用户名: 密码: 验证码:
甜高粱抗旱耐盐碱种质资源筛选及其离体培养再生能力评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜高粱具有生物学产量高,抗逆性强等生物学特性,使之成为最具潜力的生物质能源作物之一。筛选和培育适宜边际土壤种植的抗旱耐盐碱甜高粱品种对于发展燃料乙醇产业具有重要意义。本研究选取29份不同基因型甜高粱和2份粒用高粱为试验材料,在吉林省西部、中部三个不同生境下[干旱胁迫(E1)、干旱与盐碱胁迫共存(E2)、正常(E3)],根据甜高粱生物鲜重、生物干重、茎汁糖锤度及理论酒精产量等能源性状在不同生境下的表现,筛选抗旱耐盐碱基因型甜高粱。通过AMMI模型及双标图,分析了不同基因型甜高粱的能源性状在不同生境下的稳定性及适应性。研究了不同耐性基因型甜高粱在不同时期的生理生化指标变化,以期从多方面揭示甜高粱抗旱、耐盐碱机制,丰富甜高粱抗逆生理内容,为抗旱、耐盐碱品种选择和旱地、盐碱地甜高粱栽培提供理论依据。同时,以甜高粱幼穗作为外植体,对不同基因型甜高粱离体培养再生能力进行评价,研究了基因型和激素配比对愈伤组织的诱导和分化再生的影响,为进一步建立甜高梁高效遗传转化体系奠定基础。取得的主要研究结果如下:
     1.甜高粱抗旱耐盐碱种质资源筛选
     干旱和苏打盐碱胁迫共存下,甜高粱出苗受到抑制,平均出苗率为75.1%。甜高粱出苗率基因型间存在差异,表明不同基因型甜高粱的苗期耐盐碱性有一定差异。其中九甜4号具有较强的耐受性,耐性最差的为MN-3020、MN-2745。
     对三个生境下甜高粱的生物鲜重、生物干重、茎汁糖锤度和理论酒精产量等能源性状进行方差分析和多重比较分析,结果表明,基因型、环境和基因型与环境互作间均有显著差异。
     不同基因型甜高粱生物鲜重在E1生境下变异幅度为23.3t·hm~(-2)–101.9t·hm~(-2),变异系数为17.43%;E2生境下为10.4t·hm~(-2)-54.8t·hm~(-2),变异系数为49.90%;E3生境下为20.8t·hm~(-2)-101.2t·hm~(-2),变异系数为13.93%。生物干重在E1生境下变异幅度为5.7t·hm~(-2)-23.8t·hm~(-2),变异系数为9.12%;E2生境下为3.0t·hm~(-2)-13.4t·hm~(-2),变异系数为11.71%;E3生境下为3.5t·hm~(-2)-23.8t·hm~(-2),变异系数为11.16%。茎汁糖锤度在E1生境下变异幅度为12.9%-22.8%,变异系数11.84%;E2生境下为6.4%-19.1%,变异系数为17.50%;E3生境下为8.2%-18.4%,变异系数为9.18%;理论酒精产量在E1生境下变异幅度为1771L·hm~(-2)-9608L·hm~(-2),变异系数为11.09%。E2生境下为577L·hm~(-2)-5454L·hm~(-2),变异系数为13.36%。E3生境下为911L·hm~(-2)-9154L·hm~(-2),变异系数为9.02%。结果表明,不同基因型甜高粱生物鲜重、生物干重、茎汁糖锤度及理论酒精产量在同一生境下表现均不同。
     在三个不同生境下,生物鲜重在E3表现最好,平均生物鲜重达55.8t·hm~(-2)。在E1表现次之。生物鲜重在E2生境下表现最差,仅为28.1t·hm~(-2)。生物干重在E3、E1表现最好,平均生物干重分别达13.6t·hm~(-2)和13.2t·hm~(-2)。生物干重在E2生境下表现最差,仅为7.2t·hm~(-2)。茎汁糖锤度在E1表现最好,平均茎汁糖锤度达18.2%。在E3和E2表现次之,分别为15.7%和15.2%。理论酒精产量在E3和E1最高,平均理论酒精产量达4864L·hm~(-2)和4854L·hm~(-2)。在E2生境下最低,仅为2426L·hm~(-2)。说明不同生境对生物鲜重、生物干重、茎干糖锤度和理论酒精产量等能源性状均有影响。
     通过AMMI模型及双标图,分析了不同基因型甜高粱的能源性状在不同生境下的稳定性及适应性。根据高产、高糖、稳定性高的筛选标准,结合不同基因型甜高粱的出苗率,与其它供试基因型相比,九甜杂3、散穗甜生物产量最高,茎汁糖锤度较高,在半干旱、盐碱地的酒精理论值分别为5454L·hm~(-2)和4605L·hm~(-2);半干旱、非盐碱地酒精理论值可达到9608L·hm~(-2)和6961L·hm~(-2)。九甜杂3、散穗甜符合生物能源优良品种的要求,可作为生物能源型品种在吉林省西部半干旱的边际土壤上推广种植。九甜杂4出苗率高,生物产量和糖锤度均较高,但受环境影响较大,适宜在非盐碱地土壤上种植。九甜杂4在半干旱地区酒精理论值最高达到7761L·hm~(-2)。
     2.甜高粱抗旱耐盐碱生理生化响应研究
     选用4个抗旱、耐盐碱能力不同基因型的甜高粱(九甜杂3、散穗甜、MN-3018和MN-3382)为材料,测定甜高粱的在3个不同生境下苗期、拔节期、开花期和成熟期的生理指标。SOD、POD、CAT活性、叶片细胞膜透性相对电解质渗出率、脯氨酸和MDA含量在E3生境下最低,其次为E1,在E2生境下最高。4个基因型间各生理指标在不同生境下存在明显差异,九甜杂3和散穗甜升高或降低的幅度均大于MN-3018和MN-3382。以上试验结果表明,干旱、盐碱胁迫对质膜严重破坏,叶片细胞膜透性相对电解质渗出率增加,大量有毒物质产生,MDA含量升高。甜高粱通过提高体内抗氧化酶SOD、POD、CAT酶活和脯氨酸含量来调节对干旱、苏打盐碱逆境的适应性。不同基因型间耐受差异明显,通过生理指标的升高或者降低可判断基因型的抗性强弱。
     测定4个基因型的甜高粱在不同生境下茎秆的可溶性总糖、蔗糖、果糖和葡萄糖含量。结果表明,不同基因型间各糖分变化差异显著,干旱、盐碱胁迫对甜高粱茎秆的可溶性总糖、蔗糖、果糖和葡萄糖均有影响。
     3.甜高粱离体培养再生能力评价
     在设置的4种培养基上29个基因型甜高粱被诱导出愈伤组织,16个基因型甜高粱可分化再生出植株,不同基因型间愈伤组织诱导率及分化率有明显差异。不同激素浓度配比对愈伤组织诱导的影响有较大差别,且基因型和不同浓度配比之间存在相互作用。Y3培养基(激素配比为2,4-D3mg/L+KT0.5mg/L)诱导效果最好,其平均诱导率达40.1%。褐化现象贯穿着整个外植体成愈过程,不同基因型甜高粱褐化程度不同。综合出愈率、分化能力、褐化程度等几方面的表现,本试验认为基因型MN-3020、1788、九甜1号、吉甜3号和685-525的幼穗对组织培养的反应相对较好,可作为基因转化的首选材料。
Sweet sorghum(Sorghum bicolor L.) is characterized by drought and floodresistance, salt tolerance and high efficiency of biomass accumulation. It is consideredto be one of the most promising bio-energy crops. Choosing drought-resistant andsalt-enduring varieties is the most economic, safe and effective method in improvingthe products and qualities of sweet sorghum. The experimental material comprising oftwenty-nine sweet sorghum genotypes(cultivars and experimental lines) and two grainsorghum. Screening of sweet sorghum germplasm tolerant to