用户名: 密码: 验证码:
锇配合物电子结构和光谱性质的量子理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Quantum Theoretical Studies on the Electronic Structures and Spectroscopic Properties of Osmium Complexes
  • 作者:吴玉辉
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2008
  • 导师:张红星
  • 学科代码:070304
  • 学位授予单位:吉林大学
摘要
过渡金属配合物的电子吸收和发射是极其复杂的微观过程,涉及到基态与激发态的电子结构性质及相对论效应等量子理论的基础问题,所以该类配合物发光性质的理论研究不仅对无机新型光学材料的探索和设计具有重要指导意义,而且本身就是极其重要的理论课题。本文采用MP2(Second- order M?ller-Plesset perturbation)、CIS(Single-excitation configuration interaction)、DFT(Density functional theory)和TD-DFT(Time-dependent density functional theory)等理论方法对一系列锇配合物的基态和激发态几何结构、电子结构、吸收光谱和发射光谱性质等进行了系统研究,主要成果如下:
     1.采用ab initio方法对系列联吡啶Os(II)配合物[Os(N^N)(CO)2I2] (N^N=2,2′-bipyridine (bpy) (1), 4,4′-di-tert-butyl-2,2′-bipyridine (dbubpy) (2), and 4,4′-dichlorine-2,2′-bipyridine (dclbpy) (3))进行了系统的理论研究,研究结果表明所有配合物的磷光发射性质均来自[dxy(Os)→π*(bpy)](金属到配体电荷转移,Metal-to-ligand charge transfer, MLCT)和[p(I)→π*(bpy)](配体内电荷转移,Ligand-to-ligand charge transfer, LLCT)混合跃迁性质,这与处于可见区的最低能吸收的跃迁性质相一致。配合物在可见区的最低能吸收及磷光发射随着取代基团的给电子能力增强而发生蓝移Cl(3)﹤H(1)﹤t-Bu(2)。
     2.对系列二亚胺Os(II)配合物[Os (L)2(CN)2(phen)] (phen=1,10-邻二氮杂菲; L=膦基(1),二甲基亚枫(DMSO) (2)及[Os(PH3)2(phen)Br2] (3))的研究发现,配合物分子1-3在二氯甲烷溶液中的最低能吸收和磷光发射都被指认为主要是3MLCT跃迁性质。通过理论化学计算,揭示了π酸配体(膦基及二甲基亚枫)及π碱配体(Br)对配合物磷光发射性质的影响及原因。并进一步解释了配合物3易于在Os-Br键处断裂而发生反应的量子化学机理。对配合物在不同溶剂中的磷光发射性质的计算结果表明,溶剂对配合物的量子产率存在着影响并具有溶剂化显色效应。
     3.为了探究吡啶-三唑Os(Ⅱ)配合物的光谱性质及取代基效应对其配合物发光性质的影响,对系列吡啶-三唑Os(II)配合物[Os(ptz)2L2](L=PH3; ptzH=(2-吡啶)-1,2,4-三唑(1); [Os(bptz)2L2](bptzH=3-叔丁基-5-(2-吡啶)-1,2,4-三唑(2); [Os(fptz)2L2](fptzH=3-(三氟甲基)-5-(2-吡啶)-1,2,4-三唑(3); fbtzH=3-(三氟甲基)-5-(4-叔丁基-2-吡啶)-1,2,4-三唑)(4)进行了理论化学研究。计算结果表明,配合物在可见区的最低能吸收都来自1MLCT/ILCT跃迁性质,而磷光发射性质与最低能吸收跃迁性质类似,来自于3MLCT/ILCT跃迁。通过比较分析计算结果,系统论述了取代基效应对配合物1-4的磷光发射及量子产率的影响及其规律。
Major: Physical chemistry
     Because of its characteristics and function such as electricity, light, sound, magnetism and, heat, etc., functional material has been paid most attention in the last five decades. The achievements in designing and developing functional material not only have greatly promoted the revolution of scientific technology in the late 20th century, but also will act as the foundation for the development of the advanced scientific technology in the future. As one of the most important parts of the design of functional materials, the design of optical materials has also been focused on by physicists, chemists and material scientists all the time. Recently, a great deal of experimental work on the electronic absorption and emission of transition metal complexes have been performed to seek inorganic optical material that exhibits intensive luminescence in the visible region. The absorption and emission of transition metal complexes usually are related to the charge transfer between d orbitals of metal and s/p orbitals of ligand. Because such an electronic absorption in the ultraviolet region usually conduct the corresponding emission in the visible region, transition metal complexes are one of the most excellent candidates to serve as visible-region optical material.
     The electronic absorption and emission of molecules are complicated microscopic processes between the ground- and excited-state transitions. With the development of quantum chemistry and computational technique, especially the successful application of density functional method, the electronic structures and properties of molecules in the ground state have been fully understood in theory and widely applied in chemistry. However, the studies on the excited-state properties still remain infant. Excited states themselves are related to many photoelectric phenomena in the modern chemistry and physics. Therefore, quantum chemistry related to the electronic excited states should be one of the most major research fields in the future. Presently, it is a challenge to apply quantum theory to investigate luminescent properties of transition metal complexes, but such a kind of research is of theoretical and practical significance.
     Transition metal atoms have various electronic structures and bonding characters and many ligands have been synthesized in experiments, resulting in the occurrence of thousands of transition metal complexes. It is very difficult to fully understand the properties of such abundant complexes. So, it is an ideal start point to investigate a class or several classes of complexes with simple coordination geometry. So far, a number of Os(II) complexes have been synthesized and studies in their crystal structures and photo-physical properties have been performed. It was found that many Os(II) complexes exhibit intensive luminescence and can be applied in the optical materials; their long phosphorescence lifetime bestow these complexes good photo-redox character which makes them being used as photosensitizers, photochemical catalysts and optical sensor; their interaction with DNA leads to the application in the molecular pharmacy. The experimental studies show potential applications of transition metal complexes in many fields. However, lacking of theoretical support, insight into the luminescent process and microscopic mechanism is only empirical, which results in experimental deviation from reality. Thus, systematic studies on the Os(II) complexes in theory to rationalize and predict experimental phenomena are of practical significance.
     The electronic excited states of molecules have higher energy and unsteady characteristics, which easily emit the energy to recur the steady ground state in a short time. So it is difficult for experiment to obtain reliable information about the excited states of molecules. Theoretical chemists attempt various electronic structure theories of excited states to seek the method that can accurately predict excited-state electronic structures and be applied in the calculations of relatively large molecules without consuming excess computational resources. So far, CIS(Single excitation configuration interaction), unrestricted DFT and TD-DFT (Time-dependent density functional theory) methods have been widely used to treat the electronic excited states of large molecular systems.
     It has been established that the solvents affect the luminescence of complexes. Many theoretical methods were employed to treat properties of complexes in solution. The first strategy puts the attention on the microscopic interactions of the solute molecule with a limited number of solvent molecules; the whole system (the“supermolecule”) is studied with quantum mechanical methods usually employed for single molecules, and the effects of specific solute-solvent interactions are brought in evidence. An increasing number of solvent molecules can be added to this model to obtain supplementary (and detailed) information about solvent effects. The second strategy tries to directly introduce statistically averaged information on the solvent effect by replacing the microscopic description of the solvent with a macroscopic continuum medium with suitable properties (dielectric constant, thermal expansion coefficient, and etc.). Recently, QM/MM (Quantum mechanical and molecular mechanical) method has been developed to account for the solvent effects.
     The advanced technique applied in experiments greatly promotes the development of modern computational chemistry. On one hand, the comparison between calculation and experiment can test the reliability and accuracy of electronic structure theory, showing the dependence of theory on experiment; on the other hand, to develop the electronic structure theory is to support and/or supplement the known experimental results, and further to predict the potential results, indicative of the forward looking and independence of the theoretical study. In the paper, combining the advantages of various quantum chemical computational methods and considering the solvent effects, we systematically studied luminescent properties, ground- and excited-state electronic structures of d6 complexes and obtained the following main results:
     1. The MP2 (Second-order M?ller-Plesset perturbation) and CIS methods were employed to optimize the ground- and excited-state structures of [Os(N^N)(CO)2I2] (N^N=2,2′-bipyridine (bpy) (1), 4,4′-di-tert-butyl-2,2′-bipyridine (dbubpy) (2), and 4,4′-dichlorine-2,2′-bipyridine (dclbpy) (3), respectively. The calculated results reveal that the low-energy absorptions in the UV and visible range and the emissions were all assigned as the electronical transition between the ground state and the combined MLCT (metal-to-ligand charge transfer) and XLCT(halide-to-ligand charge transfer) excited states. When the electron-donating substituents are introduced into the bipyridine ligand, the lowest-lying absorption in visible range and emission are blue-shifted in the order of Cl(3) < H(1) < t-Bu(2).
