sang T, Zhang D. Reconstructing hybrid speciation using sequence of low copy nuclear genes:hybrid origins of five Paeonia species based on Adh gene phylogenies. SystematicBotany,1999,24(2):148-163
    Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviewsin Biochemistry and Molecular Biology,2002,37(3):121-147
    Sawant S V, Singh P K, Gupta S K, Madnala R, Tuli R. Conserved nucleotide sequences inhighly expressed genes in plants. J Genet,1999,78:123-131
    Seibt K M, Wenke T, Wollrab C, Junghans H, Muders K, Dehmer K J, Diekmann K, SchmidtT. Development and application of SINE-based markers for genotyping of potatovarieties. Theor Appl Genet,2012,125:185-196
    Shahmuradov I A, Gammerman A J, Hancock J M, Bramley P M, Solovyev V V. PlantProm: adatabase of plant promoter sequences. Nucleic Acids Res,2003,31:114-117
    Shu Q Y, Wang L S, Wu J, Du H, Liu Z A, Ren H X, Zhang J J. Analysis of the formation offlower shapes in wild species and cultivars of tree peony using the MADS-box subfamilygene. Gene,2012,493:113-123
    Shu Q Y, Wischnitzki E, Liu Z A, Ren H X, Han X Y, Hao Q, Gao F F, Xu S X, Wang L S.Functional annotation of expressed sequence tags as a tool to understand the molecularmechanism controlling flower bud development in tree peony. Physiologia Plantarum,2009,135:436-449
    Smith J S C, Smith O S. The description and assessment of distances between inbred lines ofmaize: II. The utility of morphological, biochemical, and genetic descriptors and ascheme for testing of distinctiveness between inbred lines. Maydica,1989,34:151-161
    Somerville C, Somerville S. Plant functional genomics. Science,1999,285:380-383
    Song Y, Wang Z, Bo W, Ren Y, Zhang Z, Zhang D. Transcriptional profiling by cDNA-AFLPanalysis showed differential transcript abundance in response to water stress in Populushopeiensis. BMC Genomics,2012,13:286
    Suo Z L, Li W Y, Yao J, Zhang H J, Zhang Z M, Zhao D X. Applicability of leaf morphologyand intersimple sequence repeat markers in classification of tree peony (Peoniaceae)cultivars. HortScience,2005,40(2):329-334
    Suo Z L, Zhang C H, Zheng Y Q, He L X, Jin X B, Hou B X, Li J J. Revealing geneticdiversity of tree peonies at micro-evolution level with hyper-variable chloroplast markersand floral traits. Plant Cell Reports,2012,31:2199-2213
    Syed N H, Flavell A J. Sequence-specific amplification polymorphisms (SSAPs): amulti-locus approach for analyzing transposon insertions. Nat Protoc,2006,1:2746-2752
    Tank D C, Sang T. Phylogenetic utility of the glycerol-3-phosphate acyltransferase gene:evolution and implications in Paeonia (Paeoniaceae). Molecular Phylogenetics andEvolution,2001,19(3):421-429
    Thiel T, Michalek W, Varshney R K, Graner A. Exploiting EST databases for the developmentand characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).Theor Appl Genet,2003,106:411-422
    Troyer A F, Rocheford T R. Germplasm ownership: related corn inbreds. Crop Science,2002,42:3-11
    V li U, Brandstr m M, Johansson M, Ellegren H. Insertion-deletion polymorphisms (indels)as genetic markers in natural populations. BMC Genet,2008,9:8
    Van der Linden C G, Wouters D C E, Mihalka V, Kochieva E Z, Smulders M J M, Vosman B.Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet,2004,109:384-393
    Wang H Z, Lu J J, Hu X, Liu J J. Genetic variation and cultivar identification in Cymbidiumensifolium. Plant Syst Evol,2011,293:101-110
    Wang J X,Xia T,Zhang J M, Zhou S L. Isolation and characterization of fourteenmicrosatellites from a tree peony (Paeonia suffruticosa). Conservation Genetics,2009,10:1029-1031