drought and saline-alkalistress under different three inhabits in west Jilin of China. This study elucidated thechanges of physiological and biochemical indices under drought and saline-alkalistress in sweet sorghum systematically and revealed that the drought-resistant andsalt-enduring mechanisms of the sorghum, so it could provide the theoretical basis inselecting the drought-resistant and salt-enduring varieties and planting on drought andsaline-alkali soil. Thirty-one diverse genotypes of sweet sorghum were evaluated anddetermined their callus induction and plant regeneration capabilities using immatureinflorescences as explants. This study has identified the sweet sorghum genotypeswith the best potential for callus production and whole-plant regeneration in culture.This information is essential for successful genetic transformation of sweet sorghum.The results are as follows:
     1. Screening of sweet sorghum germplasm tolerant to drought and saline-alkali stress.
     The sweet sorghum emergence averaged75.1%under saline-alkali stress. Thesignificant difference in emergence of different sweet sorghum genotypes existed.JiuTian4sweet sorghum showed the greatest emergence, while MN-3020andMN-2745had the lowest.
     Variance analysis and multiple comparisons showed significant difference in fresh biomass yields, dry biomass yields, Brix degree of juice, theoretical ethanol yields ofthe31sweet sorghum genotypes grown in three inhabits.
     The variability of fresh biomass yields was from23.3t·hm~(-2)to101.9t·hm~(-2)in E1inhabit, from10.4t·hm~(-2)to54.8t·hm~(-2)in E2inhabit and from20.8t·hm~(-2)to101.2t·hm~(-2)in E3inhabit. The coefficient of variation was17.43%,49.90%,13.93%,respectively. The variability of dry biomass yields was from5.7t·hm~(-2)to23.8t·hm~(-2)in E1inhabit, from3.0t·hm~(-2)to13.4t·hm~(-2)in E2inhabit and from3.5t·hm~(-2)to23.8t·hm~(-2)in E3inhabit. The coefficient of variation was9.12%,11.71%,11.16%,respectively. The variability of Brix degree of juice was from12.9%to22.8%in E1inhabit, from6.4%to19.1%in E2inhabit and from8.2%to18.4%in E3inhabit. Thecoefficient of variation was11.84%,17.50%,9.18%, respectively. The variability oftheoretical ethanol yields was from1771L·hm~(-2)to9608L·hm~(-2)in E1inhabit, from577L·hm~(-2)to5454L·hm~(-2)in E2inhabit, from911L·hm~(-2)to9154L·hm~(-2)in E3inhabit. The coefficient of variation was11.09%,13.36%,9.02%, respectively. Theresults showed fresh biomass yields, dry biomass yields, Brix degree of juice,theoretical ethanol yields of each sweet sorghum genotypes were different in the sameinhabit.
     Fresh biomass yields showed the highest yields under E3(averaged55.8t·hm~(-2))and showed the lowest yields under E2(averaged28.1t·hm~(-2)). Dry biomass yieldsshowed the highest yields under E3(averaged13.6t·hm~(-2)) and was similar underE1(averaged13.2t·hm~(-2)).The lowest yields (averaged7.2t·hm~(-2)) showed under E2.Brix degree of juice showed the highest under E1(averaged18.2%). E3was similar toE1(averaged15.7%,15.2%, respectively). Theoretical ethanol yields showed thehighest yields under E3(averaged4864L·hm~(-2)) and was similar to E1(averaged4854L·hm~(-2)). E2showed the lowest yields (averaged2426L·hm~(-2)). Fresh biomass yields,dry biomass yields, Brix degree of juice, theoretical ethanol yields of the31sweetsorghum genotypes were different in three inhabits.