     2. The geometrical structures of a series of Os(II) diimine complexes [Os(L)2(CN)2(phen)] (phen=1,10-phenanthroline; L=phosphine (1), DMSO (2)) and [Os(PH3)2(phen)Br2] (3) in the ground state and the lowest-energy triplet excited state were optimized by the restricted and unrestricted B3LYP/UB3LYP methods. The absorption and emission properties and transition characters in dichloromethane solution were predicted by TD-DFT associated with the PCM solvent effect model, and the transition characters were assigned. The effects of theπ-acid andπ-alkali ligands have on the phosphorescent spectroscopic properties and the reason were explored by theoretical chemistry method. The lowest-lying absorption and emission are red-shifted with the decrease of theπbackbonds formed between theπacid ligand and Os(II), and the emission wavelengths are in the order of 3>1>2. Quantum chemistry calculations further explained the mechanism why the Os-Br bond is prone to break up in complex 3 and have the potential to undergo reactions. The computed phosphorescent emission results of 1-3 in different solvent indicated that the complexes have the solvatochromic effect and the solvent will affect the quantum efficiencies of them.
     3. To explore the spectroscopic properties of pyridyl triazole Os(II) complexes and how the substituent affect the spectroscopic properties for the [Os(ptz)2L2] (L=PH3; ptzH=(2-pyridyl)-1,2,4-triazole)(1); [Os(bptz)2L2] (bptzH= bptzH= 3-tert-butyl-5-(2-pyridyl)-1,2,4-triazole(2);fptzH=3-(trifluoreomethyl)-5-(2-pyridyl)-1,2,4-triazole(3); fbtzH= 3-(trifluoreomethyl)-5-(4-tert-butyl-2-pyridyl)-1,2,4-triazole (4)), DFT method at B3LYP level was used to optimizing the geometrical structures in the ground- and excited-state. The absorption and emission properties in the dichloromethane solution were predicted at the TD-DFT/B3LYP level associated with the PCM solvent effect model, and the transitions characters were assigned. Important correlations between substituent effect and the lowest energy absorption in visible range, emission spectra and quantum yield have been obtained by comparing and analyzing the calculated results, and the conclusions are summed up: (1). The phosphorescent emission spectrum of 1-3 red shift, when the electron-donating substituents are introduced into the triazole ligand. (2). Due to the different contribution of ligand to the HOMO and LUMO orbitals, when the substituents are introduced into the ligand, the different effects of substituent to the HOMO and LUMO exist.
     (3). When the same substituent(tert-butyl) is introduced into different ligands, the destabilizing effect is the same.
     (4). Based on the previous (2) and (3) conclusions, when the destabilizing effect of substituent pushes up the energy level of HOMO more than the LUMO, the energy gap of HOMO-LUMO decreases, the lowest absorption and phosphorescent emission of complexes red-shift (2 compared to 1); when the substituent pushes up the energy level of LUMO more than the HOMO, the energy gap of HOMO-LUMO increases, the lowest absorption and phosphorescent emission of complexes blue-shift (4 compared to 3).
     (5). The phosphorescent quantum yieldΦof complexes 1-4 is affected by the substituent obviously.
     (6). If the ligands of the complexes localated on the HOMO or LUMO more evidently, when the introduction of draw- or push- electron like t-Bu or CF3 on the ligands, the phosphorescent emission wavelengths of the complexes will be fine tuned (red shift or blue shift).
引文
[1]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005.
    [2]张建成,王夺元.现代光化学[M].北京:化学工业出版社,2005.
    [3]宋心琦,周福添,刘剑波.光化学-原理·技术·应用[M].北京:高等教育出版社,2001.
    [4]曹怡,张建成.光化学技术[M].北京:化学工业出版社,2004.
    [5] [日]崛江一之,牛木秀冶.张镇西等译.分子光子学[M].北京:科学出版社,2004,P70-71.
    [6]姜月顺,李铁津,等.光化学[M].北京:化学工业出版社, 2005..
    [7] Turro N J. Modern molecular Photochemistry[M]. Califorrnia: Benjamin/Cummings Publishing Co. Inc,1978.
    [8]唐小真,杨宏秀,丁马太.材料化学导论,北京:高等教育出版社, 1997, p7–12.
    [9] Pope M, Kallmann H P, Magnante P. J Chem Phys,1963, 38:2042.
    [10] Vincett P S, Barlow W A, Hann R A, et al. Thin Solid Films,1982,94:171.
    [11] Partridge R H. Polymer, 1983,24:755.
    [12] Tang C W, Vanslyke S A. Appl Phys Lett,1987,51:913.
    [13] Rao C N R, Gopalakrishnan J.著,刘新生译.固体化学的新方向-结构、合成、性质、反应性材料设计[M].长春:吉林大学出版社,1990, p388–430.
    [14]赵成大.固体量子化学-材料化学的理论基础[M].北京:高等教育出版社,1997,p228.
    [15]滕枫,侯延冰,印寿根.有机电致发光材料及应用[M].北京:化学工业出版社,2006,p63-95.
    [16] Baldo M A, O′Brien D F, Thompson M E, F?rrest S R. Nature,1998,395:151.
    [17] Adachi C, Baldo M A, F?rrest S R, Lamansky S. Appl Phys Lett. 2001,78:1622.
    [18] Nguyen T T, Martin J C. J Am Chem Soc.1980,102:7383.
    [19] Baldo M A, Lamansky S, Burrows P E, Thompson M E,F?rrest S R. Appl Phys Lett.1999,75:4.
    [20] O′Brien D F, Baddo M A, Thompson M E, F?rrest S R. Appl Phys Lett, 1999,74:442.
    [21] Caspar J V, Westmorland T D, Allen G H, Bradley P G, Meyer T J, Woodruff W H. J Am Chem Soc. 1984,106:3492.
    [22] Kober E M, Caspar J, Lumpkin R S, Meyer T J. J Phys Chem, 1986,90:3722.
    [23] Bergkamp M A, Gutlich P,Netzel T L, Sutin N. J Phys Chem, 1983,87:3877.
    [24] Yersin H, Huber P, Braun D. J Phys Chem. 1990,94:3560.
    [25] Balzani V, Bergamini G, Campagna S, Puntoriero F. Top Curr Chem, 2007,280:1.
    [26] Nguyen T T, Martin J C, J Am Chem Soc, 1980,102:7383.
    [27] Carlson B, Gregory D P, Kaminsky W, Dalton L, Jiang X Z, Liu S, Jen A K Y. J Am Chem Soc, 2002,124:14162.
    [28] Kim J H, Michelle S L, Alex J K Y, Carlson B, Larry R D, ShuC F, Dodda R. Appl Phys Lett, 2003,83:776.
    [29] Jiang X Z, Alex J K Y, Carlson B, Larry R D, Appl Phys Lett, 2002,80:713.
    [30] Jiang X Z, Alex J K Y, Carlson B, Larry R D, Appl Phys Lett, 2002,81:3125.
    [31] Tung Y L, Wu P C, Liu C S, Chi Y, Yu J K, Hu Y H, Chou P T, Peng S M, Lee G H, Tao Y, Arthur J C, Shu C F, Wu F I. Organometallics, 2004,23:3745.
    [32] Chan W K, Ng P K, Gong X, Hou S J, Appl Phys Lett, 1999,75: 3920.
    [33] Ranjan S, Lin S Y, Hwang K C, Chi Y, Ching W L, Liu C S, Tao Y T, Chien C H, Peng S M, Lee G H. Inorg Chem, 2003,42:1248.
    [34] Chen Y L, Lee S W, Chi Y, Hwang K C, Inorg Chem, 2005,44:4287.
    [35] Wu P C, Yu J K, Song Y H, Chi Y, Chou P T, Peng S M, Lee G H, Organometallics, 2003,22:4938.
    [36] Chou P T, Chi Y. Chem Eur J, 2007,13:380.
    [37] Yu J K, Hu Y H, Cheng Y M, Chou P T, Peng S M, Lee G H, Carty A J, Tung Y L, Lee S W, Chi Y, Liu C S. Chem Eur J, 2004,10:6255.
    [38] Chen K, Cheng Y M, Chi Y, Ho M L, Lai C H, Chou P T, Peng S M, Lee G H, Chem Asian J, 2007,2:155.
    [39] Cheng Y M, Yeh Y S, Ho M L, Chou P T, Inorg Chem, 2005,44:4594.
    [40] Chi Y, Chou P T, Chem Soc Rev, 2007,36:1421.
    [41] Li S W, Cheng Y M, Yeh Y S, Chou P T, Tung Y L, Chi Y,et al. Chem Eur J, 2005,11:6347.
