用户名: 密码: 验证码:
几种腹足纲贝壳的结构和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中一些天然生物材料的分级结构和优异性能为复合材料和陶瓷材料的仿生设计提供新的思路,研究其结构和性能是研制仿生材料的一个最基本的前提。贝壳作为天然生物材料的一种,由于其优异的力学性能而受到材料设计和研究者的关注。本文以大连地区特有的腹足纲的香螺贝壳及几种热带海螺贝壳(唐冠螺、黄米螺和蜘蛛螺)为研究对象,通过光学显微镜、扫描电镜、x射线仪和透射电镜等仪器观察了其无机相组成和微观组织结构;并对这几种贝壳中的有机蛋白质进行了提取分析;用差示扫描热分析仪(DSC)和傅立叶变换红外光谱(FTIR)对香螺贝壳粉末的热行为进行了细致的研究;用三点弯曲、压缩和纳米压痕等方法对香螺和唐冠螺贝壳的力学性能进行了分析,并用有限元分析的方法对其力学性能进行了初步的模拟计算。最后对交错纹片结构的贝壳的结构和性能之间的关系进行了探讨。
     1.产自温带海域的香螺壳由方解石和文石两相构成,产自热带海域的黄米螺和唐冠螺及蜘蛛螺均由单一的文石相组成。香螺壳除胚壳由单一的文石相构成外,螺塔和体螺环部位都是由最外层方解石和两层或多层文石内层构成,壳口边缘只有一层方解石。方解石为柱状结构,文石层为交错纹片结构。黄米螺、唐冠螺的体壳都是由三层文石结构构成,蜘蛛螺由四层文石结构构成,其文石相的显微结构也为交错纹片结构。贝壳中的方解石和文石层均呈多级超微结构,微量的有机质在晶界和晶内呈不连续分布。
     2.在对不同处理状态贝壳的三点弯曲、压缩和纳米压痕等力学性能实验的对比中,发现在空气中加热后的贝壳力学性能较低,应用加热前后贝壳文石层中有机蛋白质分子和文石晶体界面处模型的变化,较好的说明了贝壳作为一种典型的天然生物材料,其性能不仅仅与贝壳独特的微观结构相关,与其中的有机质以及有机质和无机相之间的健合等因素也是相关的。
     3.对香螺贝壳纳米压痕的结果表明文石的弹性模量和硬度要高于方解石层,贝壳的性能和微观裂纹扩展与晶体类型以及晶体结构的排列方式是密切相关的。方解石层压痕四周均存在裂纹,其裂纹形状曲折、不规则且沿着方解石层的边界扩展,不抗裂纹扩展。文石压痕周围平直清晰,裂纹沿着其二级结构扩展。新鲜的贝壳其纳米压痕的变形功、硬度和模量要高于烘干以后的贝壳的变形功、硬度和模量,这与其三点弯曲的实验结果是一致的。
     4.采用三点弯曲、压缩、显微硬度、纳米压痕等几种实验方法表征贝壳的力学性能,对实验结果的综合分析后发现纳米压痕功与贝壳的纳米硬度以及弹性模量等力学性能指标有较好的对应关系,表明纳米压痕实验对于表征贝壳类天然生物材料的微/纳米尺度的力学性能比较合理。
     5.通过对不同生长期香螺贝壳文石板条特征尺寸和力学性能的比较,发现随着香螺贝壳生长期的增加,文石板条特征尺寸也在增大,香螺贝壳的强度、硬度和弹性模量等力学性能指标也在增大,其三点弯曲曲线的斜率呈现出增大的趋势,而且承载能力也表现出明显的增强。揭示了贝壳类天然生物材料的性能不同于传统工程材料尺寸越小,强度越高的准则,而是综合考虑结构、有机质等多因素作用的结果。
In nature, many natural biomaterials with hierarchical structure and mechanical properties provide new ideas for designing the composite material and ceramic material. And studying the hierarchical structure and mechanical properties is the most basic premise for producing biomaterial. The mollusk shell, as a typical natural biomaterial, has attracted the attention of the researchers due to its special microstructure and excellent mechanical properties. This paper takes Hemifusus tuba conch shell from the region of Yellow Sea and Bohai Sea and several tropical conch shell of gastropoda (Horned Helme conch shell, Conus betulina linnaeus shell, Common Spider Conch shell) as the object, and studies the composition, structure and characteristics of morphology by optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmitted electron microscopy (TEM). The structure and characteristics of morphology of Hemifusus tuba conch shell in different growth period are observed by optical microscopy (OM). The organic protein of above several mollusc shells is extracted and analyzed and the thermal behaviour is researched in detail by differential scanning caloricity (DSC) and Fourier transform infrared spectra (FTIR). The mechanical properties of Hemifusus tuba and Horned Helme conch shell are studied by 3-point bending test, compressive test and nanoindentation, and then it simulates the mechanical properties using finite element analysis. At last two biomaterials are fabricated simulating the mollusk shell's structure and the mechanical properties of them are analyzed.
