用户名: 密码: 验证码:
我国部分地区HIV/AIDS初治患者的原发耐药与亚型流行状况及特殊患者的疗效与耐药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效抗逆转录病毒疗法(Highly active antiretroviral therapy, HAART)被认为是现今治疗HIV/AIDS
     最行之有效的方法。但HIV-1病毒的耐药突变是艾滋病抗病毒治疗的主要障碍,无论是未治疗患者体内HIV-1原发耐药突变还是已接受治疗患者体内的HIV-1继发性耐药突变,都会导致治疗失败,加重患者的病情和艾滋病传播概率;而特殊亚型的HIV-1毒株也会加快疾病的进展。因此,分析HIV-1病毒的原发耐药突变状况和亚型分布的动态变化有助于及时了解HIV病毒的流行病学特征,指导临床的针对性治疗;此外,由于国内用于艾滋病救治的药物还非常欠缺而且分布不均衡,目前国内对合并HBV等其他病毒感染以及一线治疗失败的特殊艾滋病患者群体的耐药和疗效缺乏总体分析和评价,将不利于这些患者的长期可持续性治疗。因此,本论文就上述几部分内容开展了相应的研究。
     第一部分未治疗患者的HIV-1病毒原发性耐药及亚型/噬性研究
     第一节:HIV-1病毒的原发性耐药与亚型分析目的:分析我国部分地区近20年来在HIV/AIDS患者中的HIV-1的原发性耐药发生情况,及在这种长时间跨度中流行病毒株亚型的变化情况。
     方法:以1990-2012年间收治的全国20多个地区的914例未接受抗病毒治疗的成年艾滋病患者为研究对象,通过In-house的RT-PCR加测序的方法检测pol基因的耐药突变,并通过斯坦福大学HIV耐药数据库(http://hivdb.stanford.edu)获得耐药突变位点及耐药分析结果。采用REGA HIV BLAST确定病毒的基因亚型。利用计算生物学比较pol基因中非同义突变/同义突变基因(Ka/Ks)比例,确定不同选择压力之下pol基因耐药突变随时间的动态变化规律。
     结果:(1)本研究原发耐药检测成功率为82.5%(754/914),其中70.9%的患者是经性途径传播的。20年来平均原发耐药率为4.64%(35/754)左右,其中针对一种药物原发耐药率为3.97%(30/754),针对两种药物的是0.66%(5/754)其中90年代初期最低,后缓慢增加到2004年前后快速增高,近5年则达到较高水平,原发耐药率为8.67%的,显著高于其他三个时间段:<1995年的1.61%(p=0.01),1996-1999年间的2.0%(p=0.004)和2000-2004年间的4.58%(p=0.013)。(2)针对RT基因的原发耐药比例为68.57%,针对Pro区的占42.86%。其中NRTI发生原发耐药15例次(1.99%),NNRTI有13例次(1.72%),针对PI有12例次(1.59%)。原发耐药率在三中药物间没有统计学差异(p=0.759)。NNRTIs原发耐药中有10例为高度耐药(10113,76.9%),而NRTIs耐药病例中只有1例为高度耐药(1/15,6.7%),对Pls耐药的病例中有3例为高度耐药(3/12,25.0%)。最常见的NRTI突变位点在TAMs中是K70NR(11.11%)和L210WM(8.33%),非TAMs区是V75IML (13.89%)和V118I(13.89%),多重耐药位点中T69Ins的比例也达到13.89%。针对NNRTI中最常见的突变时K103N(13.89%)%,还有VI79AE(11.11%):和Y181C(11.11%)。针对PI类药物常见的位点有M46I(11.11%), N88D (8.33%)、N83K (8.33%)和A71T(8.33%)。35例原发耐药患者中有34.1%(11/35)来自北京。(3) Ka/Ks比值显示在02-06年及07-10年间,HIV-1pol基因受到较强的正向选择压力,突变率显著上升。Ka/Ks比值较高区域主要分布在pol基因中蛋白酶基因Pro(36-99aa)、逆转录基因RT-1(162-333aa)和RT-thumb (337-406aa)区段,与国内使用的药物相符合。累计Ka/Ks比值动态反映了pol基因突变频率可能在受到国内整体治疗策略和实施方案的影响下的动态变化规律。(4)在754例患者中,主要亚型分布是AE亚型227例(30.13%)、B/B’亚型205例(27.18%)、BC亚型187例(24.82%)为主,三者占总体亚型的82.13%。在95年前感染的患者60%是B亚型,但到了2010年减低到13%左右(p<0.05);AE亚型在90年代初期不到1%,目前已经上升到47.3%(p<0.01)。但07/08BC的总体变化稳定在20.8-25.9%之间。(5)共754例患者的亚型分布有地区性的差异,其中各地区中B亚型主要分布在河南(76.4%),还有北京(26.8%)、陕西(35.0%)、上海(21.9%)。AE亚型主要分布在北京(占32.6%)、上海(占37.0%)、广东(占42.1%)、福建(40.4%)、陕西(占40.0%)等地区。07/08_BC亚型主要分布在云南(占58.0%),还有广东(占23.8%)、北京(占24.7%)、福建(占21.7%)等地区。(6)在754例研究对象中,性途径感染520例(占69.0%),其中异性性接触感染314例(占41.7%),同性性接触感染206例(占27.3%);血液途径传播152例(占20.2%)。CRF01_AE亚型占全部性途径感染的38.8%%,占同性性传播途径感染者的42.7%,占异性性传播途径感染者的36.3%。(7)B亚型、CRF_01AE和07BC/08BC的原发耐药率分别是8.78%(18/205)、5.29%(12/227)和1.07(2/178),三者间有显著差异(p=0.017)。
     结论:本研究首次对我国部分地区近20年来的原发耐药情况进行了研究,发现平均原发耐药率为4.64%。从最早的1.61%逐步增高到现在的8.67%,20年间原发耐药率提高了近5倍,且多是针对RT区的耐药突变。计算生物学的Ka/Ks比值动态反映了pol基因突变频率随在药物种类以及国内宏观治疗策略和实施方案影响下的动态变化规律。在非静脉吸毒的初治患者人群中早年以B亚型为主,近期以AE亚型为主,相应的传播途径也由血液途径转为性途径为主。性途径传播的主要亚型是AE亚型,并且亚型分布也随着感染途径的不同呈现地区性差异。
     第二节:AE亚型病毒及噬性与疾病快速进展的相关性研究
     目的:研究HIV-1的亚型CRF01_AE作为一个可能的危险因素,其分子流行病学的特点与经性途径感染患者出现疾病快速进展的相关性。
     方法:本研究收集了来自12个分中心的201例未治疗的患者,采集抗凝血浆进行了HIV-1病毒噬性的分析。噬性的判断是通过v3环的序列测定得到的。共有包括这201例患者在内的235例未治疗的性感染的患者参与研究,并回顾性的评估了可能血清学转阳的时间(EDS)。从EDS到进入艾滋病发病期的平均时间用Kaplan-Meier曲线进行分析。风险比值HR用Cox模型分析完成。
     结果:在研究患者人群中CRF01_AE亚型占优势(46.0%),特别是在男同性恋者(MSM)组中。进一步分析显示,×4嗜性的比例在CRF01_AE亚型中的比例(45.5%)要显著高于在其他亚型中的比例(CRF07/08_BC,4.3%, B,6.1%, P<0.001)。与非AE亚型的患者相比较,感染了CRF01_AE亚型与患者从EDS快速进展到艾滋病期(4.8年Vs6.4年,P=0.018)密切相关。在多变量模型的分析中,感染CRF01_AE病毒的校正风险比值(AHR)为1.42(95%CI,0.99-2.03, P=0.057),且和病毒载量因素无关。AE亚型的存在也与快速进展到艾滋病严重免疫缺陷的晚期密切相关(AHR,1.81,95%CI为1.03-3.18,P=0.038)。