    [42] Chen Y L, Sinha C, Chen I C, Liu K L, Chi Y, Yu J K, Chou PT, Lu T H, Chem Commum, 2003, 3046.
    [43] Hsu F C, Tung Y L, Chi Y, Hsu C C, Cheng Y M, Ho M L, Chou P T, Peng S M. Inorg Chem, 2006,45:10188..
    [44] Cheng Y M, Li E Y, Lee G H, Chou P T, Inorg Chem, 2007,46:10276.
    [45] Cheng Y M, Yeh Y S, Ho M L, Chou P T, Inorg Chem, 2005,44:4594.
    [46] Chen Y L, Li S W, Chi Y, Cheng Y M, Pu S C, Yeh Y S, Chou P T. Chem Phys Chem, 2005,6:2012.
    [47] Lai S W, Chan Q K W, Zhu N, Che C M. Inorg Chem, 2007,46:11003.
    [48] Tong G S M, Wong E L M, Che C M. Chem Eur J,2008,14:5495.
    [49] J. Zhang, J. L. Liang, X. R. Sun, H. B. Zhou, N. Y. Zhu, Z. Y. Zhou, P. W. H. Chan, C. M. Che. Inorg Chem, 2005,44:3942.
    [50] Cheng J Y K, Cheung K K, Che C M, Chem Commum, 1997, 623.
    [51] Cheng J Y K, Cheung K K, Che C M, Lau T C, Chem Commum, 1997,1443.
    [52] Che C M, Lai T F, Chung W C, Schaefer W P, Gray H B. Inorg Chem, 1987,26:3907.
    [53] Che C M, Cheng W K, Lai T F, Poon C K, Mak T C W, Inorg Chem, 1987,26:1678.
    [54] Nieuwenhuis H A, Stufkens D J, Vl?ek A. Inorg Chem, 1995, 34:3879.
    [55] van Slageren J, Vermeer A L, Stufkens D J. J Organomet Chem, 2001,626:118.
    [56] van Slageren J, Hartl F, Stufkens D J. Coord Chem Rev, 2000,208:309.
    [57] Chardon-Noblat S, Deronzier A, Hartl F, Eur J Inorg Chem,2001,613.
    [58] Chardon-Noblat S, Dosta P D, Deronzier A, Mahabiersing T, Hartl F. Eur J Inorg Chem, 2002, 2850.
    [59] Calhorda M J, Hunstock E, Veiros L F, Hartl F. Eur J Inorg Chem, 2001,223.
    [60] Chou P T, Chi Y, Eur J Inorg Chem, 2006,3319.
    [61] a). Zhen H, Jiang C, Yang W, Jiang J, Huang F, Cao Y. Chem. Eur. J. 2005,11:5007. b). Baldo M A, Adachi C, F?rrest S R, Phys Rev B, 2000,62:10967.
    [62] a). Lai S W, Che C M, Top Curr Chem, 2004,241:27. b). Ma B, Djurovich P I, Thompson M E, Coord. Chem. Rev. 2005, 249:1501.c). Kavitha J, Chang S Y, Chi Y, Yu J K, Hu Y H, Chou P T, Peng S M, Lee G H, Adv. Funct. Mater. 2005,15: 223.
    [63] a). Raghavachari K, Pople J A, Int. J. Quant. Chem. 1981, 20:1067. b). Foresman J B, Head-Gordon M, Pople J A. J. Phys. Chem. 1992,96:135.
    [64] a). Bauernschmitt R, Ahlrichs R, Chem. Phys. Letters 1996,256:454. b). Casida M E, Jamorski C, Casida K C, Salahub D R, J. Chem. Phys. 1998,108:4439. c). Statmann R E, Scuseria G E, J. Chem. Phys. 1998,109:8218.
    [65] Mansour M A, Connick W B, Lachicotte R J, Gysling H J, Eisenberg R, J. Am. Chem. Soc. 1998,120:1329.
    [66] a). McKeage M J, Maharaj L, Berners–Price S J. Coord. Chem. Rev. 2002,232:127. b). Navarro M, Pérez H, Sánchez–Delgado R A. J. Med. Chem. 1997,40:1937. c). Berners–Price S J,Bowen R J, Galettis P, Healy P C, McKeage M J. Coord. Chem. Rev. 1999, 185–186, 823. d) Berners–Price S J, Girard G R, Hill D T, Sutton B M, Jarrett P S, Faucette L F, Johnson R K, Mirabelli C K, Sadler P J. J. Med. Chem. 1990,33:1386. e). Corey E J, Mahrotra M M, Khan A U. Science 1987,236:68. f). Mirabelli C K, Johnson R K, Hill D T, Faucette L F, Girard G R, Kuo G Y, Sung C M, Crooke S T. J. Med. Chem. 1986,29:218. g). Weinstock J, Sutton B M, Kuo G Y, Walz D T, Dimartino M J. J. Med. Chem. 1974, 17, 139.
    [67] Rosenberg B, Van Camp L, Krigas T. Nature 1965,205:698. b). Rosenberg B, Van Camp L, Trosko J E, Mansour V H. Nature 1969,222:385. c). Basch H, Krauss M, Stevens W J. Inorg. Chem. 1985,24:3313. d). Krauss M, Basch H, Miller K J. Chem. Phys. Letters 1988,14:577.
    [68] Halls M D, Schlegel H B. Chem. Mater. 2001,13:2632.
    [69] Frank I.“Excited State Molecular Dynamics" Invited Review, SIMU Newsletter, 2001,3:63.
    [70] a). Zhang H X, Che C M, Chem. Eur. J. 2001,7:4887. b). Pan Q J, Zhang H X. J. Phys. Chem. A 2004,108:3650.
    [71] a). Pan Q J, Zhang H X, Organometallics 2004, 23, 5198. b). Pan Q J, Zhang H X, Inorg. Chem. 2004,43:593. c). Pan Q J, Zhang H X, Chem. Phys. Letters 2004,394:155. d). Pan Q J, Zhang H X, J. Mol. Struct. (Theochem) 2004, 671, 53. e). Pan Q J, Zhang H X, J. Chem. Phys. 2003,119:4346. f). Pan Q J, Zhang H X, Eur. J. Inorg. Chem. 2003,4202. g).潘清江,张红星,高等学校化学学报2003,24:310.
    [72] a). Wang J F, Feng J K, Ren A M, Liu X D, Ma Y G, Lu P, Zhang H X, Macromolecules 2004,37:3451. b). Liao Y, Feng J K, Yang L, Ren A M, Zhang H X, Organometallics 2005,24: 385. c). Yang L, Ren A M, Feng J K, Liu X J, Ma Y G, Zhang M, Liu X D, Shen J C, Zhang H X, J. Phys. Chem. A 2004,108:6797. d). Yang L, Ren A M, Feng J K, Liu X D, Ma Y G, Zhang H X, Inorg. Chem. 2004,43:5961.
    [73] a). Rosa A, Baerends E J, van Gisbergen S J A, van Lenthe E, Groeneveld J A, Snijders J G, J. Am. Chem. Soc. 1999,121: 10356. b). van Gisbergen S J A, Groeneveld J A, Rosa A, Snijders J G, Baerends E J, J. Phys. Chem. A 1999,103:6835. c). Fernández E J, Gimeno M C, Laguna A, López-de-Luzuriaga J M, Monge M, Pyykk? P, Sundholm D, J. Am. Chem. Soc. 2000,122: 7287. d). Kaim W, Dogan A, Wanner M, Klein A, Tiritiris I, Schleid T, Stufkens D J, Snoeck T L, Mclnnes E J L, Fiedler J, Záli? S, Inorg. Chem. 2002,41:4139. e). Klein A, van Slageren J, Záli? S, Inorg. Chem. 2002,41:5216. f). Fujita E, Muckerman J T, Inorg. Chem. 2004,43:7636.
    [74] a). Stoyanov S R, Villegas J M, Rillema D P, Inorg. Chem. 2003,42:7852. b). Stoyanov S R, Villegas J M, Rillema D P, J. Phys. Chem. B 2004,108:12175. c). Stoyanov S R, Villegas J M, Cruz A J, Lockyear L L, Reibenspies J H, Rillema D P. J. Chem. Theory Comput. 2005,1:95. b). Villegas J M, Stoyanov S R, Huang W, Rillema D P. Inorg. Chem. 2005,44: 2297.
    [75] Novozhilova I V, Volkov A V, Coppens P. J. Am. Chem. Soc. 2003,125:1079
    [76] a). Condon E U. Phys. Rev. 1928,32:858. b). Franck J, Trans. Faraday Soc. 1925,21:536.
    [77] Miertu? S, Scrocco E, Tomasi J Chem Phys, 1981,55:117.