    Wang L S, Hashimoto F, Shiraishi A, Shimizu K, Aoki N, Li J J, Sakata Y. Phenetics in treepeony species from China by flower pigment cluster analysis. Journal of Plant Research,2001,114:213-221
    Wang M, Berg R, Linden G, Vosman B. The utility of NBS profiling for plant systematics: afirst study in tuber-bearing Solanum species. Plant Syst Evol,2008,276:137-148
    Wang Q, Zhang B, Lu Q. Conserved region amplification polymorphism (CoRAP), a novelmarker technique for plant genotyping in Salvia miltiorrhiza. Plant Mol Biol Rep,2008,27:139-143
    Waugh R, McLean K, Flavell a J, Pearce S R, Kumar A, Thomas B B, Powell W. Geneticdistribution of Bare-1-like retrotransposable elements in the barley genome revealed bysequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet,1997,253:687-694
    Wei H, Fu Y, Arora R. Intron-flanking EST-PCR markers: from genetic marker developmentto gene structure analysis in Rhododendron. Theor Appl Genet,2005,111:1347-56
    Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ. Annotations andfunctional analyses of the rice WRKY gene superfamily reveal positive and negativeregulators of abscisic acid signaling in aleurone cells. Plant Physiol,2005,137:176-189
    Xiong F Q, Zhong R C, Han Z Q, Jiang J, He L Q, Zhuang W J, Tang R H. Start codontargeted polymorphism for evaluation of functional genetic variation and relationships incultivated peanut (Arachis hypogaea L.) genotypes. Mol Biol Rep,2011,38:3487-3494
    Yamanaka S, Suzuki E, Tanaka M, Takeda Y, Watanabe JA, Watanabe KN. Assessment ofcytochrome P450sequences offers a useful tool for determining genetic diversity inhigher plant species. Theor Appl Genet,2003,108:1-9
    Yang L, Jin G, Zhao X, Zheng Y, Xu Z, Wu W. PIP: a database of potential intronpolymorphism markers. Bioinformatics,2007,23:2174-2177
    Yuan J H, Cheng F Y, Zhou S L. Genetic structure of the tree peony (Paeonia rockii) and theQinling Mountains as a geographic barrier driving the fragmentation of a largepopulation. PLoS ONE,2012,7(4): e34955
    Yuan J H, Cheng F Y, Zhou S L. Hybrid origin of Paeonia×yananensis revealed bymicrosatellite markers, mhloroplast gene sequences and morphological characteristics.International Journal of Plant Science,2010,171(4):409-420
    Zhang F, Ge Y Y, Wang W Y, Shen X L, Liu X J, Liu J X, Tian D Q, Yu X Y. Genetic diversityand population structure of cultivated bromeliad accessions assessed by SRAP markers.Scientia Horticulturae,2012,141:1-6
    Zhang G Q, Qi J M, Zhang X C, Fnag P P, Su J G, Tao A F, Lan T, Wu W R, Liu A M. Agenetic linkage map of Kenaf (Hibiscus cannabinus L.) based on SRAP, ISSR andRAPD markers. Agricultural Sciences in China,2011,10(9):1346-1353
    Zhang J J, Shu Q Y, Liu Z A, Ren H X, Wang L S, Keyser E D. Two EST-derived markersystems for cultivar identification in tree peony. Plant Cell Rep,2012,31(2):299-310
    Zhang J M, Liu J, Sun H L, Yu J, Wang J X, Zhou S L. Nuclear and chloroplast SSR markersin Paeonia delavayi (Paeoniaceae) and cross-species amplification in P. ludlowii.American Journal of Botany,2011,98(12): e346-e348
    Zhang J M, Wang J X, Xia T, Zhou S L. DNA barcoding: species delimitation in tree peonies.Science in China Series C: Life Sciences,2009,52(6):568-578
    Zhu Q-H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C. A diverse set ofmicroRNAs and microRNA-like small RNAs in developing rice grains. Genome Res,2008,18:1456-1465

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700