     The energy traits of31sweet sorghum genotypes were analyzed with AMMImodel and biplot using data from three inhabits, and then the stability and adaptabilityof different genotypes were evaluated. According to the high-yield, high-sugar, high stability screening criteria, genotypes of JiuTianⅢand SanSuiTian were suitable forplanting in saline-alkali soil. Theoretical ethanol yields were5454L·hm~(-2)and4605L·hm~(-2), respectively under saline-alkali stress. The theoretical ethanol yields ofJiuTian3was7761L·hm~(-2)under drought stress.
     2. Physiological and Biochemical characteristic responses of drought andsaline-alkali stress resistance in different sweet sorghum genotypes.
     Four different genotypes, JiuTianⅢ, SanSuiTian, MN-3018and MN-3382, ofsweet sorghum were used as materials to assayed the comparison of physiologicalcharacteristic in various growth stages. The rate of relative electrolyte, content ofMDA, proline and activity of SOD, POD, CAT showed the lowest under E3andshowed the highest under E2. And physiological characteristic showed significantdifferences among the four sweet sorghum genotypes, the change of JiuTianⅢandSanSuiTian were higher than MN-3018and MN-3382. The change of physiologicalcharacteristic showed that plasma membrane serious damaged under drought,saline-alkali stress. The rate of relative electrolyte, content of MDA, proline andactivity of SOD, POD, CAT in leaves were all increased in order to adapt to stress.The change of physiological characteristic may be the indexes of screening sweetsorghum genotypes for drought, saline-alkali tolerance.
     Saline-alkali stress affects the total soluble sugar, sucrose, fructose and glucose instalks of sweet sorghum. There were significant differences in different genotypes.
     3. Evaluation of regeneration potential of sweet sorghum genotypes.
     Twenty-nine of31genotypes of sweet sorghum were able to form calli and16genotypes were able to regenerate whole plants. Variance analysis showed significantdifferences in callus induction and plant regeneration frequency among differentgenotypes. Variance analysis showed significant difference in callus inductionfrequency among different media, indicating that2,4-D and KT concentrationsaffected callus induction frequency. The highest callus induction rate was obtained onY3medium [MS medium+3mg l-12,4-D+0.5mg l-1KT] with an average inductionrate of40.1%. The amount of phenolic compounds produced varied widely among thedifferent genotypes. The sweet sorghum genotypes MN-3020,1788,JiuTianⅠ,JiTian Ⅲ, and685-525showed the best callus induction and regeneration capabilities inthese conditions.
引文
[1]彭珂珊,徐宣斌,胡晋辉,等.干旱是西部地区生态系统受损的关键因素[J].石家庄经济学院学报,2002,25(3):257-262.
    [2]Desrosiers M F. Cellular responses to endogenous electrochemical gradients inmorphological development[J]. Advances in Space Research,1996,17(6):27-33.
    [3]Boyer J S. Plant productivity and environment[J]. Science,1982,218(4571):443-448.
    [4]彭立新,李德全,束怀瑞.园艺植物水分胁迫生理及耐旱机制研究进展[J].西北植物学报,2002,22(5):1275-1281.
    [5]吉林省土壤肥料总站.吉林土壤[M].北京:中国农业出版社,1998.
    [6]王志春,杨福,陈渊,等.苏打盐碱胁迫下水稻体内的Na+, K+响应[J].生态环境,2008,17(3):1198-1203.
    [7]杨建锋,邓伟,章光新.田块尺度苏打盐溃土盐化和碱化空间变异特征[J].土壤学报,2006,43(3):500-504.
    [8]买买提,阿扎提,吐尔逊,等.土壤盐渍化及其治理措施研究综述[J].环境科学与管理,2008,33(5):29-33.
    [9]路浩,王海泽.盐碱土治理利用研究进展[J].现代化农业,2004,8(11).
    [10]Angus J F, Gault R R, Peoples M B, et al. Soil water extraction by drylandcrops, annual pastures, and lucerne in south-eastern Australia [J]. Crop andPasture Science,2001,52(2):183-192.
    [11]Clarke C J, George R J, Bell R W, et al. Major faults and the development ofdryland salinity in the western wheat belt of Western Australia [J]. Hydrologyand Earth System Sciences,1998,2(1):77-91.
    [12]牛东玲,王启基.盐碱地治理研究进展[J].土壤通报,2002,33(6):499-455.
    [13]王遵亲,祝寿泉,俞仁培.中国盐渍土[M].北京:科学出版社,1993:250-311.
    [14]武维华.植物生理学(第二版)[M].北京:科学出版社,2008:449-451.
    [15]石德成,殷丽娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报,1993,35(2):144-149.
    [16]Munns R. Physiological processes limiting plant growth in saline soils: somedogmas and hypotheses [J]. Plant, Cell&Environment,1993,16(1):15-24.
    [17]Rehman S, Harris P J C, Bourne W F, et al. The effect of sodium chloride ongermination and the potassium and calcium contents of Acacia seeds [J]. SeedScience and Technology,1997,25(1):45-57.
    [18]Ashraf M, Ozturk M, Athar H R. Salinity and water stress improving cropefficiency. Springer-Verlag New York, LLC,2006:19-23.
    [19]郎志红.盐碱胁迫对植物种子萌发和幼苗生长的影响[D].兰州:兰州交通大学,2008.
    [20]陈忠林,张学勇,张绵等.碱胁迫对结缕草、高羊茅种子萌发及其胚胎生长的影响[J].种子,2010,29(12):27-30.
    [21]Munns R, Termaat A. Whole-plant responses to salinity[J]. Functional PlantBiology,1986,13(1):143-160.
    [22]石德成,赵可夫.复杂盐碱生态条件的人工模拟及其对羊草生长的影响[J].草业学报,1998,7(1):36-41.