    [78] a). Wong M W, Frisch M J, Wiberg K B, J. Am. Chem. Soc., 1991, 113:4776. b). Wong M W, Wiberg K B, Frisch M J, J. Am. Chem. Soc., 1992,114:523. c). Wong M W, Wiberg K B, M. Frisch J. J. Am. Chem. Soc., 1992,114:1645. d). Wong M W, Wiberg K B. J. Chem. Phys., 1991,95:8991. e). Cossi M, Barone V, Cammi R, Tomasi J. Chem. Phys. Letters, 1996,255: 327. f). Cossi M, Barone V, Mennucci B, Tomasi J. Chem. Phys. Letters, 1998,286:253. g). Cancès E, Mennucci B, Tomasi J. J. Chem. Phys., 1997,107:3032. h). Barone V, Cossi M, Tomasi J. J. Chem. Phys., 1997,107:3210. i). Tunon I, Silla E, Tomasi J. J. Phys. Chem., 1992,96:9043. j). Foresman J B, Keith T A, Wiberg K B, Snoonian J, Frisch M J. J. Phys. Chem., 1996,100:16098. k). Wiberg K B, Keith T A, Frisch M J, Murcko M. J. Phys. Chem., 1995,99:9072. l). Wiberg K B, Rablen P R, Rush D J, Keith T A. J. Am. Chem. Soc., 1995, 117:4261.
    [79] a). Vreven T, Morokuma K, Farkas ?, Schlegel H B, Frisch M J. J. Comput. Chem., 2003,24:760. b). Armunanto R, Schwenk C F, Rode B M. J. Phys. Chem. A, 2003,107:3132. c). Kerdcharoen T, Rode B M. J. Phys. Chem. A, 2000,104:7073.
    [80] Roundhill D M, Gray H B, Che C M. Acc. Chem. Res., 1989,22:55.
    [81] Zipp A P. Coord. Chem. Rev., 1988,84:47.
    [82] a) Chan S C, Chan M C W, Wang Y, Che C M, Cheung K K, Zhu N. Chem. Eur. J., 2001,7:4180. b) Che C M, He L Y, Poon C K, Mak T C W. Inorg. Chem., 1989,28:3081.
    [83] a). Field J S, Gertenbach J A, Haines R J, Ledwaba L P, N. Mashapa T, McMillin D R, Munro O Q, Summerton G C. Dalton Trans., 2003, 1176. b). McMillin D R, Moore J J. Coord. Chem. Rev., 2002,229:113. c). Tears D K C, McMillin D R. Coord. Chem. Rev., 2001,195.
    [84] Kumaresan D, Shankar K, Vaidya S, Schmehl R H. Top. Curr. Chem., 2007,281:101.
    [85] Vl?ek A Jr., Gray H B, Inorg. Chem., 1987,26:1997.
    [86] a). Che C M, Cho K C. J. Chem. Soc. Chem. Commun., 1987,133. b). Hurst J K, Thompson D H P, Connolly J S. J. Am. Chem. Soc., 1987,109:507.
    [87] Che C M, Lee W M, Cho K C, Harvey P D, Gray H B. J. Phys. Chem., 1989,93:3095.
    [88] Roundhill D M, Shen Z P, Atherton S J. Inorg. Chem., 1987, 26:3833.
    [89] Sweeney R J, Harvey R L, Gray H B. Coord. Chem. Rev., 1990, 105:23.
    [90] Havey P D, Gray H B. New J. Chem., 1987,11:595.
    [91] De Cola L, Belser P. Coord. Chem. Rev., 1998,177:301.
    [92] Evans R C, Douglas P, Winscom C J. Coord. Chem. Rev., 2006,250:2093.
    [93] Demadis K D, Meyer T J, White P S. Inorg. Chem., 1998, 37: 3610.
    [94] Lees A J, Chem. Rev., 1987, 87:711.
    [95] a). van Slageren J, Hartl F, Stufkens D J, Martino D M, van Willigen H. Coord. Chem. Rev., 2000, 208:309. b). Sauvage J P, Collin J P, Chambron J C, Guillerez S, Coudret C. Chem. Rev., 1994,94:993.
    [1] a). Heitler W, London F. Physik Z, 1927,44:455. b). Pauling L, Wilson E B. Introduction to Quantum Mechanics[M]. (McGraw-Hill Book Company, Inc., New York, 1935), pp. 340–380.
    [2] a). Hund F. Physik Z, 1928, 51:759; 1931, 73:1. b). Mulliken R S. Phys Rev, 1928,32:186; 1928,32:761; 1932,41:49.
    [3] a).唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社, 1982. b).林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    [4] Born M, Oppenheimer R. Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84:457.
    [5] Hartree D. Calculations of Atomic Structure[M].Wiley, 1957.
    [6] a). Fock V. Z Physik, 1930,126:61. b). Slater J C. Phys Rev, 1930,210:35.
    [7] Roothaan C C J. Rev Mod Phys, 1951,23:69.
    [8] Lowdin P O. Adv Chem Phys, 1959,2:207.
    [9] a). Raghavachari K, Pople J A. Int J Quant Chem, 1981, 20:1067. b). Foresman J B, Head-Gordon M, Pople J A. J Phys Chem, 1992,96:135.
    [10] Krishnan R, Schlegel H B, Pople J A. J Chem Phys, 1980, 72:4654.
    [11] Brooks B R, Laidig W D, Saxe P, Goddard J D, Yamaguchi Y, Schaefer III H F. J Chem Phys, 1980,72:4652.
    [12] Salter E A, Trucks G W, Bartlett R J. J Chem Phys, 1989, 90, 1752.
    [13] Raghavachari K, Pople J A. Int J Quant Chem, 1981,20:167.
    [14] Pople J A, Head-Gordon M, Raghavachari K. J Chem Phys, 1987, 87:5968.
    [15]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985.
    [16] M?ller C, Plesset M S. Phys Rev, 1934,46:618.
    [17] Head-Gordon M, Pople J A, Frisch M J. Phys Rev Lett, 1988, 153:503.
    [18] Pople J A, Binkley J S, Seeger R. Int J Quant Chem Symp, 1976, 10:1.
    [19] Krishnan R, Pople J A. Int J Quant Chem, 1978,14:91.
    [20] Raghavachari K, Pople J A, Replogle E S, Head-Gordon M. J Phys Chem, 1990,94:5579.
    [21] Hohenberg P, Kohn W. Phys Rev B, 1964,136:864.
    [22] Kohn W, Sham L J. Phys Rev A, 1965,140:1133.
    [23] Slater J C. Quantum Theory of Molecular and Solids. Vol 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    [24] Salahub D E, Zerner M C. The Challenge of d and f Electrons[M]. ACS: Washington, D.C., 1989.
    [25] Parr R G, Yang W. Density-functional theory of atoms and molecules Oxford Univ[M]. Press: Oxford, 1989.
    [26] Pople J A, Gill P W M, Johnson B G. Chem Phys Letters, 1992, 199:557.
    [27] Johnson B G, Frisch M J. J Chem Phys, 1994,100:7429.
    [28] Labanowski J K, Andzelm J W. Density Functional Methods in Chemistry[M]. Springer-Verlag: New York,1991.
    [29] a). Bauernschmitt R, Ahlrichs R. Chem Phys Letters, 1996, 256:454. b). Casida M E, Jamorski C, Casida K C, Salahub D R. J Chem Phys, 1998,108:4439. c). Statmann R E, Scuseria G E, J Chem Phys, 1998,109:8218.
    [30] Matsuzawa N N, Ishitani A, Dixon D A, Uda T. J Phys Chem A, 2001,105:4953.
    [31] Boulet P, Chermette H, Daul C, Gilardoni F, Rogemond F, Weber J, Zuber G. J Phys Chem A, 2001,105:885.
    [32] Jamorski C, Casida M E, Salahub D R. J Chem Phys, 1996,104: 5134.
    [33] van Gisbergen S J A, Kootstra F, Schipper P R T, Gritsenko O V, Snijders J G, Baerends E J. Phys Rev A, 1998,57:2556.
    [34] a). Del Bene J, Ditchfield R, Pople J A. J Chem Phys, 1971,55:2236. b). Ditchfield R, Del Bene J, Pople J A, J Am Chem Soc, 1972,94:703.
    [35] a). Zhang H X, Che C M. Chem Eur J, 2001,7:4887. b). Pan Q J, Zhang H X. Organometallics, 2004, 23:5198. c). Pan Q J, Zhang H X. J Phys Chem A, 2004,108:3650. d). Pan Q J, Zhang H X, Inorg Chem, 2004,43:593. e). Pan Q J, Zhang H X. Chem Phys Letters, 2004, 394:155. f). Pan Q J, Zhang H X. J Mol Struct (Theochem), 2004, 671:53. g). Pan Q J, Zhang H X. J Chem Phys, 2003, 119:4346. h). Pan Q J, Zhang H X. Eur J Inorg Chem, 2003,4202.