     结论:CRFO1_AE亚型在我国性途径传播的HIV感染中占主要优势,感染了AE亚型的病毒与快速进展到艾滋病期以及出现严重的免疫缺陷密切相关。在CRFO1_AE亚型中出现×4噬性的病毒株比例明显高于其他亚型中×4噬性出现的比例。进一步深入研究这些危险因素对今后针对这一类患者的临床治疗方案的制定有显著的意义。
     第二部分特殊艾滋病患者的疗效评价与耐药分析
     第一节:HIV-HBV共感染患者的疗效评价与耐药分析目的:研究合并HBV共感染的HIV患者,使用含3TC单药HAART方案与含有3TC+TDF双药HAART方案的针对HIV和HBV病毒的抑制效果,以及共感染患者体内的HBV和HIV在治疗过程中耐药的发生情况。
     方法:从913例初治的成年艾滋病患者中挑选出HBsAg阳性至少6个月时间的HIV-HBV共感染者共55例。给予3TC+TDF+EFV/NVP或3TC+AZT/d4T+EFV/NVP两种方案治疗96周,分别在基线、12周、48周和96周检测这些患者的HIV-RNA和HBV-DNA的载量。对这些点采集的血浆标本,用Luminex液相芯片技术同时检测共感染者血浆中HIV-1病毒和HBV病毒针对3TC的耐药突变情况。同时用普通sanger测序方法进行比对。用单因素方差分析的重复测量检验(Kruskal-Wallis nonparametric test)来比较CD4计数、HIV-1RNA和HBV DNA在基线和各随访点的统计学差异。
     结果:接受HAART治疗96周后,共感染患者的CD4细胞的计数在治疗前的基线时为149个/uI,96周治疗后上升到281个/ul。HIV-1RNA载量和HBV-DNA载量均下降到了检测下限(<20拷贝/ML和<201U/ML)。HIV-1RNA在治疗12W时已经显著降低,进一步按照是否含有TDF的方案来分组发现,含有3TC+TDF方案的组中HIV VL下降的速度略低于3TC组。而HBV-DNA的载量在治疗过程中也呈现显著降低,但完全控制的比例较低。有趣的是HBV的载量在3TC+TDF组中被抑制的更快,到治疗48周时,几乎达到100%完全抑制。在10例患者中没有1例出现HBV-DNA反弹,而在3TC单药组有26.7%(12/45)出现了HBV-DNA反弹。HBV针对3TC的rt180和rt204的耐药突变分别为60%和80%左右。在3TC方案组中有1例患者(2.2%,1/45)发生了HIV针对M184V和K103N的耐药突变。
     结论:本研究首次报道了我国HIV合并HBV感染患者抗病毒治疗2年的疗效和耐药分析。含有3TC或3TC+TDF的HAART方案均能控制HIV和HBV病毒的复制,但仅使用3TC单药治疗HBV的效果比3TC+TDF的效果差,并且长期治疗后易引起HBV针对3TC的耐药突变。
     第二节二线治疗患者的疗效评价与耐药分析
     目的:通过建立多中心、前瞻性的队列,开展我国一线治疗失败的耐药患者在使用TDF/3TC/LPVr的二线方案治疗两年时间的疗效和安全性研究。方法:本研究入选条件为一线方案治疗失败的成年患者,病毒载量要求>400拷贝/ml。共有符合条件的患者84人被纳入,进行国家二线方案TDF/3TC/LPVr治疗为期两年。每3个月随访一次,采集基线和每个随访点的CD4+T细胞计数和病毒载量。对每例患者在基线和病毒反弹时采用RT-PCR的方法检测基因型耐药。对病毒学无应答或病毒反弹的患者用HPLC+UV的方法检测了血浆中LPV的药物浓度。对基线和治疗2年时的患者的血肌酐、eGFR和CrCI进行了检测。
     结果:在基线,84例接受二线方案治疗的患者中分别有47.6%、19.0%和17.9%的患者发生了针对3TC、TDF或者是3TC+TDF的耐药。最常见的耐药是TAMs、 M184V、K103NS以及Y181CI。治疗2年后,CD4细胞计数中位数从基线的191增加到341个/mm3(P<0.001),病毒载量从4.391g下降到低于检测下线(1.60lg)(P<0.001)。共有66.7%的患者在治疗2年后病毒载量低于40cp/ml的检测下线,但同时有11例患者发生了病毒反弹,这其中有72.7%(8/11)的患者血浆LPV的浓度远低于有效药物浓度的下线。治疗2年期间在26.6%的患者中共发生68例次的药物相关不良事件,其中胃肠功能紊乱、肝毒性以及皮疹最为常见。94.1%的不良事件为Ⅰ级或Ⅱ级。检测结果显示血肌酐、eGFR和CrCI等指标在治疗前后有显著性差异(p<0.01)。
     结论:在为期2年的治疗时间里,对于一线治疗失败的耐药患者,采用二线TDF/3TC/LPVr的方案能有效控制病毒复制;对于那些原本就有针对3TC和TDF耐药的患者,在仅有LPV单药发挥作用的情况下仍能很好的抑制病毒复制。治疗失败的患者中有因为服药依从性差导致的病毒反弹,反映了血药浓度检测能有效地帮助监控患者的服药依从性,有利于合理分析和评估药物方案的临床疗效。
It is well known that highly active antiretroviral therapy (HAART) is the most effective therapeutics for HIV/AIDS patients. However, Drug resistance of HIV-1is the main obstacle for it. Of not only the primary drug resistance in treat-free patients but also the secondary drug resistance in treat-experience patients, HIV-1mutation to drugs can induce the failure of antiviral therapy and accelerate the transmission to new population finally. Moreover, special viral subtype may play an important role in improving AIDS fast progression. Hereby, it will be very helpful to understand the epidemical of HIV primary drug resistance and to conduct the adjustment of treat strategy in AIDS patients via analyzing on prevalence of HIV-1primary drug resistance and subtype and viral tropism. Besides, due to unbalance healthy resource and relative shortage of antiviral medicine along with complicated situation, most special patients such as co-infected by HBV or first-line failure patients have not received comfortable evaluation and seasonable therapy yet.