     1. The Hemifusus tuba conch shell of temperate sea is composed of calcite and aragonite phase, and other three tropical conch shells are all composed of single phase of aragonite of crossed-lamellar. The Hemifusus tuba conch shell has different component, and the prodissoconch is composed of single aragonite, and the spire and body loop-coil are composed of outer layer of calcite and two or more layer of aragonite, yet the shell aperture fringe consists of single layer of calcite. The calcite is irregular cylindrical grains and aragonite is crossed-lamellar structure. The calcite and aragonite layer are all multiarchitecture, and a small quality of organic matrix presents discontinuous distribution at grain boundary and in grain.
     2. The comparative results of 3-point bending tests, compressive tests and nanoindentation tests of conch shell in different states including fresh shell ands heated shells indicate that the micromechanical properties of the heated shells at 250℃are lower than that of fresh shells..Applying the interface models of organic protein and inorganic crystal in the shell's aragonite between former and after heating states preferably explain that the mechanical properties are not only correlative to unique microstructure, but also relate with the organic matrix and the bond between the organic matrix and inorganic mineral.
     3. The nanoindentation results of Hemifusus tuba conch shell indicate that the modulus and hardness of aragonite are higher than that of calcite. The mechanical properties and the microcracks propagation are related to the crystal type and crystal structure. The cracks around the indentation of calcite crystals are irregular and propagate along the interface of calcite. However the cracks around the indentation of aragonite are regular and obvious, and propagate along the second-order structure. The deformation work, hardness and modulus of fresh shells are higher than that of heated shells, and which is accorded with the 3-point bending tests results.
     4. The 3-point bending tests, compression, microhardness and nanoindentation tests etc several experiments are applied to test the the mechanical properties of mollusc shells. The synthetical test results indicate that there exists the better corresponding relation between nanoindentation work and bending strength, nanohardness, moduls etc. And which shows that the nanoindentation test is more reasonable to test the micro/nano mechanical properties mollusk shells of biomaterial.
     6. The comparison between size of aragonite fiber and mechanical properties shows that the thickness of aragonite fibre increase with the accretion of growth period of Hemifusus tuba conch shell. And the slope of 3-point bending curves increases, and the bearing capacity, hardness, modulus and nanoindentation work present obvious enhancement. And which shows that the mechanical properties of mollusk shells of biomaterial are different from the higher strength and little dimension of the traditional engineering material, but it synthetically considers the microstructure and organic matrix etc factors.
引文
[1]Ball P.Science in culture.Nature,2000,407(6805):676-678.
    [2]Ball P.Life' s lessons in design.Nature,2001,409(6818):413-416.
    [3]冯庆玲.生物矿化与仿生材料的研究现状及展望.清华大学学报(自然科学版),2005,45(3):378-383.
    [4]Weiner S,Traub W,Wagner H D.Lamellar bone:Structure-function relations.J Struct Biol.,1999,126(3):241-255.
    [5]Lichtenegger H C,Schberl T,Bartl M H et al.High abrasion resistance with sparse mineralization:Copper biomineral in worm jaws.Science,2002,298(5592):389-392.
    [6]Whaley S R,English D S,Hu E L et al.Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly.Nature,2000,405(6787):665-668.
    [7]王夔.生物无机化学.北京:清华大学出版社,1988.
    [8]崔福斋,冯庆玲.生物材料学.北京:清华大学出版社,2004.
    [9]Okumura K,de Gennes P G.Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures.The Eur Phys J E,2001,4:121-127.
    [10]Heuer A H,Fink D J,Laraia V J et al.Innovative materials processing strategies:a biomimetic approach.Science,1992,255:1098-1105.
    [11]Watabe N.Crystal growth of calcium carbonate in the invertebrates.Prog.Crystal Growth Charact.1981,4:99-147.
    [12]Addadi L,Weiner S.A Pavement of peral.Nature,1997,389:912-915.
    [13]Simkiss K,Wilber K M.Biomineralization:cell biology and mineral deposition.New York:Academic Press Ince.1989.
    [14]Bowerbank J S.On the structure of the shells of molluscous and conchiferous animals.Trans.Microsc.Soc.London.1844,1:123-152.
    [15]Boggild O B.The shell structure of mollusks.K.Dan.Vidensk,Selsk.Skr.Copenhagen,1930,2:233-235.
    [16]Swamy.S.X-ray analysis of the structure of iridescent shells.Part Ⅱ-The Haliotid.Proceedings of the Indian Academy of Sciences section A.1935,4:345-351.
    [17]Burrage B J,Pitkethly D R.Aragonite transformations observed in the electron microscope.Phys.Stat.Sol.1969,32:399-405.
    [18]Mutvei H.Ultrastructure of the mineral and organic components of molluscan nacreous layers.Biomineralization,1970,2:49-72.
    [19]Bevelander G B.Nahahara H.An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs.Calc Tiss Res,1965,3:84-92.
    [20] Wada K. The crystalline structure on the nacre of pearl oyster shell. Bull lap Soc Sci Fish, 1958, 24: 422-427.
    [21] Watabe N, Wilbur K M. Influence of the organic matrix on crystal type in mollusks. Nature, 1960, 188: 334-336.
    [22] Watabe N. Crystal-matrix relationships in the inner layers of mollusk shells. J. Ulstrastructure Research, 1965, 12: 351-370.