    [36] a). Wang J F, Feng J K, Ren A M, Liu X D, Ma Y G, Lu P, Zhang H X. Macromolecules, 2004, 37: 3451. b). Liao Y, Feng J K, Yang L, Ren A M, Zhang H X. Organometallics, 2005, 24:385. c). Yang L, Ren A M, Feng J K, Liu X J, Ma Y G, Zhang M, Liu X D, Shen J C, Zhang H X. J Phys Chem A, 2004, 108: 6797. d). Yang L, Ren A M, Feng J K, Liu X D, Ma Y G, Zhang H X. Inorg Chem, 2004,43:5961.
    [37] van Gisbergen S J A, Groeneveld J A, Rosa A, Snijders J G, Baerends E J. J Phys Chem A, 1999,103:6835.
    [38] Halls M D, Schlegel H B. Chem. Mater, 2001,13:2632.
    [39] J. B. Foresman, Frisch ?.“Exploring Chemistry with Electronic Structure Methods”, 2nd edition, Gaussian, Inc., Pittsburgh, PA, 1996.
    [40] Frank I,“Excited State Molecular Dynamics”Invited Review, SIMU Newsletter, 2001,3:63–77.
    [41]王志中,现代量子化学计算方法[M].长春:吉林大学出版社,1998.
    [42] Pyykk? P. Chem Rev, 1988, 88:563.
    [43] a). Hay P J, Wadt W R. J Chem Phys, 1985,82:270. b). Wadt W R, Hay P J. J Chem Phys, 1985,82:284. c). Hay P J, Wadt W R. J Chem Phys, 1985,82:299.
    [44] G.赫兹堡著.王鼎昌译.分子光谱与分子结构-双原子分子光谱[M].北京:科学出版社,1983.
    [45]周公度,段连运.结构化学基础[M].北京:北京大学出版社,1995.
    [46] Condon E U. Phys Rev, 1928,32:858.
    [47] Franck J. Trans Faraday Soc, 1925,21:536.
    [48]梁映秋,赵文运.分子振动和振动光谱[M].北京:北京大学出版社,1990.
    [49] Rohatgi-Makherjee K K著.丁革非,孙万林,盛六四等译.光化学基础[M].北京:科学出版社,1991.
    [50] Miertu? S, Scrocco E, Tomasi J. Chem Phys, 1981,55:117.
    [51] Pullman B, Miertu? S, Perahia C. Theoret Chim Acta, 1979, 50:317.
    [52] Goldblum A, perahia C, Pullmam A. FEBS Letters,1979, 91:213.
    [53] Miertu? S., Tomasi J. Chem Phys, 1982,65:239.
    [54] Wong M W, M. Frisch J, Wiberg K B. J Am Chem Soc, 1991,113: 4776.
    [55] Wong M W, Wiberg K B, Frisch M J. J Am Chem Soc, 1992,114: 523.
    [56] Wong M W, Wiberg K B, Frisch M J. J Am Chem Soc, 1992,114: 1645.
    [57] Wong M W, Wiberg K B. J Chem Phys, 1991,95:8991.
    [58] Cossi M, Barone V, Cammi R, Tomasi J. Chem Phys Letters, 1996,255:327.
    [59] Cossi M, Barone V, Mennucci B, Tomasi J. Chem Phys Letters, 1998,286:253.
    [60] Cancès E, Mennucci B, Tomasi J. J Chem Phys, 1997,107:3032.
    [61] Barone V, Cossi M, Tomasi J. J Chem Phys, 1997,107:3210.
    [62] Tunon I, Silla E, Tomasi J. J Phys Chem, 1992,96:9043.
    [63] Foresman J B, Keith T A, Wiberg K B, Snoonian J, Frisch M J. J Phys Chem, 1996,100:16098.
    [64] Wiberg K B, Keith T A, Frisch M J, Murcko M. J Phys Chem, 1995,99:9072.
    [65] Wiberg K B, Rablen P R, Rush D J, Keith T A. J Am Chem Soc, 1995,117:4261.
    [66] Fukui K, Yunezawa T, Shingu H. J Phys Chem, 1952,20:722.
    [67]福井谦一.李荣森译.化学反应与电子轨道[M].北京:科学出版社,1982.
    [68] a). Fukui K, Kato H, Yunezawa T. Bull Chem Soc, Japan. 1961, 34:1111. b). Fukui K. Molecular Orbitals in Chemistry Physics and Biology[J]. New York: Academic Press, 1964, 513.
    [69] a). Woodward R B, Hoffmann R J. J Am Chem Soc, 1965,87:395. b). Fukui K. Acc Chem Res, 1971,4:57.
    [70]刘靖疆.基础量子化学与应用[M].北京:高等教育出版社,2004.
    [71] Klopman G. J Am Chem Soc, 1968,90:223.
    [72] Salem L. J Am Chem Soc, 1968,90:543;553.
    [1] a). Loiseau F, Marzanni G, Quici S, Indelli M T, Campagna S. Chem. Commun., 2003, 286. b). Bergamini G, Saudan C, Ceroni P, Maestri M, Balzani V, Gorka M, Lee S K, van Heyst J, V?gtle F. J. Am. Chem. Soc., 2004, 126:16466. c). LainéP P, Bedioui F, Loiseau F, Chiorboli C, Campagna S. J. Am. Chem. Soc., 2006,128:7510.
    [2] a). Beer P D, Szemes F, Balzani V, SalàC M, Drew M G B, Dent S W, Maestri M. J. Am. Chem. Soc., 1997, 119:11864. b). Beer P D. Acc. Chem. Rev., 1998, 31:71. c). Beer P D, Cadman J. New. J. Chem., 1999,23:347. d). Beer P. D, Cadman J. Coord. Chem. Rev., 2000,205:131.
    [3] a). Prodi L, Bolletta F, Montalti M, Zaccheroni N. Coord. Chem. Rev., 2000,205:59. b). Keefe M. H, Benkstein K D, Hupp J T. Coord. Chem. Rev., 2000,205:201. c). Hu Y. Z, Xiang Q, Thummel R P. Inorg. Chem., 2002,41:3423.
    [4] a). Baldo M A, O′Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, F?rrest S R. Nature, 1998,395:151. b). Adachi C, Baldo M A, F?rrest S R, Lamansky S, Thompson M E, Kwong R C. Appl. Phys. Lett., 2001,78:1622. c). Ma Y, Zhang H, Shen J, Che C. Synth. Met., 1998,94:245.
    [5] a). Welter S, Brunner K, Hofstraat J W, De Cola L. Nature, 2003,421:54. b). Kalyuzhny G, Buda M, McNeill J, Barbara P, Bard A J. J. Am. Chem. Soc., 2003,125:6272. c). Slinker J, Bernards D, Houston P L, Abruňa H D, Bernhard S, Malliaras GG. Chem. Commun., 2003:2392.
    [6] a). Gr?tzel M. Nature, 2001,414:338. b). Wang P, Zakeeruddin S M, Moser J E, Humphry-Baker R, Comte P, Aranyos V, Hagfeldt A, Nazeeruddin M K, Gr?tzel M. Adv. Mater., 2004, 16:1806.
    [7] Powe A M, Fletcher K A, St. Luce N N, Lowry M, Neal S, McCarroll M E, B. Oldham P, McGown L B, Warner I M. Anal. Chem., 2004, 76:4614. b). Browne W R, O’Boyle N M, McGarvey J J, Vos J G. Chem. Soc. Rev., 2005,34:641. c). Demas J N, DeGraff B A. Coord. Chem. Rev., 2001,211:317.
    [8] Chi Y, Chou P T. Chem. Soc. Rev., 2007,36:1421.
    [9] Yu J K, Hu Y H, Cheng Y M, Chou P T, Peng S M. Chem. Eur. J., 2004,10:6255.
    [10] Cheng Y M, Yeh Y S, Ho M L. Inorg. Chem., 2005,44:4594.
    [11] Chen Y L, Sinha C, Chen I C, Liu K L. Chem. Commun., 2003, 3046.
    [12] Carlson B, Phelan G D, Kaminsky W, Dalton L, Jiang X Z, Jen A K Y. J. Am. Chem. Soc., 2002,124:14162.
    [13] Liu T H, Hsu S F, Ho M H, Liao C H, Wu Y S, Chen C H. Appl. Phys. Lett, 2006,88:063508.
    [14] Chen Y L, Li S W, Chi Y, Cheng Y M, Pu S C, Yeh Y S, Chou P T. Chem. Phys. Chem., 2005,6:2012.
    [15] Tung Y L, Lee S W, Chi Y, Tao Y T, Chien C H, Cheng Y M. J. Mater. Chem., 2005,15:460.