     PART I. Prevalence of primary drug resistance and subtype with viral tropism of treatment-naive AIDS patients
     Section I. Prevalence of genotypic primary drug resistance of HIV-1and viral subtype in China
     Objective:To investigate the genotypic primary drug resistance and distribution of HIV-1subtype along with viral tropism in drug-naive AIDS patients in some parts of China.
     Methods:Total914adult drug-naive AIDS patients were collected from twenty areas of China from1991to2010. The entire protease gene and255codons of the reverse transcriptase of HIV-1were amplified and sequenced. Furthermore, genotypic drug resistance and their subtype were analyzed with Stanford database and software. Based on the bio-math system model, Ka/Ks ration was calculated with different virus pol sequences and identified the pol gene mutation patterns under different selection pressures.
     Results:(1) A total of82.5%(754/914) pol gene sequences were amplified successfully. In which were70.9%cases transmitted by sexual. The average prevalence of primary drug resistance was4.64%(35/754) during1990-2010including3.97%(30/35) and0.66%(5/754) mutation for one and two family, respectively. The primary resistance incidence of last five years was8.67%, significant higher than other prior time period:1.61%within<1995(p=0.01),2.0%within1996-1999(p=0.004) and4.58%within2000-2004(p=0.013).(2) The proportion of primary drug resistance genes for RT was68.57%, while42.86%for Pro gene.There were no significant difference of primary mutation among NRTI(1.99%), NNRTI(1.72%)and PI(1.59%), p=0.759. High level resistance were observed in NNRTIs (10/13,76.9%) rather than in NRTIs (1/15,6.7%) and PIs (3/12,25.0%)。The most common NRTI mutations in TAMs was K70NR (11.11%) and L210WM (8.33%). Non-TAMs area was V75IML (13.89%) and V118I (13.89%), the proportion of multi-drug resistance was T69Ins13.89%. Most common NNRTI mutation were K103N (13.89%), V179AE (11.11%) and Y181C (11.11%). M46I (11.11%) in PI was common mutation, followed by N88D (8.33%), N83K (8.33%) and A71T (8.33%). There were34.1%(11/35) cases of primary drug resistance patients from Beijing.(3) Ka/Ks ratio displayed that during2002-06years and2007-10years, HIV-1pol gene received the strong positive selection pressure with a significant increase in the mutation rate. Ka/Ks ratio higher areas were mainly distributed in the pol gene of the protease gene (36-99aa), the RT gene RT-1(162-333aa) and RT-thumb (337-406aa) matching up national therapy time-window. Cumulative Ka/Ks ratio reflects the dynamic frequency of pol gene mutation may reflect national the changing treatment strategy and implementation of the program.(4) In the754cases of patients, the main subtypes were AE subtype227cases (30.13%), B/B'subtype205cases (27.18%) and BC subtypes187cases (24.82%). Prior to1995AIDS patients were infected by subtype B about60%, but by2010was reduced to about13%(p<0.05); whereas AE subtype in the early1990s, less than1%, has now risen to47.3%(p<0.01). But the prevalence of07/08BC was stabile20.8-25.9%within two decades.(5) Of754patients with subtype distribution were regional differences, subtype B/B'mainly in Henan (76.4%), Beijing (26.8%), Shaanxi (35.0%) and Shanghai (21.9%). AE subtype mainly in Beijing (32.6%), Shanghai (37.0%), Guangdong (42.1%), Fujian (40.4%) and Shaanxi (40.0%).07/08_BC subtypes were mainly distributed in Yunnan (58.0%), and Guangdong (23.8%), Beijing (24.7%) and Fujian (21.7%).(6) In the transmitted pathway study of754cases,520cases with sexual transmission infection (69.0%), of which314cases of heterosexual contact (41.7%),206cases of homosexual sexual contact (27.3%); only152patients (20.2%) infection by blood. About38.8%percent were CRF01_AE subtype in full sexual infected patients (42.7%from homosexual and36.3%from heterosexual transmission of infected persons). The incidence of8.78%(18/205) primary mutation in B subtype was significant higher than5.29%(12/227) and1.07%(2/178) in CRF_01AE and in07BC/08BC, respectively (p=0.017).
     Conclusion:It is the first report of primary drug resistance during the past20years in parts of China. We found that the average rate was4.64%of primary drug resistance. It was from the earliest1.61%gradually increased to the current8.67%, about increased five-fold within two decades mainly mutated resistance to RT area. Computational Biology Ka/Ks ratio reflects the dynamic pol gene mutation frequency in the types of medicines as well as treatment strategies and implementation impact from the programs by the government. Except IDU individuals, treated-free patients of B subtype in the early years were given main proportion to ones of AE subtype recently consisting with the change of transmission from blood to sexually route. The common subtype by sexual transmission was AE subtype with different prevalence area distributions.
     Section Ⅱ. HIV-1AE subtype is associated with X4tropism and fast HIV progression in patients infected through sexual transmission
     Objective:To research the relationship between molecular epidemiology of the HIV-1CRF01_AE subtype as a possible risk factor and fast HIV-1progression in drug-naive patients.
     Methods:We analyzed HIV-1tropism by utilizing samples from201treatment-naive patients in our multicenter cohort (12research centers in different provinces of China). Tropism was determined by V3loop sequencing. Data from235treatment-naive patients infected sexually (including aforementioned201patients) in this cohort with the estimated date of seroconversion (EDS) were retrospectively evaluated. Median time from EDS to AIDS was analyzed by Kaplan-Meier curves. Hazard ratios were determined by Cox proportional model.
     Results:CRF01_AE subtype was predominant (46.0%), especially in the men having sex with men (MSM) group. Further analysis revealed that the proportion of X4tropism was higher in the CRF01_AE subtype (45.5%) than in others (C/CRF07_BC/CRF08_BC,4.3%; B,6.1%; p<0.001). CRF01_AE subtype was associated with faster progression from EDS to AIDS (4.8vs.6.4years, p=0.018) compared with non-CRF01_AE subtypes. In a multivariate model, the adjusted hazard ratio (aHR) of CRF01_AE was1.42(95%CI,0.99-2.03, p=0.057), independent of HIV-1viral load; it was also associated with fast progression to advanced immunodeficiency (aHR,1.81,95%CI,1.03-3.18, p=0.038).