    [23]颜宏,赵伟,盛艳敏,等.碱胁迫对羊草和向日葵的影响[J].应用生态学报,2005,16(8):1497-1501.
    [24]Ramoliya P J, Pandey A N. Effect of salinization of soil on emergence, growthand survival of seedlings of Cordia rothii[J]. Forest Ecology and Management,2003,176(1):185-194.
    [25]Debez A, Hamed K B, Grignon C, et al. Salinity effects on germination, growth,and seed production of the halophyte Cakile maritime [J]. Plant and soil,2004,262(1-2):179-189.
    [26]袁琳,克热木,伊力,等. NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005,29(6):985-991.
    [27]Cramer G R, Bowman D C. Short-term leaf elongation kinetics of maize inresponse to salinity are independent of the root [J]. Plant physiology,1991,95(3):965-967.
    [28]Munns R. Comparative physiology of salt and water stress [J]. Plant, Cell&Environment,2002,25(2):239-250.
    [29]Wang H W, Su J H, Shen Y G. Difference in response of photosynthesis tobisulfite between two wheat genotypes[J]. Journal of plant physiology andMolecular Biology,2003,29(1):27-32.
    [30]Rao G G, Rao G R. Pigment composition and chlorophyllase activity in pigeonpea (Cajanus indicus Spreng) and Gingelley (Sesamum indicum L.) underNaCl salinity[J]. Indian J. Exp. Biol,1981,19(2):768-770.
    [31]Carter D R, Cheeseman J M. The effects of external NaCl on thylakoid stackingin lettuce plants[J]. Plant, Cell&Environment,1993,16(2):215-222.
    [32]尹红娟.虎尾草对盐碱混合胁迫的生理响应特点[D].长春:东北师范大学,2008.
    [33]潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004:284-300.
    [34]Jahnke L S, White A L. Long-term hyposaline and hypersaline stresses producedistinct antioxidant responses in the marine alga Dunaliella tertiolecta[J].Journal of plant physiology,2003,160(10):1193-1202.
    [35]张正斌,王德轩.小麦抗旱生态育种[M].西安:陕西人民教育出版社,1992:3-12.
    [36]Roustai M, Tahir M, Amiri A. The role of coleoptile length and crown nodedepth in cold and drought tolerance of wheat [C].SLINKARD (ed.). Proceedingsof the9th International Wheat Genetics Symposium. Saskatchewan, Canada:University Extension Press.1998:77-79.
    [37]陆静梅,李建东,张洪芹,等.吉林西部草原区7种耐盐碱双子叶植物结构研究[J].应用生态学报,1996,7(3):283-286.
    [38]Steudle E. Water uptake by roots: effect of water deficit [J]. Journal ofExperimental Botany,2000,51(350):1531-1542.
    [39]朱宇旌,张勇,胡自治,等.小花碱茅根适应盐胁迫的显微结构研究[J].中国草地,2001,23(1):37-40.
    [40]张丽平,王秀峰,史庆华,等.黄瓜幼苗对氯化钠和碳酸氢钠胁迫的生理响应差异[J].应用生态学报,2008,19(8):1854-1859.
    [41]Shalata A, Neumann P M. Exogenous ascorbic acid (vitamin C) increasesresistance to salt stress and reduces lipid peroxidation [J]. Journal ofExperimental Botany,2001,52(364):2207-2211.
    [42]刘爱荣,张远兵,陈登科.盐胁迫对盐芥(Thel lungiella halophila)生长和抗氧化酶活性的影响[J].植物研究,2006,26(2):216-221.
    [43]Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current opinion inplant biology,2003,6(5):441-445.
    [44]Michelet B, Boutry M. The Plasma Membrane H+-ATPase (A HighlyRegulated Enzyme with Multiple Physiological Functions)[J]. PlantPhysiology,1995,108(1):1-6.
    [45]Khatkar D, Kuhad M S. Short-term salinity induced changes in two wheatcultivars at different growth stages[J]. Biologia Plantarum,2000,43(4):629-632.
    [46]Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in solublecarbohydrate content in wheat seedlings[J]. Crop Science,2000,40(2):482-487.
    [47]Wang Y, Nii N. Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration inAmaranthus tricolor leaves during salt stress[J]. Journal of HorticulturalScience and Biotechnology,2000,75(6):623-627.
    [48]王月福,于振文,李尚霞,等.不同施肥水平对不同品种小麦籽粒蛋白质和地上器官游离氨基酸含量的影响[J].西北植物学报,2003,23(3):417-421.
    [49]张海燕,范哲峰.运城盐湖十种耐盐植物体内无机及有机溶质含量的比较研究[J].生态学报,2002,22(3):352-358.
    [50]Singh S K, Sharma H C, Goswami A M, et al. In vitro growth and leafcomposition of grapevine cultivars as affected by sodium chloride[J]. Biologiaplantarum,2000,43(2):283-286.
    [51]Khavari-Nejad R A, Mostofi Y. Effects of NaCl on photosynthetic pigments,saccharides, and chloroplast ultrastructure in leaves of tomato cultivars[J].Photosynthetica,1998,35(1):151-154.
    [52]陈立松,刘星辉.水分胁迫对荔枝叶片糖代谢的影响及其与抗早性的关系[J].热带作物学报,1999,20(2):31-36.
    [53]卢庆善.高粱学[M].北京:中国农业出版社,1999.
    [54]黎大爵.亟待开发的甜高梁酒精燃料[J].中国农业科技导报,2003,5(4):48-51.
    [55]Vermerris W. Survey of genomics approaches to improve bioenergy traits inmaize, sorghum and sugarcanefree access[J]. Journal of integrative plantbiology,2011,53(2):105-119.
    [56]卢庆善.甜高粱[M].北京:中国农业科学技术出版社,2008.
    [57]张福耀,赵威军,平俊爱.高能作物——甜高梁[J].中国农业科技导报,2006,8(1):14-l7.