    [23] Watabe N. Decalfication of thin sections for electron microscope studies of crystal-matrix relationships in mollusks shells. J Cell Biol. 1963, 18: 701-703.
    [24] Wada K. Crystal growth of molluscan shells. Bull Natl' Pearl Res. Lab, 1961, 7: 703-783.
    [25] Wada K. Studies on the mineralization of the calcified tissue in mollusk- I. Relations among mantle and its products. Bull Jap Soc Sci Fisheries, 1964, 30: 319-325.
    [26] Towe K. M, Hamilton G. H. Ultrastructure and inferred calcification of the mature and developing nacre in bivalve mollusks. Calc. Tiss. Res. 1968, 1: 306-318.
    [27] Crenshaw M A. The soluble matrix from Mercenaria mercenaria. Biomineralization, 1972, 6: 6-11.
    [28] Crenshaw M A. The inorganic composition of molluscan extrapallial fluid. Biol Bull, 1972, 143: 506-512.
    [29] Weiner S, Hood L. Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science, 1975, 190(5): 987-988.
    [30] Nakahara H. An electron microscopic study of the growing surface of nacre in two gastropod species, Turbo cornutus and Tegula pfeifferi. Venus, 1979, 38(3): 205-211
    [31] Wise S. Microarchitecture and mode of formation of nacre (mother of pearl) in pelecypods, gastropods and cephalopods. Ecol. Geol. Helv, 1970, 63: 775-797.
    [32] Erben H K. On the structure and growth of the nacreous tablets in gastropods. Biomineralisation, 1974, 7: 14-27.
    [33] Iwata K. Ultrastructure of the conchiolin matrices in molluscan nacreous layer. J Fac Sci Hokkaido Univ, 1975, 17: 173-229.
    [34] Weiner S. Aspartic acid-rich proteins: major components of the soluble organic matrix of mollusk shells. Calcif Tissue Int, 1979, 29: 163-167.
    [35] Mutvei H. On the internal structures of the nacreous tablets in gastropods. Scaning Electron Microscopy, 1979, 2: 457-462.
    [36] Weiner S, Traub W. X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Letters, 1980, 111(2): 311-316.
    [37] Weiner S, Traub W. Macromolecules in mollusk shells and their functions in biomineralization. Phil Trans R Soc London Ser. B, 1984, 304: 421-438.
    [38] Wheeler A P, George J W, Evans C R. Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science, 1981, 212: 1397-1398.
    [39] Weiner S, Talmon Y, Traub W. Electron diffraction of mollusk shell organic matrices and their relationship to the mineral phase. Intl J Biol Macromol. 1983, 5: 325-328.
    [40] Madon M, Gillet Ph. A theoretical approach to the kinetics of calcite-aragonite transition: application to laboratory experiments. Earth and Planetary Science Letters, 1984, 67: 400-414.
    [41] Nakahara H, Bevelander G, Kakei M. Electron microscope and amino acid studies on the outer and inner shell layers of Haliotis rufescens. Venus, 1982, 41(1): 33-44.
    [42] Mutvei H. Ultrastructural characteristics of the nacre of some gastropods. Zoologica Scripta, 1978, 7: 287-296.
    [43] Marsh SE, Sass R L. Aragonite twinning in the molluscan bivalve hinge ligament. Science, 1980, 208: 1262-1263.
    [44] Weiner S. Organization of extracellulary mineralized tissues: a comparative study of biological crystal growth. CRC Crit. Rev. in Biochem, 1986, 20(4): 365-380.
    [45] Worms D, Weiner S. Mollusc shell organic matrix: Fourier Transform Infrared study of the macromolecules. J. Exp. Zool, 1986, 237: 11-20.
    
    [46] Szuromi P. Microstructural engineering of materials. Science, 1997, 277: 1183-1183.
    [47] Manne S, Zaremba C M. Giles R et al. Atomic force microscopy of the nacreous layer in mollusk shells. Proc R Soc Lond, 1994, 256B: 17-23.
    [48] Belcher A M, Wu X H, Christensen R J et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature, 1996, 381(2): 56-58.
    [49] Fritz M, Belcher A M, Radmacher M et al. Flat pearls from biofabrication of organized composites on inorganic substrates. Nature, 1994, 371(1): 49-51.
    [50] Schiffer T E, Zanetti C I, Proksch R et al. Does abalone nacre formed by hetereoepitaxial nucleation or by growth through mineral bridge. Chem Mater, 1997,9: 1731-1740.
    [51] Zaremba C M, Belcher A M. Fritz M. Critical transition in the biofabrication of abalone shells and flat pearls. Chem Mater, 1996, 8: 679-690.
    [52] Shen X Y, Belcher A M, Hansma P K et al. Molecular cloning and characterization: A matrix protein from shell and pearl nacre of Haliotis rufescens. J Bio Chem, 1997, 272(51): 32472-32481.
    [53] Sudo S, Fujikawa T, Nagakura T et al. Structures of mollusc shell framwork proteins. Nature, 1997, 387(5): 563-564.
    [54] Kono M, Hayashi N, Samata T. Molecular mechanism of the nacreous laver formation in Pinerada maxima. Biochem Biophys Res Commun, 2000, 269: 213-218.