     Conclusion:CRF01AE, a predominant HIV-1subtype in Chinese HIV-1sexually infected patients, tends to be associated with fast progression to AIDS and advanced immunodeficiency, which might be ascribed to high proportion of X4tropism. Further investigation of these risk factors may have significant implications to clinical practice and policy-making.
     PART Ⅱ. Evaluation of Therapeutic Efficacy and Secondary Drug Resistance of Special AIDS patients in some parts of China
     Section Ⅰ. Evaluation of efficacy and emergence of drug resistance in HIV-HBV co-infected patients in China:2-year multi-central pilot study
     Objective:To study the efficacy of suppression of HIV and HBV viral load with HAART including3TC-or3TC+TDF regimens and the occurrence of secondary drug resistance in HIV-HBV co-infected patients during2years treatment in China.
     Methods:Total55AIDS patients with HBsAg positive for at least six months were selected from913enrolled subjects.3TC+TDF+EFV/NVP or3TC+AZT/d4T+EFV/NVP were for patients within96weeks. HIV-RNA and HBV-DNA viral load were detected at baseline,12weeks,48weeks and96weeks from plasma. All samples were detected HIV and HBV drug resistance against3TC using Luminex fluorescent beads and common Sanger sequencing. Using One-way ANOVA repeated measures test (Kruskal-Wallis nonparametric test) to compare CD4cell counts, HIV RNA and HBV DNA before and during3TC treatment at baseline and at each follow-up point.
     Results:After96weeks on HAART, CD4count at baseline with149/ul was up to281/ul at96weeks. Both HIV-1RNA and HBV-DNA loads were lower to the detection limit (<20copies/ml and <20IU/ml). HIV-1RNA was significantly reduced in the treatment of12W. According to different groups, the rate of HIV VL decline in3TC+TDFgroup was slightly lower than in only3TC group which can play more powerful efficacy to control HBV-DNA load almost100%suppression at48weeks. No case appeared rebound of HBV-DNA in3TC+TDF group, while in3TC group,26.7%(12/45) appeared rebound of HBV-DNA. HBV resistance mutations rt204rt180against3TC was about60%and80%, respectively. Only one patient (2.2%) in the group3TC was found resistance mutations for HIV at Ml84V and K103N.
     Conclusion:This study is the first report of efficacy on HIV-HBV co-infected patients and drug resistance analysis during two years HAART.3TC or3TC+TDF-containing HAART regimen was able to control HIV and HBV viral replication. But it was a little bit weak effective anti HBV using only3TC-group. Moreover,3TC monotherapy to HBV can lead to its resistance mutations after long-term treatment.
     Section Ⅱ. Efficacy and drug resistance of TDF/3TC/LPVr in treated failure of HIV-infected Chinese adults:a2-year prospective multicenter pilot cohort study
     Objective:To evaluate the efficacy of the second-line highly active antiretroviral therapy regimen TDF/3TC/LPVr in AIDS patients with resistance to first-line anti-retroviral drugs in China.
     Methods:84eligible AIDS patients were studied prospectively for2years. CD4count and HIV-1VL were measured at baseline and each subsequent visit. Genotype drug resistance testing was performed at baseline and on VL rebound in house. The plasma lopinavir concentration was determined by a validated HPLC coupled to UV detection. Additional, routine clinical laboratory including serum creatinine, eGFR and CRcl were detected.
     Results:At baseline,47.6%,19.0%and17.9%patients had high-or middle-level resistance to3TC or TDF or dual resistance, respectively. The common resistant mutation were TAMs、M184V、K103NS and Y181CI. After2years of therapy, the median CD4count increased from191to341cells/mm3(P<0.001), and the median VL decreased from4.39to<1.60log10(cps/mL)(P<0.001) in ITT assay.66.7%patients had a VL<40cps/mL while VL failure or rebound occurred in11patients.In72.7%(8/11) patients the absence of valid drug levels indicated poor adherence.68drug-related adverse events were reported in26.6%of patients. Gastrointestinal disorders, hepatotoxicity and rash were common.94.1%adverse events (64/68) were grade Ⅰ or Ⅱ. The levels of serum creatinine, eGFR and CrCl showed significant difference (P=0.000) compared to baseline at48and96weeks.
     Conclusions:This study indicates that TDF/3TC/LPVr (even LPVr monotherapy) can suppress HIV replication and improve renal function for2years in first-line drug resistance patients in China. Measuring drug plasma concentration can help to monitor adherence and to evaluate clinical efficacy.
引文
1. Coffin J H A L J. Human immunodeficiency viruses[Z].1986:232,697.
    2. Cdc C F D C. Pneumocystis pneumonia Los Angeles. [Z].1981:30,250-252.
    3. Pincock S. Francoise Barre-Sinoussi:shares Nobel Prize for discovery of HIV. Lancet, 2008,372(9647):1377.
    4. 临床病理讨论.第96例—发热、咳嗽、进行性呼吸困难[Z].1986:25,436-439.
    5. De Cock K M, Jaffe H W, Curran J W. Reflections on 30 years of AIDS. Emerg Infect Dis, 2011,17(6):1044-1048.
    6. UNAIDS. Report on the global AIDS epidemic 2012[Z].2012.
    7. 中华人民共和国卫生部联合国艾滋病规划署世界卫生组织.2011年中国艾滋病疫情评估[Z].2011:18,1-5.
    8. 我国艾滋病防治工作进展情况.中华人民共和国卫生部网站.2012年11月29日http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohjbyfkzj/s3586/2012 11/56377.htm (accessed March 19,2013).
    9. 年度全国法定传染病疫情概况.中华人民共和国卫生部网站.2013年3月14日.http://www.moh.gov.cn/mohjbyfkzj/s3578/201303/f02d91321f524a66a9df3 57a53bd0cf0. shtml (accessed March 19,2013).
    10. F Clavel, D Guetard, F Brun-Vezinet, et al. Isolation of a new human retrovirus from West African patients with AIDS. Science.1986;(233):343-346.
    11. Leitner T. Genetic subtypes of HIV-1. Human retrovirus and AIDS 1996;Ⅲ 28-40. los Alamos National Laboratory,los Alamos.
    12. Triques K,A Bourgeois, N Vidal, et al. Near-full-length genome sequencing of divergent African HIV type 1 subtype F viruses leads to the identification of a new HIV type 1 subtype designated K. AIDS Res Hum Retrovir 2000;16:139-151.