    [58]王建伟.甜高粱的综合开发利用[J].农业经济,2007,7:86.
    [59]姜慧,胡瑞芳,邹剑秋,等.生物质能源甜高粱的研究进展[J].黑龙江农业科学,2012,2:139-141.
    [60]赵立欣,张艳丽,沈丰菊.能源作物甜高粱及其可供应性研究[J].可再生能源,2005,4:37-40.
    [61]沈飞,刘荣厚.甜高粱糖分积累规律及其酒精发酵的研究[J].农机化研究,2007,2:149-152.
    [62]国家发展和改革委员会.可再生能源中长期发展规[J].可再生能源,2007,25(5).
    [63]Zhan X, Wang D, Tuinstra M R, et al. Ethanol and lactic acid production asaffected by sorghum genotype and location[J]. Industrial Crops and Products,2003,18(3):245-255.
    [64]Chum H L, Overend R P. Biomass and renewable fuels[J]. Fuel processingtechnology,2001,71(1):187-195.
    [65]Gnansounou E, Dauriat A, Wyman C E. Refining sweet sorghum to ethanol andsugar: economic trade-offs in the context of North China[J]. BioresourceTechnology,2005,96(9):985-1002.
    [66]黎大爵,廖馥荪.甜高粱及其利用[M].北京:科学出版社,1992.
    [67]郭平银,齐士军,徐宪斌,等.能源植物甜高梁的研究利用现状及展望[J].山东农业科学,2007(3):125-128.
    [68]G Grassi Large. Bioethanol project from sweet sorghum in China and Italy[J].Industry and Climate Protection,2002,(9):17-21.
    [69]王同朝,郭红艳,李新美,等.甜高梁综合开发利用现状与前景[J].河南农业科学,2004,8:29-31.
    [70]刘公社,周庆源,宋松泉,等.能源植物甜高粱种质资源和分子生物学研究进展[J].植物学报,2009,44(3):253-261.
    [71]Lingle S E, Dunlap J R. Sucrose metabolism in netted muskmelon fruit duringdevelopment[J]. Plant physiology,1987,84(2):386-389.
    [72]陆水怡,李南珠,邹剑秋,等.甜高粱的生物学特性、研究现状与开发应用前景[J].江苏农业科学,2009,(3):11-13.
    [73]曹文伯.我国甜高粱种质资源鉴定及利用概况[J].植物遗传资源科学,2001,2(1):58-62.
    [74]曹文伯,李翠珍,吕凤金,等.全国高粱品种资源目录(1991—1995)[M].北京:中国农业出版社,1998.
    [75]李翠珍,黎裕.全国高粱品种资源目录(1996—2000)[M].北京:中国农业出版社,2000.
    [76]陈冰嬬,李继洪,王阳,等.高粱(Sorghum bicolor (L.) Moench)种质资源研究进展[J].西北农林科技大学学报(自然科学版),2013,1:013.
    [77]王继师,刘祖昕,樊帆,等.24个甜高粱品种主要农艺性状与品质性状遗传多样性分析[J].中国农业大学学报,2012,17(6):83-91.
    [78]赵香娜,李桂英,刘洋,等.国内外甜高粱种质资源主要性状遗传多样性及相关性分析[J].植物遗传资源学报,2008,9(3):302-307.
    [79]冯国郡,李宏琪,叶凯,等.甜高粱种质资源在新疆的多样性表现及聚类分析[J].植物遗传资源学报,2012,13(3):398-405.
    [80]王黎明,焦少杰,姜艳喜,等.142份甜高粱品种的分子身份证构建[J].作物学报,2011,37(11):1975-1983.
    [81]Ali M L, Rajewski J F, Baenziger P S, et al. Assessment of genetic diversityand relationship among a collection of US sweet sorghum germplasm by SSRmarkers[J]. Molecular Breeding,2008,21(4):497-509.
    [82]李振武,支萍.甜高梁主要性状的遗传参数分析[J].作物学报,1992,18(3):213-221.
    [83]王海凤,新楠,吴仙花,等.甜高梁育种的现状,问题与对策[J].作物杂志,2013(2):23-26.
    [84]张丽敏,刘智全,陈冰嬬,等.我国能源甜高粱育种现状及应用前景[J].中国农业大学学报,2012,17(6):76-82.
    [85]柴媛媛,史团省,谷卫彬.种子萌发期甜高梁对盐胁迫的响应及其耐盐性综合评价分析[J].种子,2008,27(2):43-47.
    [86]高凤菊,曹鹏鹏,王乐政,等.盐度对不同类型甜高粱品种萌发的影响[J].山东农业科学,2011,11:44-47.
    [87]戴凌燕,张立军,阮燕晔,等.盐碱胁迫下不同品种甜高粱幼苗生理特性变化及耐性评价[J].干旱地区农业研究,2012,30(3):77-83.
    [88]王秀玲,程序,谢光辉,等. NaCl胁迫对甜高粱发芽期生理生化特性的影响[J].生态环境学报,2010,19(10):2285-2290.
    [89]吕金印,赵晖,冯万健. NaCl胁迫对甜高梁幼苗保护酶活性等生理特性的影响[J].干旱地区农业研究,2008,26(6):134-139.
    [90]姜慧,黄健,张云鹤,等.盐胁迫对甜高粱幼苗抗氧化酶活性的影响[J].沈阳师范大学学报(自然科学版),2012,30(2):289-292.
    [91]吴发远,葛江丽. NaCl胁迫对甜高粱幼苗抗性酶活性的影响[J].中国农学通报,2009,25(6):136-139.
    [92]Chai Y Y, Jiang C D, Shi L, et al. Effects of exogenous spermine on sweetsorghum during germination under salinity[J]. Biologia Plantarum,2010,54(1):145-148.