    [55] Thompson J B, Poloczi J T, Kindt J H et al. Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins. Biophys J, 2000, 79(6) : 3307-3312.
    [56] Marin F, Pereira L, Westbroek P. Large-scale fractionation of molluscan shell matrix. Protein Expr. Purif, 2001, 23(1): 175-179.
    [57] Checa A G, Rodriguez-Navarro A. Geometrical and crystallographic constraints determine the self-organization of shell microstructures in Unionidae (Bivalvia: Mollusca). Proc R Soc London B, 2001, 268(1468): 771-778.
    [58] Pereira-Mouries L, Almeida M J, Ribeiro C et al. Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. A new insight in the biomineralization field. Eur. J. Biochem, 2002, 269(20): 4994-5003.
    [59] Marin F, Groot K, Westbroek P. Screening molluscan cDNA expression libraries with anti-shell matrix antibodies. Protein Expression and Purification, 2003, 30 (2): 246-252.
    [60] Boskey A L. Biomineralization: An Overview. Connective Tissue Research, 2003, 44(Suppl. 1): 5-9.
    [61] Marin F, Luquet G. Molluscan biomineralization: the proteinaceous shell constituents of Pinna nobilis L. Materials Science and Engineering C, 2005, 25(2): 105-111.
    [62] Checa A G, Alejandro B, Rodriguez-Navarro A. Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca). Biomaterials, 2005, 26(9): 1071-1079.
    [63] Bruet B J F, Panas R, Tai K et al. Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusk Trochus Niloticus. J Mater Res, 2005, 20(11): 2400-2419.
    [64] Verma D, Katti K, Katti D. Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone. Spectrochimica Acta Part A, 2006, 64(4): 1051-1057.
    [65] Rousseau M, Lopez E, Coute A et al. Sheet nacre growth mechanism: a Voronoi model. J Struct Biol, 2005, 149(2): 149-157.
    [66] Rousseau M, Lopez E, Stempfle Ph et al. Multiscale structure of sheet nacre. Biomaterials, 2005, 26(31): 6254-6262.
    [67] Zhu Z H, Tong H, Ren Y Y et al. Meretrix lusoria—a natural biocomposite material: in situ analysis of hierarchical fabrication and micro-hardness. Micron, 2006, 37(1): 35-40.
    [68] Heinemann F, Treccani L, Fritz M. Abalone nacre insoluble matrix induces growth of flat and oriented aragonite crystals. Biochemical and Biophysical Research Communications, 2006, 344(1): 45-49.
    [69]Feng Q L,Li H B.Cui F Z et al.Crystal orientation domains found in the single lamina in nacre of the Mytilus edulis shell.J Mater Sci Lett,1999,18:1547-1549.
    [70]Hou W T,Feng Q L.Crystal orientation preference and formation mechanism of nacreous layer in mussel.J Crystal Growth,2003(258):402-408.
    [71]Feng Q L,Cui F Z et al.Crystal orientation,toughening mechanisms and a mimic of nacre.Materials Science and Engineering C,2000(11):19-25.
    [72]Song F,Bai Y L.The effects of nanostructurals on the fracture strength of the interfaces in nacre.J.Mater.Res.,2003,18(8):1741-1744.
    [73]Song F,Soh A K,Bai Y L.Structural and Mechanical Properties of the Organic Matrix Layers of Nacre.Biomaterials,2003,24(20):3622-3631.
    [74]Song F,Zhang X H,Bai Y L.Microstructure and Characteristics of the Organic Matrix Layers of Nacre.J.Mater.Res.,2002,17(7):1567-1570.
    [75]Song F,Bai Y L.Nanostructure of nacre and its mechanical effects.Int.J.Nonl.Sci.& Numerical Simulation,2002,Vol.3(3):257-260.
    [76]宋凡,白以龙.一类生物材料界面的结构及其裂纹阻力.力学与实践,2002,24(6):24-26.
    [77]Song F,Bai Y Y.Mineral bridges of nacre and its effects.Acta Mechanica Sinica,2001,17(3):251-257.
    [78]宋凡,白以龙.一类生物材料界面的强韧化分析.中国科学(A辑),2001,31(11):1032-1037.
    [79]宋凡,白以龙.矿物桥对珍珠母结构力学性能的影响.固体力学学报,2000,21:171-176.
    [80]张刚生,谢先德等.贝壳珍珠层的X射线衍射研究.矿物岩石,2002,12:8-11.
    [81]张刚生,谢先德.贝壳珍珠层微结构及成因理论.矿物岩石,2000,20(1):11-16.
    [82]张刚生,谢先德.贝壳珍珠层中文石晶体择优取向研究.无机材料学报,2000,15(4):765-768.
    [83]张刚生,李浩璇.淡水养殖珍珠的矿物组成.岩石矿物学杂志,2004,23(1):89-93.
    [84]张刚生,丁世磊,邱树垣.生物成因六方碳钙石矿物的FTIR光谱特征.矿物岩石,2005,25(1):6-9.
    [85]孙家美,毛振伟.贝壳珍珠层元素的X射线荧光光谱分析,湛江水产学院学报,1991,11(2):25-30.