    13. Mc Cutchan FE. Understanding the genetic diversity of HIV-1. AIDS 2000; 14:S31-S44.
    14. Thomas Leitner, Bette Korber, Marcus Daniels, et al. HIV-1 Subtype and Circulating Recombinant Form(CRF) Reference Sequences. Reviews 2005; 41-8 http://hiv-web.lanl.gov
    15. Trkola A. HIV-host interactions:vital to the virus and key to its inhibition. Curr Opin Microbiol,2004,7(4):407-411.
    16. Keele B F, Van Heuverswyn F, Li Y, et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science,2006,313(5786):523-526.
    17. Van Heuverswyn F, Li Y, Neel C, et al. Human immunodeficiency viruses:SIV infection in wild gorillas. Nature,2006,444(7116):164.
    18. Plantier J C, Leoz M, Dickerson J E, et al. A new human immunodeficiency virus derived from gorillas. Nat Med,2009,15(8):871-872.
    19. Robertson D L, Anderson J P, Bradac J A, et al. HIV-1 nomenclature proposal. Science, 2000,288(5463):55-56.
    20. Worobey M, Gemmel M, Teuwen D E, et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature,2008,455(7213):661-664.
    21. Laboratory L A N. http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html (accessed Oct 31,2012).[Z].
    22. Liu Y, Li L, Bao Z, et al. Identification of a novel HIV type 1 circulating recombinant form (CRF52_01B) in Southeast Asia. AIDS Res Hum Retroviruses,2012,28(10):1357-1361.
    23. Hemelaar J, Gouws E, Ghys P D, et al. Global trends in molecular epidemiology of HIV-1 during 2000-2007. AIDS,2011,25(5):679-689.
    24. Perelson A S, Neumann A U, Markowitz M, et al. HIV-1 dynamics in vivo:virion clearance rate, infected cell life-span, and viral generation time. Science,1996,271(5255):1582-1586.
    25. Robertson D L, Sharp P M, Mccutchan F E, et al. Recombination in HIV-1. Nature, 1995,374(6518):124-126.
    26. Blackard J T, Cohen D E, Mayer K H. Human immunodeficiency virus superinfection and recombination:current state of knowledge and potential clinical consequences. Clin Infect Dis,2002,34(8):1108-1114.
    27. Hemelaar J. Implications of HIV diversity for the HIV-1 pandemic. J Infect,2012.
    28. Taylor B S, Sobieszczyk M E, Mccutchan F E, et al. The challenge of HIV-1 subtype diversity. N Engl J Med,2008,358(15):1590-1602.
    29. Tscherning C, Alaeus A, Fredriksson R, et al. Differences in chemokine coreceptor usage between genetic subtypes of HIV-1. Virology,1998,241(2):181-188.
    30. Abebe A D D G J, Pollakis G E A. HIV-1 subtype C syncytium-and nonsyncytium-inducing phenotypes and coreceptor usage among Ethiopian patients with AIDS.[Z].1999:13, 1305-1311.
    31. Esbjornsson J, Mansson F, Martinez-Arias W, et al. Frequent CXCR4 tropism of HIV-1 subtype A and CRF02_AG during late-stage disease--indication of an evolving epidemic in West Africa. Retrovirology,2010,7:23.
    32. Abraha A, Nankya I L, Gibson R, et al. CCR5-and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes:implications for the epidemic. J Virol,2009,83(11):5592-5605.
    33. Rodriguez M A, Ding M, Ratner D, et al. High replication fitness and transmission efficiency of HIV-1 subtype C from India:Implications for subtype C predominance. Virology, 2009,385(2):416-424.
    34. Yebra G, Rivas P, Herrero M D, et al. Clinical differences and viral diversity between newly HIV type 1-diagnosed African and non-African patients in Spain (2005-2007). AIDS Res Hum Retroviruses,2009,25(1):37-44.
    35. Bobkov A F, Kazennova E V, Selimova L M, et al. Temporal trends in the HIV-1 epidemic in Russia:predominance of subtype A. J Med Virol,2004,74(2):191-196.
    36. Williamson C, Engelbrecht S, Lambrick M, et al. HIV-1 subtypes in different risk groups in South Africa. Lancet,1995,346(8977):782.
    37. Kunanusont C, Foy H M, Kreiss J K, et al. HIV-1 subtypes and male-to-female transmission in Thailand. Lancet,1995,345(8957):1078-1083.
    38. Herring B L, Ge Y C, Wang B, et al. Segregation of human immunodeficiency virus type 1 subtypes by risk factor in Australia. J Clin Microbiol,2003,41(10):4600-4604.
    39. Hughes G J, Fearnhill E, Dunn D, et al. Molecular phylodynamics of the heterosexual HIV epidemic in the United Kingdom. PLoS Pathog,2009,5(9):e 1000590.
    40. Op De Coul El C R V D, Doornum Gj L V G J. The impact of immigration on env HIV-1 subtype distribution among heterosexuals in the Netherlands:influx of subtype B and non-Bstrains.[Z].2001:15,2277-2286.
    41. Kato S, Saito R, Hiraishi Y, et al. Differential prevalence of HIV type 1 subtype B and CRF01_AE among different sexual transmission groups in Tokyo, Japan, as revealed by subtype-specific PCR. AIDS Res Hum Retroviruses,2003,19(11):1057-1063.
    42. Iversen A K, Learn G H, Skinhoj P, et al. Preferential detection of HIV subtype C' over subtype A in cervical cells from a dually infected woman. AIDS,2005,19(9):990-993.
    43. Neilson J R, John G C, Carr J K, et al. Subtypes of human immunodeficiency virus type 1 and disease stage among women in Nairobi, Kenya. J Virol,1999,73(5):4393-4403.
    44. Hu Dj V S M T, Mock Pa E A. Viral load differences in early infection with two HIV-1 subtypes.[Z].2001:15,683-691.
    45. Time from HIV-1 seroconversion to AIDS and death before widespread use of highly-active antiretroviral therapy:a collaborative re-analysis. Collaborative Group on AIDS Incubation and HIV Survival including the CASCADE EU Concerted Action. Concerted Action on SeroConversion to AIDS and Death in Europe. Lancet,2000,355(9210):1131-1137.
    46. Deschamps M M, Fitzgerald D W, Pape J W, et al. HIV infection in Haiti:natural history and disease progression. AIDS,2000,14(16):2515-2521.
    47. Rangsin R, Piyaraj P, Sirisanthana T, et al. The natural history of HIV-1 subtype E infection in young men in Thailand with up to 14 years of follow-up. AIDS,2007,21 Suppl 6:S39-S46.