    [93]de Lacerda C F, Cambraia J, Oliva M A, et al. Changes in growth and in soluteconcentrations in sorghum leaves and roots during salt stress recovery[J].Environmental and Experimental Botany,2005,54(1):69-76.
    [94]白文斌,张福跃,焦晓燕,等.中国高粱产业工程技术研究的定位思考[J].中国农学通报,2013,29(11):107-110.
    [95]Netondo G W, Onyango J C, Beck E. Sorghum and salinity: I. response ofgrowth, water relations, and ion accumulation to NaCI salinity[J]. CropScience,2004,44(3):797-805.
    [96]何磊,陆兆华,管博,等.盐碱胁迫对甜高粱种子萌发及幼苗生长的影响[J].2012,40(3):67-71.
    [97]张春霞,边鸣镝,于慧,等.碳酸钠胁迫对甜高粱种子萌发及幼苗期生理特性的影响[J].2011,33(2):134-138,143.
    [98]籍贵苏,杜瑞恒,刘国庆,等.高粱耐盐性评价方法研究及耐盐碱资源的筛选[J].植物遗传资源学报,2013,14(1).
    [99]Santiveri F, Royo C, Romagosa I. Patterns of grain filling of spring and winterhexaploid triticales[J]. European journal of agronomy,2002,16(3):219-230.
    [100]施万喜.利用AMMI模型分析陇东旱地冬小麦新品种(系)丰产稳产性[J].干旱地区农业研究,2009,27(3):37-43.
    [101]柴守玺,常磊,杨蕊菊,等.小黑麦基因型与环境互作效应及产量稳定性分析[J].核农学报,2011,25(1):155-161.
    [102]傅玉狮,梁一池,吴火灶,等.马尾松种源基因型×环境互作及其稳定性的研究[J].福建林业科技,1993,20(2):1-6.
    [103]Mandel,J. Journal of Research of the Bureau of Standards[J]. MathematicalSciences,1969,73:309-328.
    [104]Gauch Jr H G. Model selection and validation for yield trials withinteraction[J]. Biometrics,1988:705-715.
    [105]Gauch Jr H G. Statistical analysis of regional yield trials: AMMI analysis offactorial designs [M]. Elsevier Science Publishers,1992.
    [106]Gauch HG,R.W.Zobel. In: Genotype-Environment Interaction,(eds.)Kang, M.S.and Gauch.H.G.Jr., CRC Press, Boca Raton.Florida.1995.
    [107]Piepho. H.P. Theoretical and Applied Genetics,1995,90:438-443.
    [108]Zobel.R.W., D.H.Wallace. In:Handbook of Plant and Crop Physiology,(eds.Pessarak,M.). Maecel Dekker.New York,1994:849-862.
    [109]李广昌.福建省龙岩市杂交早稻产量相关性状的基因型与环境变异[J].中国农学通报,2009,25(09):58-64.
    [110]刘文江,李浩杰,汪旭东,等.用AMMI模型分析杂交水稻基本性状的稳定性[J].作物学报,2002,28(4):569-573.
    [111]穆培源,庄丽,张吉贞,等.应用AMMI模型分析春小麦区试数据的研究[J].新疆农业科学,2003,40(1):1-5.
    [112]吴渝生,李本逊,顾红波,等.甜玉米品种稳定性的AAMI模型分析[J].华中农业大学学报,2003,22(1):4-8.
    [113]李本贵,阎俊,何中虎,等.用AMMI模型分析作物区域试验中的地点鉴别力[J].作物学报,2004,30(6):593-596.
    [114]岳美琪.甜高粱主要农艺性状和茎秆能源组分的基因型与环境互作分析
    [D].北京:中国农业科学院,2010.
    [115]MacKinnon C, Gunderson G, Nabors M W. Plant regeneration by somaticembryogenesis from callus cultures of sweet sorghum[J]. Plant Cell Reports,1986,5(5):349-351.
    [116]赵利铭,刘树君,宋松泉.甜高粱再生体系的建立[J].植物学通报,2008,25(4):465-468.
    [117]刘宣雨,刘树君,宋松泉.建立甜高粱(Sorghum bicolor)高频,高效再生体系的研究[J].中国农业科学,2010,43(23):4963-4969.
    [118]徐丹,陈立余,徐子勤.甜高梁离体再生体系的建立和组织结构变化的观察[J].植物生理学通讯,2009(008):771-774.
    [119]Zhu H, Jeoung J M, Liang G H, et al. Biolistic transformation of sorghumusing a rice chitinase gene [Sorghum bicolor (L.) Moench-Oryza sativa L.][J].Journal of Genetics&Breeding,1998,52:243-52.
    [120]Dunstan D I, Short K C, Dhaliwal H, et al. Further studies on plantletproduction from cultured tissues of Sorghum bicolor[J]. Protoplasma,1979,101(4):355-361.
    [121]Elkonin L A, Lopushanskaya R F, Pakhomova N V. Initiation andmaintenance of friable, embryogenic callus of sorghum (Sorghum bicolor(L.) Moench) by amino acids[J]. Maydica,1995,40(2):153-157.
    [122]Ma H, Gu M, Liang G H. Plant regeneration from cultured immature embryosof Sorghum bicolor (L.) Moench[J]. Theoretical and Applied Genetics,1987,73(3):389-394.
    [123]Sairam R V, Seetharama N, Shyamala T, et al. Plant regeneration fromscutella of immature embryos of diverse sorghum genotypes[J]. CerealResearch Communications,2000,28(3):279-285.
    [124]Zhao Z, Cai T, Tagliani L, et al. Agrobacterium-mediated sorghumtransformation[J]. Plant Molecular Biology,2000,44(6):789-798.
    [125]Hagio T. Adventitious shoot regeneration from immature embryos ofsorghum[J]. Plant cell, Tissue and organ culture,2002,68(1):65-72.