    [16] Jiang X Z, Alex J K Y, Carlson B, Larry R D. Appl. Phys. Lett, 2002,80:713.
    [17] a). Che C M, Lai T F, Chung W C, Schaefer W P, Gray H B, Inorg. Chem., 1987,26:3907. b). Che C M, Cheng W K, Lai T F, Poon C K, Mak T C W. Inorg. Chem., 1987,26:1678. c). Cheng J Y K, Cheung K K, Che C M, Lau T C. Chem. Comm., 1997, 1443. d). Lai S W, Chan Q K W, Zhu N, Che C M. Inorg. Chem., 2007,46:11003. e). Zhang J, Liang J L, Sun X R, Zhou H B, Zhu N Y, Zhou Z Y, Chan P W H, Che C M. Inorg. Chem., 2005, 44:3942.
    [18] a). Tung Y L, Wu P C, Liu C S, Chi Y, Yu J K, Hu Y H, Chou P T, Peng S M, Lee G H, Tao Y, Carty A J, Shu C F, Wu F I. Organometallics 2004,23:3745. b). Chou P T, Chi Y. Chem. Eur. J., 2007,13:380.
    [19] a). van Slageren J, Hartl F, Stufkens D J, Martino D M, van Willigen H. Coord. Chem. Rev., 2000,208:309. b). Sauvage J P, Collin J P, Chambron J C, Guillerez S, Coudret C. Chem. Rev., 1994,94:993.
    [20] a). Jiang X Z, Jen A K Y, Carlson B, Dalton L R. Appl. Phys. Lett., 2002,80:713. b). Kim J H, Liu M S, Jen A K Y. Appl. Phys. Lett., 2003,83:776.
    [21] Wu P C, Yu J K, Song Y H, Chi Y, Chou P T, Peng S M, Lee G H. Organometallics, 2003,22:4938.
    [22] a). Adachi C, Baldo M A, Thompson M E, F?rrest S R. J. Appl. Phys., 2001,90: 5048. b). Kawamura Y, Goushi K, Brooks J, Brown J J, Sasabe H, Adachi C. Appl. Phy. Lett., 2005,86: 071104.
    [23] Li S W, Cheng Y M, Yeh Y S, Hsu C C, Chou P T, Peng S M, LeeG H, Tung Y L, Wu P C, Chi Y, Wu F I, Shu C F. Chem, Eur, J., 2005,11:6347.
    [24] Chou P T, Chi Y. Eur. J. Inorg. Chem., 2006, 3319.
    [25] a). Mockus N V, Petersen J L, Rack J J. Inorg. Chem., 2006, 45:8. b). Chardon-Noblat S, Deronzier A, Hartl F, van Slageren J, Mahabiersing T. Eur. J. Inorg. Chem., 2001, 613. c). Cheng J Y K, Cheung K K, Che C M. Chem. Commun., 1997, 623.
    [26] a). Gobetto R, Nervi C, Romanin B, Salassa L. Organometallics, 2003, 22:4012. b). Hsu F C, Tung Y L, Chi Y, Hsu C C, Cheng Y M, Ho M L, Chou P T, Peng S M, Carty A J. Inorg. Chem., 2006,45:10188.
    [27] a). Kumaresan D, Shankar K, Vaidya S, Schmehl R H. Top. Curr. Chem., 2007,281:101. b). Lees A J. Chem. Rev., 1987,87: 711.
    [28] Chen Y L, Lee S W, Chi Y, Hwang K C, Kumar S B, Hu Y H, Cheng Y M, Chou P T, Peng S M, Lee G H, Yeh S J, Chen C T. Inorg. Chem., 2005,44:4287.
    [29] Caspar J V, Westmorland T D, Allen G H, Bradley P G, Meyer T J. Woodruff W H, J. Am. Chem. Soc., 106,1984:3492.
    [30] Kober E M, Caspar J, Lumpkin R S, Meyer T J. J. Phys. Chem., 1986,90:722.
    [31] Bergkamp M A, Gutlich P, Netzel T L, Sutin N. J. Phys. Chem., 1983,87:3877.
    [32] Yersin H, Huber P, Braun D. J. Phys. Chem., 1990,94:3560.
    [33] Nguyen T T, Martin J C. J. Am. Chem. Soc., 1980,102:7383.
    [34] a). Stufkens D J. Comments Inorg. Chem., 1992,13:359. b).Wang Y, Hauser B T, Rooney M M, Burton R D, Schanze K S. J. Am. Chem. Soc., 1993,115:5675. c). Guerrero J, Piro O E, Wolkan E, Feliz M R, Ferraudi G, Moya S A. Organometallics, 2001,20:2842. d). Lo K K W, Hui W K, Ng D C M, Cheung K K. Inorg. Chem.,2002,41:40.
    [35] a). Zipp A P, Sacksteder L, Streich J, Cook A, Demas J N, DeGraff B A. Inorg. Chem., 1993,32: 5629. b). Yam V W W. Chem. Commun., 2001, 789. c). Yam V W W. Acc. Chem. Res., 2002,35:555.
    [36] a). Sacksteder L, Zipp A P, Brown E A, Streich J, Demas J N, DeGraff B A. Inorg. Chem., 1990,29:4335. b). Walters K A, Premvardhan L L, Liu Y, Peteanu L A, Schanze K S. Chem. Phys. Lett., 2001,339:225. c). Striplin D R, Crosby G A. Coord. Chem. Rev., 2001,211:163.
    [37] a). Nieuwenhuis H A, Stufkens D J, Jr. Vl?ek A. Inorg. Chem., 1995,34:3879. b). van Slageren J, Hartl F, Stufkens D J, Martino D M, Van Willigen H. Coord. Chem. Rev., 2000,208:309.
    [38] a). Kleverlaan C J, Stufkens D J, Fraanje J, Goubitz K. Eur. J. Inorg. Chem., 1998,1243. b). Rossenaar B D, Stufkens D J, Jr. Vl?ek D J A. Inorg. Chem., 1996,35:2902. c). van Slageren J, Stufkens D J. Inorg. Chem., 2001,40:277.
    [39] a). Aarnts M P, Stufkens D J, Wilms M P, et al. Chem. Eur. J., 1996,2:1556. b). Stufkens D J, Jr. Vl?ek A. Coord. Chem. Rev., 1998,177:127.
    [40] Chen K. Cheng Y M, Chi Y, Ho M L, Lai C H, Chou P T, Peng SM, Lee G H. Chem. Asian. J., 2007,2:155.
    [41] Yu J K, Cheng Y M, Hu Y H, Chou P T, Chen Y L, Lee S W, Chi Y. J. Phys. Chem. B, 2004,108:19908.
    [42] a). Stanton J F, Gauss J, Ishikawa N, Head-Gordon M. J. Chem. Phys., 1995,103:4160. b). Foreman J B, Head-Gordon M, Pople A. J. Phys. Chem., 1992,96:135. c). Waiter V A, Hadad C M, Thiel Y, Colson S D, Wibergy K B, Johnson P M, Foresmanl J B. J. Am. Chem. Soc., 1991,113:4782.
    [43] a). Stanton J F, Gauss J, Ishikawa N, Head-Gordon M. J. Chem. Phys., 1995,103:4160. b). Foreman J B, Head-Gordon M, Pople A. J. Phys. Chem., 1992,96:135. c). Waiters V A, Hadad C M, Thiel Y, Colson S D, Wibergy K B, Johnson P M, Foresmanl J B. J. Am. Chem. Soc., 1991,113:4782.
    [44] a). Casida M E, Jamorski C, Casida K C, Salahub D R. J. Chem. Phys., 1998,108:4439. b). Stratmann R E, Scuseria G E. J. Chem. Phys., 1998,109:8218. c). Matsuzawa N N, Ishitani A. J. Phys. Chem. A, 2001,105:4953.
    [45] Becke A D. J. Chem. Phys., 1993,98:5648.
    [46] a). Cossi M, Scalmani G, Regar N, Barone V. J. Chem. Phys., 2002, 117:43. b). Barone V, Cossi M. J. Chem. Phys., 1997, 107:3210.
    [47] a). Bauernschmitt R, Ahlrichs R, Chem. Phys. Lett., 1996, 256:454. b) Farrell I R, van Slageren J, Záli? S, Jr. Vl?ek A. Inorg. Chem. Acta., 2001,315:44. c). Rosa A, Baerends E J, van Gisbergen S J A V, van Lenthe E, Groeneveldand SnijdersJ A J G. J. Am. Chem. Soc., 1999,121:10356.
    [48] Ehlers A W, B?me M, Dapprich S. Chem.Phys.Lett., 1993, 208:111.