    [86]刘承松,陈婉颜,谢窨玻等.大珍母贝贝壳珍珠层的化学成分研究.动物学杂志,1984,4:7-9.
    [87]周佩玲.贝壳的宝石学特征.桂林工学院学报,1998,18(1):45-52.
    [88]刘小明.淡水贝类贝壳多层构造形成研究.动物学报,1994,40(3):221-256.
    [89]Hua T,Jiming H,Wen T M et al.In situ analysis of the organic framework in the prismatic layer of mollusc shell.Biomaterials,2002,23:2593-2598.
    [90]侯东芳,周树根等.贝壳珍珠层不同取向弹性模量的研究.生物生理学报,2003,19(2):203-206.
    [91]侯东芳,周树根,郑茂盛.不同取向贝壳材料力学性能的压痕法研究.三峡大学学报(自然科学版),2006,28(3):246-249.
    [92]侯东芳,周根树,郑茂盛.贝壳中文石晶体择优取向的XRD分析.三峡大学学报(自然科学版),2006,28(5):431-434.
    [93]李秀华,袁启明,杨正方.贝壳结构及陶瓷的仿生研究.硅酸盐通报,2003,2:53-56.
    [94]Wang C A,Buang Y,Cai S.Biomimetic structure design-a possible approach to change the brittleness of ceramics in nature.Materials Science & Engineering C,2000,11:9-12.
    [95]黄勇,汪长安,昝青峰等.高韧性复相陶瓷材料的仿生结构设计、制备与力学性能.成都大学学报(自然科学版),2002,21(3):1-7.
    [96]Liu C H,Li W Z,Li H D.Simulation of nacre with TiC/metal multilayers and a study of their toughness.Materials Science and Engineering C,1996,4:139-142.
    [97]丁更新,葛曼珍,杨辉.氧化铝/ZTA强夹层层状复合陶瓷的制备和性能.硅酸盐通报,2000,1:50-52.
    [98]Roberts W L,Campbell T J,Rapp G R.Encyclopedia of Minerals.New York:Edition Van Nostrand Reinhold,1990.
    [99]戴永定等著.生物矿物学.北京:石油工业出版社,1994.
    [100]Weiner S,Addadi L.Design strategies in mineralized biological materials.J Mater Chem,1997,7:689-702.
    [101]Walters D A,Smith B L,Belcher A M et al.Modification of calcite crystal growth by abalone shell proteins:an atomic force microscope study.Biophys J,1997,72:1425-1433.
    [102]Kang S M,Wen B Z,Tan B P et al.Effects of dietary zinc on the shell biomineralization in abalone Haliotis discus hannai Ino.Journal of Experimental Marine Biology and Ecology,2003,283:51-62.
    [103]Vermeij G J.A Natural History of Shells.Princeton:Princeton Univ.Press,1993.
    [104]Currey J D.Mechanical properties of mother of pearl in tension.Proc.R.Soc Lond.B,1977,196:443-463
    [105]吴小平,梁彦龄.蚌科贝壳的扫描电镜观察.南昌大学学报:理科版,1999,23(1):58-61.
    [106]吴晓京,陈贵卿.珍珠和珍珠贝壳的显微结构.无机材料学报,1990,5(3):272-276.
    [107]Dauphin Y,Denis A.Structure and composition of the aragonitic crossed lamellar layers in six species of Bivalvia and Gastropoda.Comparative Biochemistry and Physiology Part A,2000(126):367-377
    [108]Dauphin Y,Guzman N,Denis A et al.Microstructure,nanostructure and composition of the shell of Concholepas concholepas(Gastropoda,Muricidae).Aquatic Living Resource,2003,16(2):95-103.
    [109] Chateigner D, Hedegaard C, Wenk H R. Mollusk shell microstructures and crystallographic textures. J. Struc. Geol, 2000, 22: 1723-1735.
    [110] Laraia, V J, Heuer A H. Novel composite microstructure and mechanical behavior of mollusk shell. J. AM. Ceram. Soc., 1989, 72(11): 2177-2179.
    [111] Feng Q L, Su X W, Ciu F Z et al. Crystal lographic orientation domains of flat tablets in nacre. Biomimetics, 1995, 3: 159-167.
    [112] Weiner S, Traub W, Lowenstam H A. Organic matrix in calcified exoskeletons. In: Westbroek P, De Jong E W. Biomineralization and Biological Metal Accumulation. D. Reidel. Publ. Co., Dordrecht Holland, 1983: 205-224.
    [113] Akai J, Kobayashi I. Structure, formation and evolution of fossil hard tissues. 1992. In: Kobayashi I, Mutvei H, Sahni A. The 29th International Geological Conference. Tokyo: Tokai University Press, 1993: 47-54.
    [114] Falini G, Albeck S, Weiner S et al. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 1996, 271(5): 67-69.
    [115] Levi-Kalisman Y, Falini G, Addadu L et al. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in hydrated state using Cryo-TEM. Journal of Structural Biology, 2001, 135: 8-17.