    48. Nelson K E, Costello C, Suriyanon V, et al. Survival of blood donors and their spouses with HIV-1 subtype E (CRF01 A_E) infection in northern Thailand,1992-2007. AIDS,2007,21 Suppl 6:S47-S54.
    49. Kaleebu P, French N, Mahe C, et al. Effect of human immunodeficiency virus (HIV) type 1 envelope subtypes A and D on disease progression in a large cohort of HIV-1-positive persons in Uganda. J Infect Dis,2002,185(9):1244-1250.
    50. Geretti A M. HIV-1 subtypes:epidemiology and significance for HIV management. Curr Opin Infect Dis,2006,19(1):1-7.
    51. Kwon J A, Yoon S Y, Lee C K, et al. Performance evaluation of three automated human immunodeficiency virus antigen-antibody combination immunoassays. J Virol Methods, 2006,133(1):20-26.
    52. Aghokeng A F, Mpoudi-Ngole E, Dimodi H, et al. Inaccurate diagnosis of HIV-1 group M and O is a key challenge for ongoing universal access to antiretroviral treatment and HIV prevention in Cameroon. PLoS One,2009,4(11):e7702.
    53. Kantor R. Impact of HIV-1 pol diversity on drug resistance and its clinical implications. Curr Opin Infect Dis,2006,19(6):594-606.
    54. Drugs Used in the Treatment of HIV Infection.2006-8. http://www.fda.gov/oashi/ aids/virals.html.
    55. Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature.1995;373(6510):123-6.
    56. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature.1995;373(6510):117-22.
    57. Staszewski S, Morales-Ramirez J, Tashima KT, et al. Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. N Engl J Med.1999;341:1865-1873.
    58. Walmsley S, Bernstein B, King M, et al. Lopinavir-ritonavir versus nelfinavir for the initial treatment of HIV infection. N Engl J Med.2002;346:2039-2046.
    59. Robbins GK, De Gruttola V, Shafer RW, et al. Comparison of sequential three-drug regimens as initial therapy for HIV-1 infection. N Engl J Med.2003;349:2293-303.
    60. Gallant JE, Staszewski S, Pozniak AL, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients:a 3-year randomized trial. JAMA. 2004;292:191-201.
    61. SJ Little, S Holte, JP Routy, et al. Antiretroviral-Drug Resistance among Patients Recently Infected with HIV. N Engl J Med.2002; 347:385-394.
    62. Weinstock HS, Zaidi I, Heneine W, et al. The epidemiology of antiretroviral drug resistance among drug-naive HIV-1-infected persons in 10 US cities. J Infect Dis. 2004;189(12):2174-80.
    63. Cane P, Chrystie I, Dunn D, et al. Time trends in primary resistance to HIV drugs in the United Kingdom:multicentre observational study. BMJ.2005;331(7529):1368.
    64. Oette M, Kaiser R, Daumer M, et al. Primary HIV drug resistance and efficacy of first-line antiretroviral therapy guided by resistance testing. J Acquir Immune Defic Syndr. 2006;41(5):573-81.
    65.19. Richman DD, Morton SC, Wrin T, et al. The prevalence of antiretroviral drug resistance in the United States. AIDS.2004; 18(10):1393-401.
    66. Richard Pilon, James Brooks, Neil Goedhuis, et al.Current Trends in HIV Molecular Epidemiology in Canada Results of the National Surveillance Program. [Abstract 646].13th Conference on Retroviruses and Opportunistic Infections. February 5-8,2006; Denver, US.
    67.邵一鸣等.第二次全国HIV分子流行病学调查.2006年HIV分子流行病学调查新技术研讨会.2006.8.4-6.北京.
    68. http://www.moh.gov.cn/newshtml/17241.htm
    69.司雪峰,黄海龙,魏民等.我国HIV21感染者耐药突变的流行性研究.中华实验和临床病毒学杂志,2004;18:308-310.
    70.韩晓旭,张晏,崔为国等.我国部分地区抗HIV治疗效果实验室评估和耐药变异的初步研究.中华医学杂志.2005;85(11):760-764.
    71. Han X, Zhang M, Dai D, et al. Genotypic resistance mutations to antiretroviral drugs in treatment-naive HIV/AIDS patients living in Liaoning Province, China:baseline prevalence and subtype-specific difference. AIDS Res Hum Retroviruses 2007;23(3):357-64.
    72. Li JY, Li HP, Li L, et al. Prevalence and evolution of drug resistance HIV-1 variants in Henan, China. Cell Res.2005; 15(11-12):843-9.
    73.万卓越,李杰,付笑冰等.应用HIV-1耐药性基因型检测广东部分地区HIV耐药株.中国艾滋病性病2006;12(3):204-206.
    74.尹春煜,卢洪洲,娄国强等.中国部分地区应用高效抗逆转录病毒治疗HIV-1患者的耐药性检测.中华传染病杂志2006;24(3):164-167.
    75. Athena P. Kourtis, M.D., Ph.D., M.P.H., Marc Bulterys, M.D., Ph.D., Dale J. Hu, M.D., M.P.H., and Denise J. Jamieson, M.D., M.P.H. HIV-HBV Coinfection — A Global Challenge. N Engl J Med,2012,366;19:1749-1752.
    76. Ming-Ling Chang, Rong-Nan Chienf, Chau-Ting Yeh, Yun-Fan Liaw. Virus and transaminase levels determine the emergence of drug resistance during long-term lamivudine therapy in chronic hepatitis B. Journal of Hepatology 43 (2005) 72-77.
    77. Vandamme M, Van Laethem K, De Clercq E. Managing resistance to anti-HIV drugs:an important consideration for effective disease management. Drugs 1999,57:337-361.
    78. Metzner KJ, Giulieri SG, Knoepfel SA, et al. Minority quasispecies of drug-resistant HIV-1 that lead to early therapy failure in treatment-naive and-adherent patients. Clinical Infectious Diseases 2009,48:239.
    79. Yang C, Liu S, Zhang T, et al. Transmitted Antiretroviral Drug Resistance and Thumb Subdomain Polymorphisms Among Newly HIV Type 1 Diagnosed Patients Infected with CRF01AE and CRF07_BC Virus in Guangdong Province, China. AIDS Res Hum Retroviruses 2012,28:1723-1728.
    80. Liao L, Xing H, Shang H, et al. The prevalence of transmitted antiretroviral drug resistance in treatment-naive HIV-infected individuals in China. J Acquir Immune Defic Syndr 2010,53 Suppl1:S10-14.
    81. Hamers RL, Wallis CL, Kityo C, et al. HIV-1 drug resistance in antiretroviral-naive individuals in sub-Saharan Africa after rollout of antiretroviral therapy:a multicentre observational study. The Lancet Infectious Diseases 2011.