    [49] Esseffar M, Bouab W, Lamsabhi A, Abboud J LM, Notario R, Yanez M, J. Am. Chem. Soc., 2000,122:2300.
    [50] Wadt W R, Hay P J. J. Chem. Phys., 1985,82:284.
    [51] Frisch M J, Truck G W, Schlegel H B, Scuseria G E, Robb M A, Pople J A. GAUSSIAN 03, Revision C.02, Guassian, Inc., Pittsburgh, PA, 2003.
    [52] Park N G, Choi G C, Lee Y H, Kim Y S. Curr. Appl. Phys., 2006, 6:620.
    [1] Kober E M, Caspar J V, Lumpkin R S, Meyer T J. J. Phys. Chem., 1986,90:3722.
    [2] Caspar J V, Westmorland T D, Allen G H, Bradley P G, Meyer T J, Woodruff W H. J. Am. Chem. Soc., 1984,106:3492.
    [3] Bergkamp M A, Gutlich P, Netzel T L, Sutin N. J. Phys. Chem., 1983,87:3877.
    [4] Yersin H, Huber P, Braun D. J. Phys. Chem., 1990,94:3560.
    [5] Kumaresan D, Shankar K, Vaidya S, Schmehl R H. Top. Curr. Chem., 2007,281:101.
    [6] Vl?ek Jr A. Coord. Chem. Rev., 1998,177:219.
    [7] Stufkens D J. Coord. Chem. Rev., 1990,104:39.
    [8] Creutz C, Newton M D, Sutin N. J. Photochem. Photobiol. A: Chem., 1994,82:47.
    [9] Shin Y.–g. K, Brunschwig B S, Creutz C, Sutin N. J. Phys. Chem., 1996,100:8157.
    [10] Chen P, Omberg K M, Kavaliunas D A, Treadway J A, Palmer R A, Meyer T J. Inorg. Chem., 1997,36:954.
    [11] Orberg K M, Schoonover J R, Treadway J A, Leasure R M, Dyer R B, Meyer T J. J. Am. Chem. Soc., 1997,119:7013.
    [12] Mines G A, Roberts J A, Hupp J T. Inorg. Chem., 1992,31: 125.
    [13] Kokkes M W, Stufkens D J, Oskam A. J. Chem. Soc. Dalton. Trans., 1983, 439.
    [14] Hartl F, Vl?ek Jr A. Inorg. Chem., 1992,31:2869.
    [15] Nguyen T T, Martin J C. J. Am. Chem. Soc., 1980,102:7383.
    [16] Carlson B, Phelan G D, Kaminsky W, Dalton L. J. Am. Chem. Soc., 2002,124:14162.
    [17] Bernhard S, Gao X C, George G M, Adv. Mater., 2002,14:433.
    [18] Jiang X Z, Jen A K Y, Carlson B, Larry R D. Appl. Phys. Lett., 2002,80:713.
    [19] Tung Y L, Wu P C, Chi Y, Chou P T. Organometallics, 2004, 23:3745.
    [20] Cheng J Y K, Cheung K K, Che C M, Lau T C. Chem. Commun., 1997,1443.
    [21] Cheng J Y K, Cheung K K, Che C M. Chem. Commun., 1997, 623.
    [22] Das A, Basuli F, Peng S M, Bhattacharya S. Polyhedron, 1999, 18:2729.
    [23] Geoffroy G L, Wrighton M S. Organometallic Photochemistry[M]. Academic Press, New York, 1979.
    [24] Lever A B P. Inorganic Electronic Spectroscopy, 2nd ed [M]. Elsevier, Amsterdam, 1984.
    [25] Ford P C, Hintze R E, Petersen J D, Adamson A W, Fleischauer P D. Concepts of Inorganic Photochemistry[M]. Wiley-Interscience, New York, 1975, 203.
    [26] Ford P C, Wrighton M S. Inorganic and Organometallic Photochemistry[M]. Advances in Chemistry Series 168, American Chemiscal Society, 1978, 74.
    [27] Ford P C, Wink D, Di Benedetto J. Prog. Inorg. Chem., 1983, 30:213.
    [28] Wrighton M S, Morse D L. J. Organomet. Chem., 1975, 97:405.
    [29] Manuta D M, Lees A J. Inorg. Chem., 1986, 25:1354.
    [30] van Dijk H K, Stufkens D J, Oskam A. J. Am. Chem. Soc., 1989, 111:541.
    [31] Malouf G, Ford P C. J. Am. Chem. Soc., 1977,99:7213.
    [32] Van Houten J, Watts R J. Inorg. Chem., 1978,17:3381.
    [33] Durham B, Caspar J V, Nagle J K, Meyer T J. J. Am. Chem. Soc., 1982,104:4803.
    [34] Caspar J V, Meyer T J. J. Am. Chem. Soc., 1983,105:5583.
    [35] Rillema D P, Blanton C B, Shaver R J, Jackman D C, Boldaji M, Bundy S, Worl L A, Meyer T J. Inorg. Chem., 1992, 31:1600.
    [36] Wrighton M S, Abrahamson H B, Morse D L. J. Am. Chem. Soc., 1976,98:4105.
    [37] Lees A J, Adamson A W. J. Am. Chem. Soc., 1982,104:3804.
    [38] Wieland S, van Eldik R, Crane D R, Ford P C. Inorg. Chem.,1989,28:3663.
    [39] Glyn P, Johnson F P A, George M W, Turner J J. Inorg. Chem., 1993,32:4226.
    [40] Johnson F P A, George M W, Turner J J. Inorg. Chem., 1993, 32:4226.
    [41] VichováJ. Hartl F, Vl?ek Jr A. J. Am. Chem. Soc., 1992,114: 10903.
    [42] Vl?ek Jr A, VichováJ, Hartl F. Coord. Chem. Rev., 1994, 132: 167.
    [43] Virrels I G, George M W, Turner J J, Peters J, Vl?ek Jr A, Organometallics, 1996,15:4089.
    [44] van Dijk H K, Servaas P C, Stufkens D J, Oskam A. Inorg. Chim. Acta., 1985,104:179.
    [45] Lindsay E, Vl?ek Jr A, Langford C H, Inorg. Chem., 1993, 32:2269.
    [46] Wieland S, Reddy K B, van Eldik R. Organometallics, 1990, 9:1802.
    [47] Fu W F, van Eldik R. Inorg. Chim. Acta, 1996,251:341.
    [48] Fu W F, van Eldik R. Organometallics 1997,16:572.
    [49] Fu W F, van Eldik R. Inorg. Chem. 1998,37:1044.
    [50] Mann K R, Gray H B, Hammond G S. J. Am. Chem. Soc., 1977, 99:306.
    [51] Gray H B, Mann K R, Lewis N S, Thich J A, Richman R M, Wrighton Jr M S. Inorganic and Organometallic Photochemistry[M]. Advances in Chemistry Series 168, American Chemiscal Society,1978, 44.
    [52] Xie X, Simon J D. J. Phys. Chem., 1989,93:4401.
    [53] Ma?kováE, Vl?ek Jr A. Inorg. Chem. Acta., 1996,242:17.
    [54] Stor G J, Morrison S L, Stufkens D J, Oskam A. Organometallics, 1994,103:231.
    [55] Kleverlaan CJ, Hartl F, Stufkens D J, J. Photochem. Photobiol. A: Chem., 1997,103:231.
    [56] Rossenaar B D, Stufkens D J, Oskam A, Fraanje J, Goubitz K. Inorg. Chem. Acta., 1996,247:215.
    [57] Stufkens D J. Comments. Inorg. Chem., 1986,58:1193.
    [58] Stufkens D J, Aarnts M P, Rossenaar B D, Vl?ek Jr A. Pure. Appl. Chem. 1997,69:831.
    [59] Rossenaar B D, Kleverlaan C J, Stufkens D J, Oskam A. J. Chem. Soc. Chem. Commun., 1994, 63.
    [60] Rossenaar B D, Kleverlaan C J, van de Ven M C E, Stufkens D J, Vl?ek Jr A, Chem. Eur. J., 1996,2:228.
    [61] Rossenaar B D, George M W, Johnson F P A, Stufkens D J, J. Turner J, Vl?ek Jr A. J. Am. Chem. Soc., 1995,117:11582.
    [62] Rossenaar B D, Lindsay E, Stufkens D J, Vl?ek Jr A. Inorg. Chim. Acta., 1996,250:5.
    [63] Kleverlaan C J, Martino D M, van willigen H, Stufkens D J, Oskam A, J. Phys. Chem., 1996,100:18607.
    [64] van Outersterp J W M, Oostenbrink M T G, Nieuwenhuis H A, Stufkens D J, Hartl F. Inorg. Chem., 1995,34:6312.
    [65] Nijhoff J, Bakker M J, Hartl F, Stufkens D J, Fu W F, van EldikR. Inorg. Chem., 1998,37:661.