    [126]Kumar V, Campbell L A M, Rathore K S. Rapid recovery-and characterizationof transformants following Agrobacterium-mediated T-DNA transfer tosorghum[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2011,104(2):137-146.
    [127]Brettell R I S, Wernicke W, Thomas E. Embryogenesis from culturedimmature inflorescences of Sorghum bicolor[J]. Protoplasma,1980,104(1-2):141-148.
    [128]Wen F S, Sorensen E L, Barnett F L, et al. Callus induction and plantregeneration from anther and inflorescence culture of Sorghum[J]. Euphytica,1991,52(3):177-181.
    [129]Kaeppler H F, Pedersen J F. Evaluation of41elite and exotic inbred Sorghumgenotypes for high quality callus production[J]. Plant cell, tissue and organculture,1997,48(1):71-75.
    [130]Mani N S, Pola S R. Multiple Shoot Induction from Immature Inflorescencein Sorghum[J]. Cytologia,2003,68(2):199-204.
    [131]Jogeswar G, Ranadheer D, Anjaiah V, et al.High frequency somaticembryogenesis and regeneration in different genotypes of Sorghumbicolor(L.) Moench from immature inflorescence explants[J]. In Vitro CellDev. Biol.-Plant,2007,43:159-166.
    [132]Nahdi S,Wet JMJ.In vitro regeneration of Sorghum bicolor lines from shootapexes[J].International sorghum and millets newsletter(USA),1995.
    [133]Sai N K, Visarada K, Lakshmi Y A, et al. In vitro culture methods in sorghumwith shoot tip as the explant material[J]. Plant cell reports,2006,25(3):174-182.
    [134]Cai T, Daly B, Butler L. Callus induction and plant regeneration from shootportions of mature embryos of high tannin sorghums[J]. Plant cell, tissue andorgan culture,1987,9(3):245-252.
    [135]Wernicke W, Brettell R. Somatic embryogenesis from Sorghum bicolorleaves[J]. Nature,1980,287:138-139.
    [136]Sairam R V, Seetharama N, Devi P S, et al. Culture and regeneration ofmesophyll-derived protoplasts of sorghum [Sorghum bicolor (L.) Moench][J]. Plant Cell Reports,1999,18(12):972-977.
    [137]Gupta S, Khanna V K, Singh R, et al. Strategies for overcoming genotypiclimitations of in vitro regeneration and determination of genetic componentsof variability of plant regeneration traits in sorghum[J]. Plant cell, tissue andorgan culture,2006,86(3):379-388.
    [138]Pola S, Saradamani N, Ramana T. Enhanced shoot regeneration in tissueculture studies of Sorghum bicolor[J]. J Agric Technol,2007,3(2):275-286.
    [139]Arulselvi I, Krishnaveni S. Effect of hormones, explants and genotypes in invitro culturing of sorghum[J]. Journal of Biochemical Technology,2009,1(4):96-103.
    [140]Raghuwanshi A, Birch R G. Genetic transformation of sweet sorghum[J].Plant cell reports,2010,29(9):997-1005.
    [141]陆平.高粱种质资源描述规范和数据标准[M].中国农业出版社,2006.
    [142]Vasilakoglou I, Dhima K, Karagiannidis N, et al. Sweet sorghum productivityfor biofuels under increased soil salinity and reduced irrigation[J]. FieldCrops Research,2011,120(1):38-46.
    [143]Liu R, Li J, Shen F. Refining bioethanol from stalk juice of sweet sorghum byimmobilized yeast fermentation[J]. Renewable Energy,2008,33(5):1130-1135.
    [144]Levitt J. Responses of plants to environmental stresses. Volume II. Water,radiation, salt, and other stresses[M]. Academic Press.,1980:300-590.
    [145]戴凌燕,张立军,张成才.苏打盐碱胁迫对甜高粱种子萌发的影响及品种耐性综合评价[J].种子,2011,10:28-32.
    [146]Azhar F M, McNeilly T. Variability for salt tolerance in Sorghum bicolor(L.)Moench. under hydroponic conditions[J]. Journal of Agronomy and CropScience,1987,159(4):269-277.
    [147]邱晓,张孝峰,林志城,等.不同含盐量的田间自然土下甜高粱耐盐性初探[J].中国农学通报,2012,28(03):66-70.
    [148]贾金生,刘昌明,王会肖.夏玉米水分胁迫自效应的试验研究[J].中国生态农业学报,2002,10(2):97-101.
    [149]陶世蓉,东先旺,张海燕,等.土壤水分胁迫对夏玉米植株性状整齐度的影响[J].西北植物学报,2000,20(5):812-817.
    [150]宋妮,孙景生,黄修桥,等.水分胁迫对桶栽冬小麦产量和品质的影响[J].灌溉排水学报,2008,27(3):31-33.
    [151]韩立朴,马凤娇,谢光辉,等.甜高粱生产要素特征,成本及能源效率分析[J].中国农业大学学报,2012,17(6):56-69.
    [152]杨文华.甜高梁在我国绿色能源中的地位[J].中国糖料,2004,3:57-59.
    [153]高士杰,刘晓辉,李玉发,等.中国甜高粱资源与利用[J].种子,2005,24(11):46-47.
    [154]鲁巍.甜高粱制糖大有可为[J].中国糖料,2002,(1):37-39.
    [155]卢庆善.甜高粱研究进展[J].世界农业,1998,5:21-23.
    [156]Paterson A H, Bowers J E, Bruggmann R, et al. The Sorghum bicolor genomeand the diversification of grasses[J]. Nature,2009,457(7229):551-556.
    [157]Zheng L Y, Guo X S, He B, et al. Genome-wide patterns of genetic variationin sweet and grain sorghum(Sorghum. bicolor)[J]. Genome Biology,2011,12: R114.