    82. Lai CC, Hung CC, Chen MY, et al. Trends of transmitted drug resistance of HIV-1 and its impact on treatment response to first-line antiretroviral therapy in Taiwan. J Antimicrob Chemother 2012,67:1254-1260.
    83. Ndembi N, Hamers RL, Sigaloff KC, et al. Transmitted antiretroviral drug resistance among newly HIV-1 diagnosed young individuals in Kampala. AIDS 2011,25:905-910.
    84. Soria J, Bull M, Mitchell C, et al. Transmitted HIV resistance to first-line antiretroviral therapy in Lima, Peru. AIDS Res Hum Retroviruses 2012,28:333-338.
    85. Bonura F, Tramuto F, Vitale F, et al. Transmission of drug-resistant HIV type 1 strains in HAART-naive patients:A 5-year retrospective study in Sicily, Italy. AIDS research and human retroviruses 2010,26:961-965.
    86. Wensing AMJ, van de Vijver DA, Angarano G, et al. Prevalence of drug-resistant HIV-1 variants in untreated individuals in Europe:implications for clinical management. Journal of Infectious Diseases 2005,192:958.
    87. Little SJ, Holte S, Routy JP, et al. Antiretroviral-drug resistance among patients recently infected with HIV. New England Journal of Medicine 2002,347:385-394.
    88. Kozal MJ, Hullsiek KH, Macarthur RD, et al. The Incidence of HIV drug resistance and its impact on progression of HIV disease among antiretroviral-naive participants started on three different antiretroviral therapy strategies. HIV Clin Trials 2007,8:357-370.
    89. Oette M, Kaiser R, Daumer M, et al. Primary HIV drug resistance and efficacy of first-line antiretroviral therapy guided by resistance testing. J Acquir Immune Defic Syndr 2006,41:573-581.
    90. Brenner BG, Roger M, Moisi DD, et al. Transmission networks of drug resistance acquired in primary/early stage HIV infection. AIDS 2008,22:2509-2515.
    91. Borroto-Esoda K, Waters JM, Bae AS, et al. Baseline genotype as a predictor of virological failure to emtricitabine or stavudine in combination with didanosine and efavirenz. AIDS Res Hum Retroviruses 2007,23:988-995.
    92. Gallant J. Antiretroviral drug resistance and resistance testing. Topics in HIV medicine:a publication of the International AIDS Society, USA 2005,13:138.
    93. Sungkanuparph S, Oyomopito R, Sirivichayakul S, et al. HIV-1 drug resistance mutations among antiretroviral-naive HIV-1-infected patients in Asia:results from the TREAT Asia Studies to Evaluate Resistance-Monitoring Study. Clin Infect Dis 2011,52:1053-1057.
    94. Markovitz AR, Thibault CS, Brandauer PW, et al. Primary antiretroviral drug resistance in newly human immunodeficiency virus-diagnosed individuals testing anonymously and confidentially. Microb Drug Resist 2011,17:283-289.
    95.中华人民共和国卫生部联合国艾滋病规划署世界卫生组织.2011年中国艾滋病疫情评估[Z].2011:18,1-5.
    96. Chan PA, Kantor R. Transmitted drug resistance in nonsubtype B HIV-1 infection. HIV Ther 2009,3:447-465.
    97. Yebra G, de Mulder M, Perez-Elias MJ, et al. Increase of transmitted drug resistance among HIV-infected sub-Saharan Africans residing in Spain in contrast to the native population. PLoS One 2011,6:e26757.
    98. Castor D, Low A, Evering T, et al. Transmitted drug resistance and phylogenetic relationships among acute and early HIV-1-infected individuals in New York City. J Acquir Immune Defic Syndr 2012,61:1-8.
    99. Booth CL, Geretti AM. Prevalence and determinants of transmitted antiretroviral drug resistance in HIV-1 infection. J Antimicrob Chemother 2007,59:1047-1056
    100. Truong HH, Kellogg TA, McFarland W, et al. Sentinel Surveillance of HIV-1 Transmitted Drug Resistance, Acute Infection and Recent Infection. PLoS One 2011,6:e25281
    101.Deeks SG. International perspectives on antiretroviral resistance. Nonnucleoside reverse transcriptase inhibitor resistance. J Acquir Immune Defic Syndr 2001,26 Suppl 1:S25-33
    102. Zhao F, Wang Z, Li WJ. Subtype of HIV-1 strains:an epidemic study of 1157 samples in Henan Province, China. Zhonghua Yu Fang Yi Xue Za Zhi 2008,42:418-421.
    103. Jin Y, Guo H, Jiang F, et al. Systematic review of public literatures on HIV-1 genetic subtype in China. Wei Sheng Yan Jiu 2011,40:645-648.
    104. Ministry of Health, People's Republic of China, Joint United Nations Programme on HIV/AIDS, World Health Organization.2009 Update on the HIV/AIDS Epidemic and Response in China.2010/5/31
    105. Nelson K E, Costello C, Suriyanon V, et al. Survival of blood donors and their spouses with HIV-1 subtype E (CRF01 A_E) infection in northern Thailand,1992-2007. AIDS,2007,21 Suppl 6:S47-S54.
    106. Jaffe H W, Valdiserri R O, De Cock K M. The reemerging HIV/AIDS epidemic in men who have sex with men. JAMA,2007,298(20):2412-2414.
    107. Langford SE, Ananworanich J, Cooper DA. Predictors of disease progression in HIV infection:a review. AIDS Res Ther 2007,4:11.
    108. Koot M, Keet IP, Vos AH, de Goede RE, Roos MT, Coutinho RA, et al. Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med 1993,118:681-688.
    109. Wilkin TJ, Su Z, Kuritzkes DR, Hughes M, Flexner C, Gross R, et al. HIV type 1 chemokine coreceptor use among antiretroviral-experienced patients screened for a clinical trial of a CCR5 inhibitor:AIDS Clinical Trial Group A5211. Clin Infect Dis 2007,44:591-595.
    110. Baeten JM, Chohan B, Lavreys L, Chohan V, McClelland RS, Certain L, et al. HIV-1 subtype D infection is associated with faster disease progression than subtype A in spite of similar plasma HIV-1 loads. J Infect Dis 2007,195:1177-1180.
    111. Vasan A, Renjifo B, Hertzmark E, Chaplin B, Msamanga G, Essex M, et al. Different rates of disease progression of HIV type 1 infection in Tanzania based on infecting subtype. Clin Infect Dis 2006,42:843-852.
    112. Keller M, Lu Y, Lalonde RG, Klein MB. Impact of HIV-1 viral subtype on CD4+ T-cell decline and clinical outcomes in antiretroviral naive patients receiving universal healthcare. AIDS 2009,23:731-737.