    [66] Hill R H, Puddephatt R J. J. Am. Chem. Soc., 1985, 107:1218.
    [67] Sandrini D, Maestri M, Balzani V, Chassot L, von Zelewsky A. J. Am. Chem. Soc., 1987,109:7720.
    [68] Maestri M, Balzani V, Deuschel-Cornioley C, von Zelewsky A. Advances in Photochemistry[M]. Wiley, New York, 1992,17:1.
    [69]林梦海量子化学计算方法与应用[M].北京:科学出版社,2004.
    [70] Becke A D. J.Chem.Phys., 1993,98:5648.
    [71] a) Casida M E, Jamorski C, Casida K C, Salahub D R. J. Chem. Phys., 1998,108:4439. b) Stratmann R E, Scuseria G E, J. Chem. Phys., 1998,109:8218. c) Matsuzawa N N, Ishitani A. J. Phys. Chem. A, 2001,105:4953.
    [72] a) Cossi M, Scalmani G, Regar N, Barone V. J. Chem. Phys., 2002,117:43. b) Barone V, Cossi M, Tomasi J. J. Chem. Phys., 1997,107:3210.
    [73] Xia B H, Che C M, Phillips D L, Leung K H, Cheung K K. Inorg. Chem., 2002,41:3866.
    [74] Fernández E J, López-de L, Monge M, Rodríguez M A. Inorg. Chem., 1998,37:6002.
    [75] Ehlers A W, B?me M, Dapprich S. Chem.Phys.Lett., 1993, 208: 111.
    [76] Pyykk? P, Mendizabal F. Inorg. Chem., 1998,37:3018.
    [77] Frisch M J, Trucks G W, Schlegal H B, et al. Gaussian 03, revision C.02. Gaussian, Inc.: Wallingford, CT, 2004.
    [78] Lai S W, Chan Q K W, Zhu N, Che C M. Inorg. Chem., 2007,46:11003.
    [79] a). Reed A E, Weinstock R B, Weinhold F, J. Chem. Phys., 1985, 83:735. b). Foster J P, Weinhold F. J. Am. Chem. Soc., 1980, 102:7211. c). Reed A E, Curtiss L A, Weinhold F. Chem. Rev., 1988, 88:899.
    [80] Chen K, Cheng Y M, Chi Y. Chem. Asian J., 2007,2:155.
    [81] Cotton F A, Wilkinson G. Advanced Inorganic Chemistry 3rd. ed[M]. Wiley & Sons; New York, 1972, 720.
    [82] Chou P T, Chi Y. Chem. Eur. J., 2007, 13:380. Liu T, Zhang H X, Zhou X, Xia B H. Chem. Eur. J., 2008, 1268.
    [1] Baldo M A, O?Brien D F, Thompson M E, F?rrest S R. Nature, 1998, 395:151.
    [2] Adachi C, Baldo M A, F?rrest S R, Lamansky S. Appl.Phys.Lett.,2001, 78:1622.
    [3] Nguyen T T, Martin J C. J. Am. Chem. Soc., 1980, 102:7383.
    [4] Baldo M A, Lamansky S, Burrows P E, Thompson M E, F?rrest S R. Appl.Phys.Lett., 1999,75:4.
    [5] O′Brien D F, Baddo M A, Thompson M E, F?rrest S R. Appl. Phys. Lett., 1999,74:442.
    [6] Baldo M A, Thompson M E, F?rrest S R. Nature, 2000, 403:750.
    [7] Baldo M A, Lamansky S, Burrows P E, Thompson M E, F?rrest S R. Appl. Phys. Lett., 1999, 75:4.
    [8] Duan J P, Sun P P, Cheng C H. Adv. Mater., 2003, 15:224.
    [9] Li C L, Su Y J, Tao Y T, Chou P T, Chien C H, Cheng C C, Liu R S. Adv. Funct. Mater., 2005, 15:387.
    [10] Jiang C Y, Yang W, Peng J B, Xiao S, Cao Y. Adv. Mater., 2004, 16:537.
    [11] Cheng Y M, Lee G H, Chou P T, Chen L S, Chi Y, Yang C H, Song Y H. Adv. Funct. Mater., 2008, 18:183.
    [12] a). Sprouse S, King K A, Spellane P J, Watts R J. J. Am. Chem. Soc., 1984. 106:6647. b). Chassot L, Von Zelewsky A. Inorg. Chem., 1987, 26:2814. c). Grushin V V, Herron N, LeCloux D D, Marshall W J, Petrov V A, Wang Y. Chem. Commun., 2001, 1494.
    [13] Wu P C, Yu J K, Song Y H, Chi Y, Chou P T. Organometallics, 2003, 22:4938.
    [14] Clark A M, Rickard C E F, Roper W R, Wright L J. Organometallics, 1999, 18:2813.
    [15] a). Jeffery J C, Jones P L, Mann K L V, Psillakis E, MeCleverty J V, Ward M D, White C M, Chem. Commun., 1997, 175. b). Chadghan A, Pons J, Caubet A, Casabo J, Ros J, AlvarezLarena A, Piniella J F. Polyhedron, 2000,19:855. c). Pons J, Chadghan A, Casabo J, Alvarez-Larena A, Piniella J F, Ros J. Inorg. Chem. Commun., 2000,3:296.
    [16] Tjiou E M, Fruchier A, Pellegrin V, Tarrago G. J. Heterocycl. Chem., 1989,26:893.
    [17] a). Hage R, Haasnoot J G, Reedijk J, Vos J G. Inorg. Chem., 1992, 4:75. b). Hage R, Haasnoot J G, Reedijk J, Wang R, Vos J G. Inorg. Chem., 1991,30:3263.
    [18] a). Tung Y L, Wu P C, Chi Y, Chou P T. Organometallics, 2004, 23:3745. b). Tung Y L, Lee S W, Chi Y, Tao Y T, Chien C H, Cheng Y M. J. Mater. Chem., 2005, 15:460.
    [19] Cheng Y M, Li E Y, Lee G H, Chou P T, Lin S Y, Shu C F, Hwang K C, Chen Y L, Song Y H, Chi Y. Inorg. Chem., 2007, 46:10276.
    [20] Hsu F C, Tung Y L, Chi Y, Hsu C C, Cheng Y M, Ho M L, Chou P T, Peng S M. Inorg. Chem., 2006,45:10188.
    [21] Yu J K, Hu Y H, Cheng Y M, Chou P T, Peng S M, Lee G H, Carty A J, Tung Y L, Lee S W. Chem. Eur. J., 2004,10:6255.
    [22] Wu P C, Yu J K, Song Y H, Chi Y, Chou P T, Peng S M, Lee G H. Organometallics, 2003, 22:4938.
    [23] Chang S Y, Kavitha J, Li S W, Hsu C S, Chi Y, Yeh Y S, Chou P T, Lee G H, Carty A J, Tao Y T, Chien C H. Inorg. Chem., 2006, 45:137.
    [24] Coppo P, Plummer E A, De Cola L. Chem. Commun., 2004, 1774.
    [25] Chou P T, Chi Y. Chem. Eur. J., 2007, 13:380.
    [26] Li S W, Cheng Y M, Tung Y L, Wu P C, Chi Y, Wu F I, Shu C. F,et al. Chem. Eur. J., 2005,11:6347.
    [27] Chi Y, Chou P T. Chem. Soc. Rev. 2007, 36:1421.
    [28] Kumaresan D, Shankar K, Vaidya S, Schmehl R H. Top. Curr. Chem., 2007,281:101.
    [29] Becke A D. J.Chem.Phys., 1993,98:5648.
    [30]曹怡,张建成主编.光化学技术[M].北京:化学工业出版社,2004.
    [31] Barone V, Cossi M, Tomasi J. J. Chem. Phys., 1997,107:3210.
    [32] Xia B H, Che C M, Phillips D L, Leung K H, Cheung K K. Inorg.Chem., 2002,41:3866.
    [33] Fernádez E J, López de Luzuraga J M, Monge M, Rodríguez M A. Inorg. Chem., 1998,37:6002.
    [34] H?berlen O D, R?sch N. J. Phys. Chem., 1993,97:4970.
    [35] Sinha P, Wilson A K, Omary M A. J. Am. Chem. Soc., 2005, 127:12488.
    [36] Ehlers A W, B?me M, Dapprich S. Chem.Phys.Lett., 1993, 208:111.
    [37] Pyykk? P, Mendizabal F. Inorg. Chem., 1998,37:3018.
    [38] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision C.02. Gaussian, Inc.: Wallingford, CT, 2004.
    [39] Caspar J V, Kober E M, Sullivan B P, Meyer T J. J. Am. Chem. Soc., 1982,104:630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700