    [116] Borbas J E, Wheeler A P, Sikes C S. Molluscan shell matrix phosphoproteins: correlation of degree of phosphorylation to shell mineral microstructure and to in virto regulation of mineralization. J Exp Zool, 1991, 258: 1-13.
    [117] Halloran B A, Donachy J E. Charactarization of organic matrix macro molecules from the shells of the sallop, Adamussium colbecki. Comp Biochem Physiol, 1995, 111B(2): 221-231.
    [118] Marxen J C, Becker W. The organic shell matrix of the freshwater snail. Biomphalaria glabrate. Comp Biochem Physiol, 1997, 118B(1): 23-33.
    [119] Bowen C E, Tang H. Cochiolin-protein in aragonite shells of mollusks. Comp Biochem Physiol, 1996, 115A(4): 269-275.
    [120] Keith J, Stockwell S, Ball D et al. Compatative analysis of macro molecules in mollusk shells. Comp Biochem Physiol, 1993, 105B(3-4): 487-496.
    [121] Kaplan D L. Mollusk shell structures: novel design strategies for synthetic materials. Current Opinion in Solid State & Materials Science, 1998, 3: 232-236.
    [122] Miyamoto H, Miyashita T, Okushima M et al. A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA, 1996, 93: 9657-9660.
    [123] Zentz F, Bedouet L, Almeida M J et al. Characterization and quantification of chitosan extracted from nacre of the abalone Haliotis tuberculata and the oyster Pinctada maxima. Marine Biotechnol, 2001, 3(1): 36-44.
    [124] Mouries L P, Almeida M J, Milet C et al. Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comparative Biochemistry and Physiology Part B, 2002, 132(1): 217-229.
    [125] Zhang Y, Xie L P, Meng Q X et al. A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata. Comparative Biochemistry and Physiology Part B, 2003, 135(3): 565-573.
    [126] Matsushiro A, Miyashita T, Miyamoto H. Presence of Protein Complex is Prerequisite for Aragonite Crystallization in the Nacreous Layer. Marine Biotechnol, 2003, 5(1): 37-44.
    [127] Marin F, Luquet G. Molluscan biomineralization: The proteinaceous shell constituents of Pinna nobilis L. Materials Science and Engineering C, 2005, 25(2): 105-111.
    [128] Bedouet L, Rusconi F, Rousseau M. Identification of low molecular weight molecules as new components of the nacre organic matrix. Comparative Biochemistry and Physiology, Part B, 2006, 144(4): 532-543.
    [129] Yano M, Nagai K, Morimoto K et al. A novel nacre protein N19 in the pearl oyster Pinctada fucata. Biochemical and biophysical research communications, 2007, 362(1): 158-163.
    [130] Weiss I M, Kaufmann S, Mann K et al. Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusk Haliotis laevigata. Biochem and Biophys Res Commu, 2000, 267: 17-21.
    [131] Samata T, Hayashi N, Kono M et al. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Letters, 1999, 462: 225-229.
    
    [132] 马文涛, 沈亦平, 曹连欣. 贝壳有机质对 CaCO3 晶形形成的控制作用. 武汉大学学报(自然版), 1996, 42(4): 469-474.
    [133] Sarashina I, Endo K. Primary structure of a soluble matrix protein of scallop shell: implications for calcium carbonate biomineralization. American Mineralogist, 1998, 83: 1510-1515.
    [134] Graham T, Sarikaya M. Growth dynamic of red abalone shell: a biomimetic model. Materials Science and Engineering C, 2000,11: 145-153.
    [135] Wang J J, Xu Y Z, Zhao Y et al. Morphology and crystalline characterization of abalone shell and mimetic mineralization. Journal of crystal Growth, 2003, 252(1-3): 367-371.
    [136] Ingrid M. Weiss S K. Purification and Characterization of Perlucin and Perlustrin, Two New Proteins from the Shell of the Mollusc Haliotis laevigata. Biochemical and Biophysical Research Communications, 2000, 267: 17-21.
    [137] Manoli F, Dalas E. Calcium carbonate crystallization on xiphoid of the cuttlefish. Journal of Crystal Growth, 2000, 217: 422-428.
    [138] Arias J L, Ferna'ndez M S. Biomimetic processes through the study of mineralized shells. Materials Characterization, 2003, 50: 189-195.
    [139] Cheong S C, Yong W K. A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation. Biomaterials, 2000, 21: 213-222.
    [140] Sarikaya M, Fong H, Frech D W et al. Biomimetic assembly of nanostructured materials. Bioceramics, 1999, 293: 83-97.
    [141] Currey J D. Mechanical properties of mollusk shell. In: Symp. Soc Exp. Biol. The mechanical properties of biological materials. Cambridge: Cambridge University Press, 1980, 34: 75-97.
    [142] Currey J D. Fracture in the crossed-lamellar structure of conus shells. Journal of Materials Science, 1976, 11: 1615-1623.
    [143] Jackson A P, Vincent J F V, Turner R M. The mechanical design of nacre. Proc. R. Soc. Lond B, 1988(234): 415-440.
    [144] Jackson A P, Vincent J F V. A physical model of nacre. Composites Science and Technology, 1989, 36: 255-266.