    [158]Mushonga J, Gupta S, House L. Combining ability and heterosis for diastaticactivity in grain sorghum[J]. African Crop Science Journal,1997(5):99-106.
    [159]曹文伯.在甜高梁上利用杂种优势的探讨[J].植物遗传资源科学,2002,3(3):15-20.
    [160]高凤菊,朱元刚.盐胁迫对不同类型甜高粱品种产量形成的相关性分析[J].江西农业学报,2013,25(6):1-6.
    [161]杨洪昌,范源洪,吴正焜,等.甜高粱抗倒伏性状评价及其倒伏系数初探[J].作物杂志,2008(3):54-56.
    [162]高士杰,刘晓辉,李继洪.甜高梁育种应重视的几个问题[J].可再生能源,2008,26(3):82-83.
    [163]Cakmak I, Marschner H. Magnesium deficiency and high light intensityenhance activities of superoxide dismutase, ascorbate peroxidase, andglutathione reductase in bean leaves[J]. Plant Physiology,1992,98(4):1222-1227.
    [164]李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2005.
    [165]张志安,陈展宇.植物生理学实验技术[M].长春:吉林大学出版社,2008.
    [166]中科院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,2004.
    [167]Divate M R, Pandey R M. Salt tolerance in grapes. III. Effect of salinity onchlorophyll, photosynthesis and respiration[J]. Indian Journal of PlantPhysiology,1981,24(1):74-79.
    [168]朱世杨,洪德林.籼稻2个杂种F1种子活力和劣变处理后生化性状的比较[J].中国生态农业学报,2008,16(2):396-400.
    [169]Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J].Ecotoxicology and environmental safety,2005,60(3):324-349.
    [170]Cakmak I, Horst W J. Effect of aluminium on lipid peroxidation, superoxidedismutase, catalase, and peroxidase activities in root tips of soybean (Glycinemax)[J]. Physiologia Plantarum,1991,83(3):463-468.
    [171]Mittova V, Tal M, Volokita M, et al. Up‐regulation of the leaf mitochondrialand peroxisomal antioxidative systems in response to salt‐induced oxidativestress in the wild salt-tolerant tomato species Lycopersicon pennellii[J]. Plant,cell&environment,2003,26(6):845-856.
    [172]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,(4):503-507.
    [173]马金虎,王宏富,王玉国,等.种子引发对高粱幼苗耐盐性的生理效应[J].中国农业科学,2009,42(10):3713-3719.
    [174]Lewis N G, Yamamoto E. Lignin: occurrence, biogenesis andbiodegradation[J]. Annual review of plant biology,1990,41(1):455-496.
    [175]肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825.
    [176]Klobus G, Ward M R, Huffaker R C. Characteristics of injury and recovery ofnet NO3transport of barley seedlings from treatments of NaCl[J]. Plantphysiology,1988,87(4):878-882.
    [177]Liu X, Huang B. Heat stress injury in relation to membrane lipid peroxidationin creeping bentgrass[J]. Crop Science,2000,40(2):503-510.
    [178]Marnett L J. Lipid peroxidation-DNA damage by malondialdehyde[J].Mutation Research/Fundamental and Molecular Mechanisms ofMutagenesis,1999,424(1):83-95.
    [179]肖用森,王正直,郭绍川.渗透胁迫下稻苗中游离脯氨酸累积与膜脂过氧化的关系[J].植物科学学报,1996,14(4):334-340.
    [180]Maiti R K, Maiti L E, Maiti S, et al. Genotypic Variability in Maize Cultivars(Zea mays L.) for Resistance to Drought and Salinity at the Seedling Stage[J].Journal of plant physiology,1996,148(6):741-744.
    [181]Cheeseman J M. Mechanisms of salinity tolerance in plants[J]. PlantPhysiology,1988,87(3):547-550.
    [182]Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu. Rev. PlantBiol.,2008,59:651-681.
    [183]宁喜斌,马志泓,李达.甜高粱茎汁成分的测定[J].沈阳农业大学学报,1995,26(1):45-48.
    [184]李振武,支萍,孔令旗.糖高粱节段锤度分析[J].辽宁农业科学,1988,6:20-25.
    [185]籍贵苏,杜瑞恒,侯升林,等.甜高梁茎秆含糖量研究[J].华北农学报,2006,21:81-83.
    [186]李淮滨,翟婉萱,王守才,等.甜高梁茎秆糖分与干物质生产[J].辽宁农业科学,1990(1):20-23.
    [187]Goldsworthy P R. The growth and yield of tall and short sorghums inNigeria[M]. Samaru, Ahmadu Bello University,1970,75:109-122.
    [188]Mastrorilli M, Katerji N, Rana G, et al. Sweet sorghum in Mediterraneanclimate: radiation use and biomass water use efficiencies[J]. Industrial Cropsand Products,1995,3(4):253-260.
    [189]Almodares A, Hadi M R, Ahmadpour H. Sorghum stem yield and solublecarbohydrates under different salinity levels[J]. African Journal ofBiotechnology,2008,7(22):4051-4055.
    [190]Murashige T, Skoog F. A revised medium for rapid growth and bio assayswith tobacco tissue cultures[J]. Physiologia plantarum,1962,15(3):473-497.
    [191]SAS Institute Inc., SAS/Stat User’s Guide, Version8.2.SAS institute, Inc.,Cary, NC, USA,1999.
    [192]Skoog F, Miller C O. Chemical regularion of growth and organ formation inplant fissue cultured.[C]. In vitro. Symp. Soc. Exp. Biol.,1957,11:118-131.
    [193]Zhao L, Liu S, and Song S.Optimization of callus induction and plantregeneration from germinating seeds of sweet sorghum (Sorghum bicolorMoench)[J]. African Journal of Biotechnology,2010,9:2367-2374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700