    [145] Jackson A P, Vincent J F V, Briggs D et al. Application of surface analytical techniques to the study fracture surface of mother-of pearl. J. Materi. Science Letters, 1986, 5: 975-980.
    [146] Michael B C, Katie E M, Margaret M E. Fracture mechanics of mollusc shells. Physica B, 2006, 385(SI): 545547.
    [147] Kessler H, Spearing L, Heuer A H. Optimization of a structural composite by mimicking the structure of the Strombus gigas conch shell. ASME Advances in Bioengineering, 1994, 28: 39-48.
    [148] Kessler H, Ballarini R, Mullen R L et al. A Biomimetic example of brittle toughening (I) Steady state multiple cracking. Computational materials Science, 1996, 5: 157-166.
    [149] Thouless M D, Olson E, Gupta A. Cracking of Brittle Films on an Elastic Substrate. Acta Metall. Mater, 1992, 40(6): 1287-1292.
    [150] Kuhn-Spearing L T, Kessler H, Chateau E et al. Fracture mechanisms of the Strombus gigas conch shell: Implication for the design of brittle laminates. J. Mater. Sci, 1996, 31(24): 6583-6594.
    [151] Kamat S, Su X, Ballarini R et al. Structural basis for the fracture toughness of the shell of the conch strombus gigas. Nature, 2000, 405(6790): 1036-1040.
    [152] Menig R, Meyers M H, Meyers M A et al. Quasi-static and dynamic mechanical response of Strombus gigas(conch)shells. Material Science and engineering A, 2001, 297: 203-211.
    [153] Neves N M, Mano J F. Structure/mechanical behavior relationships in crossed-lamellar sea shells. Materials Science and Engineering C, 2005, 25 (2): 113-118.
    [154] Bond G M., Richman R H, Mcnaughton W P. Mimicry of natural material designs and processes. J. Mater. Eng. Perform, 1995, 4: 334-345.
    [155] Wang R Z, Wen H B, Cui F Z et al. Observations of damage morphologies in nacre during deformation and fracture, J Mater. Sci. 1995, 30: 2299-2304.
    [156] Smith B L, Schaffer T E, Viani M. Molecular mechanistic origin of the toughness of natural adhesives, fibers and composites. Nature, 1999, 399: 761-763.
    [157] Wang R Z, Suo Z, Evans A G. Deformation mechanisms in nacre. J. Mater. Res, 2001, 16: 2485-2493.
    [158] Katti K S, Katti D R. Why is nacre so tough and strong. Materials Science and Engineering C, 2006, 26 (8): 1317-1324.
    [159] Ha J S, Chawla K K. Effect of SiC/BN double coating on fibre pull-out in mullite fibre/mullite matrix composites. Journal of Material Science Letter, 1993,12:84-86.
    [160] Pharr G M. Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng. A, 1998, 253: 151-159.
    [161] Li X D, Nardi P. Micro/nanomechanical characteriazation of anatural nanocomposite material-the shell of Pectinidae. Nanotechnology, 2004, 15: 211-217.
    [162] Li X D, Chang W C, Yuh J et al. Mechanical Characterization of a Natural Nanocomposite Material-the Shell of Red Abalone. Nano Letters, 2004, 4: 613-617.
    [163] Katti K S, Mohanty B, Katti D R. Nanomechanical properties of nacre. J. Mater. Res. 2006, 21(5): 1237-1242.
    [164] Bruet B J F, Qi H J, Boyce M C et al. Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res, 2005, 20(9): 2400-2419.
    [165] Katti D R, Member ASCE, Katti K et al. Effect of nanostructure in nacre: a multiscale modeling approach. 15th ASCE Engineering Mechanics Conference, Columbia University, New York, NY. 2002, 6.
    [166] Katti D R, Katti K S, Sopp J M et al. 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposite. Computational and Theoretical Polymer Science, 2001, 11: 397-404.
    [167] Katti K, Katti D R, Tang J et al. Modeling mechanical responses in a laminated biocomposite Part II-Nonlinear responses and nuances of nanostructure. Journal of Materials Science, 2005, 40(7): 1749-1755.
    [168] Katti D R, Katti K. Modeling microarchitecture and mechanical behavior of nacre using 3D finite element technique, Part I Elastic properties. Journal of Materials Science, 2001, 36: 1411-1417.
    [169]Kaplan D L.Mollusc Shell Structures:Novel Design Strategies for Synthetic Materials Biomaterials.1998,3:232-236.
    [170]Clegg W J.A Simple Way to Make Rough Ceramics.Nature,1990,347:455-457.
    [171]张永俐,Millus D L,Aksay I A.材料科学与工程,1994,12(4):22-26.
    [172]汪日志,冯庆玲,崔福斋等.Al203/纤维增强树脂层状复合材料.材料研究学报.1996,10(1):95-100.
    [173]Wang J,Li W Z,Li H D.Preparation and characterization of superhard TiC/Mo multilayers.J Mater Sci,2000,35:2689-2693.
    [174]He J L,Li W Z,Li H D et al.Simulation of nacre with TiC/Teflon multilayers and a study of their properties.Surf Coat Tech,1998,103-104:109-112.
    [175]Ohtsuki C,Iida H,Hayakawa S et al.Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides.J Biomed Mater Res,1997,35:39-47.
    [176]Kokubo T,Miyaji F,Rim H M.Spontaneous formation of bonelike apatite layer on chemically treated titanium metals.J Am Ceram Soc,1996,79:1127-1129.
    [177]Wen H B.Calcium Phosphate Coatings Basedon Mineralization in Natural Hard Tissues.Bilthoven:Leiden University,1998.
    [178]Yang J P,Meldrum F C,Fendler J H.Growth of size-quantized cadmium sulfide crystals under arachidic acid monolayers.J Phys Chem,1995,99:5500-5505.
    [179]逯乐慧,王丽颖,曹立新等.LB膜模板诱导晶体取向生长.人工晶体学报,1999,28(3):303-307.
    [180]Mann S.Biomineralization.Oxford:Oxford University Press,2001.
    [181]Kresge C T,Leonowicz M E,Roth W J et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.Nature,1992,359:710-712.
    [182]Beck J S,Vartuli J C,Roth W J et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates.J Am Chem Soc,1992,114:10834-10843.
    [183]Shen F H,Feng Q L,Wang C M.The modulation of collagen on crystal morphology of calcium carbonate.J Cryst Growth,2002,242:239-247.
    [184]李凤敏.贝壳材料的结构特征和力学性能分析:(硕士学位论文).大连:大连理工大学,2005.
    [185]Sayoko Y,Yasushi K.Transformation of aragonite to calcite through heating.Geochemical Journal,1985,19:245-249.
    [186]张刚生,贾太轩,丁石磊等.合蒲珠母贝珍珠层的差示扫描量热分析.宝石与宝石学杂志,2005,7(3):20-22.
    [187]Sayoko Y,Yasushi K.Transformation of aragonite to calcite through heating.Geochemical Journal,1985,19:245-249.
    [188]Ganteaume M,Baumer h,Lapraz D et al.La transformation aragonite→calcite dans les coraux fossiles.Relation avec la thermoluminescence.Thermochim.Acta,1990,170:121-137.
    [189]Baumer A,Ganteaume M,Bernat M.Variations de la teneur en eau des coraux lors de la transformation aragonite→calciteIncluded water in corals for the transition aragonite→calcite.Thermochim.Acta,1993,221(2):255-262.
    [190]Lowenstam H A.Biominerlization processes and products and the evolution of biomineralization.In:proceedings of the 27th International Geological Congress,Palaeontology.VNU Science Press,1984,2:79-95.
    [191]董瑞娜,麦康森,张文兵等.皱纹盘鲍贝壳沉积过程的研究.中国海洋大学学报,2006,36:63-70.
    [192]Zou N,Jin Z P.Relationship between bone metabolism and aging.Chinese journal of clinical rehabilitation,2006,10(16):190-192.
    [193]Irigaray J L,Oudadesse H,Fadl H E et al.Effet de la temperature sur la structure cristalline d'un biocorail.J Therm.Anal,1993,39(1):3-14.
    [194]Clarke,A.Life in cold water:the physiological ecology of polar marine ecosystedms.Oceanography and Marine Biology Annual Review.1983,21:341-349.
    [195]Evans A G.Perspective on the development of high-toughness ceramics.J AM.Ceram.Soc.,1990,73(2):187-206.
    [196]彭文世,刘高魁.方解石族与文石族矿物振动光谱的因子群分析.矿物学报,1983,3:169-174.
    [197]Dauphin Y.Infrared spectra and elemental composition in recent carbonate skeletons:relationships between the v 2 band wavelength and Sr and Mg concentrations.Appl.Spectr,1997,51(3):141-152.
    [198]Sabbides T G,Koutsoukos P G.The crystallization of calcium carbonate in artificial seawater;role of the substrate.J Cryst Growth,1993,133:13-22.
    [199]赵瑶兴,孙祥玉.有机分子结构光谱鉴定.北京:科学出版社,2003.
    [200]姜静.海螺壳体材料蛋白的提取和分析:(学士学位论文).大连:大连理工大学,2005.
    [201]Marin F,Corstjens P,de Gaulejac B et al.Mucins and molluscan calcification.J boil chem,2000,275(27):20667-20675.
    [202]Gregoire C.Topography of the Organic Components in Mother-of-Pearl.Journal of Biophysical and Biochemical Cytology,1957,3(5):797-808.
    [203]Gap H J,Ji B H.Modeling fracture in nanomaterials via a virtual internal bond method.Eng.Fract.Mech,2003,70:1777-1791.
    [204]Weiner S,Wagner H D.The material bone:structure-mechanical function relations.Ann.Rev.Mater.Res,1998,28:271-298.
    [205]Rho J Y,Kuhn-Spearing L,Zioupos P.Mechanical properties and the hierarchical structure of bone.Med.Eng.Phys,1998,20:92-102.
    [206]Kager J I,Fratzl P.Mineralized collagen Mbrils:a mechanical model with a staggered arrangement of mineral particles.Bio.phys.J,2000,79:1737-1746.
    [207] Ji B H, Gao H J. Mechanical properties of nanostructure of biological materials. Journal of the mechanics and physics of solids. 2004, 52: 1963-1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700