    113. Lau KA, Wang B, Saksena NK. Emerging trends of HIV epidemiology in Asia. AIDS Rev 2007,9:218-229.
    114. Han X, Dai D, Zhao B, Liu J, Ding H, Zhang M, et al. Genetic and epidemiologic characterization of HIV-1 infection In Liaoning Province, China. J Acquir Immune Defic Syndr 2010,53:S27-33.
    115. Chen JH, Wong KH, Li P, Chan KC, Lee MP, Lam HY, et al. Molecular epidemiological study of HIV-1 CRF01_AE transmission in Hong Kong. J Acquir Immune Defic Syndr 2009,51:530-535.
    116. Zhang Y, Lu L, Ba L, Liu L, Yang L, Jia M, et al. Dominance of HIV-1 subtype CRF01_AE in sexually acquired cases leads to a new epidemic in Yunnan province of China. PLoS Med 2006,3:e443.
    117. Hu DJ, Vanichseni S, Mastro TD, Raktham S, Young NL, Mock PA, et al. Viral load differences in early infection with two HIV-1 subtypes. AIDS 2001,15:683-691.
    118. Rangsin R, Piyaraj P, Sirisanthana T, Sirisopana N, Short O, Nelson KE. The natural history of HIV-1 subtype E infection in young men in Thailand with up to 14 years of follow-up. AIDS 2007,21:S39-46.
    119. Rangsin R, Chiu J, Khamboonruang C, Sirisopana N, Eiumtrakul S, Brown AE, et al. The natural history of HIV-1 infection in young Thai men after seroconversion. J Acquir Immune Defic Syndr 2004,36:622-629.
    120. Ng KY, Chew KK, Kaur P, Kwan JY, Khong WX, Lin L, et al. High prevalence of CXCR4 usage among treatment-naive CRF01_AE and CRF51_01B-infected HIV-1 subjects in Singapore. BMC Infect Dis 2013,13:90.
    121.Chalmet K, Dauwe K, Foquet L, Baatz F, Seguin-Devaux C, Van Der Gucht B, et al. Presence of CXCR4-using HIV-1 in patients with recently diagnosed infection:correlates and evidence for transmission. J Infect Dis 2012,205:174-184.
    122. De Silva UC, Warachit J, Sattagowit N, Jirapongwattana C, Panthong S, Utachee P, et al. Genotypic characterization of HIV type 1 env gp160 sequences from three regions in Thailand. AIDS Res Hum Retroviruses 2010,26:223-227.
    123. Menu E, Reynes JM, Muller-Trutwin MC, Guillemot L, Versmisse P, Chiron M, et al. Predominance of CCR5-dependent HIV-1 subtype E isolates in Cambodia. J Acquir Immune Defic Syndr Hum Retrovirol 1999,20:481-487.
    124. The Ministry of Health of the People's Republic of China/UNA IDS/WHO.2012 China AIDS Response Progress Report. Acess on July 27,2013. http://www.unaids.org/en/dataanalysis/knowyourresponse/countryprogressreports/2012countr ies/ce_CN_Narrative_Report[1].pdf.
    125. Zhang Z, Wu Z, Poundstone KE, Yin W, Pang L, Rou K, et al. Unprotected sex among HIV-positive treatment-seeking opioid-dependent adults in China:a cross-sectional study. Sex Transm Dis 2012,39:930-937.
    126. Zhang F, Dou Z, Ma Y, Zhang Y, Zhao Y, Zhao D, et al. Effect of earlier initiation of antiretroviral treatment and increased treatment coverage on HIV-related mortality in China: a national observational cohort study. Lancet Infect Dis 2011,11:516-524.
    127. Siegfried N, Uthman OA, Rutherford GW. Optimal time for initiation of antiretroviral therapy in asymptomatic, HIV-infected, treatment-naive adults. Cochrane Database Syst Rev 2010:CD008272.
    128. Smith K, Powers KA, Kashuba AD, Cohen MS. HIV-1 treatment as prevention:the good, the bad, and the challenges. Curr Opin HIV AIDS 2011,6:315-325.
    129. CASCADE Collaboration (Concerted Action on SeroConversion to AIDS and Death in Europe). Time from HIV-1 seroconversion to AIDS and death before widespread use of highly-active antiretroviral therapy:a collaborative re-analysis. Lancet 2000,355:1131-1137.
    130. Schneider E, Whitmore S, Glynn KM, Dominguez K, Mitsch A, McKenna MT. Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged <18 months and for HIV infection and AIDS among children aged 18 months to<13 years--United States,2008. MMWR Recomm Rep 2008,57:1-12.
    131. Kaplan JE, Benson C, Holmes KH, Brooks JT, Pau A, Masur H. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep 2009,58:1-207.
    132. Wang H, Li Y, Zhang C, Han Y, Zhang X, Zhu T, et al. Immunological and virological responses to cART in HIV/HBV co-infected patients from a multicenter cohort. AIDS 2012,26:1755-1763.
    133. Lengauer T, Sander O, Sierra S, Thielen A, Kaiser R. Bioinformatics prediction of HIV coreceptor usage. Nat Biotechnol 2007,25:1407-1410.
    134. Raymond S, Delobel P, Rogez S, Encinas S, Bruel P, Pasquier C, et al. Genotypic prediction of HIV-1 CRF01-AE tropism. J Clin Microbiol 2013,51:564-570.
    135. Mulinge M, Lemaire M, Servais JY, Rybicki A, Struck D, da Silva ES, et al. HIV-1 tropism determination using a phenotypic Env recombinant viral assay highlights overestimation of CXCR4-usage by genotypic prediction algorithms for CRRF01_AE and CRF02_AG. PLoS One 2013,8:e60566.
    136. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 1999,73:152-160.
    137. Crum-Cianflone N, Eberly L, Zhang Y, Ganesan A, Weintrob A, Marconi V, et al. Is HIV becoming more virulent? Initial CD4 cell counts among HIV seroconverters during the course of the HIV epidemic:1985-2007. Clin Infect Dis 2009,48:1285-1292.
    138. Dorrucci M, Rezza G, Porter K, Phillips A. Temporal trends in postseroconversion CD4 cell count and HIV load:the Concerted Action on Seroconversion to AIDS and Death in Europe Collaboration,1985-2002. J Infect Dis 2007,195:525-534.
    139. Wang W, Jiang S, Li S, Yang K, Ma L, Zhang F, et al. Identification of subtype B, multiple circulating recombinant forms and unique recombinants of HIV type 1 in an MSM cohort in China. AIDS Res Hum Retroviruses 2008,24:1245-1254.
    140. Lin H, He N, Zhou S, Ding Y, Qiu D, Zhang T, et al. Behavioral and Molecular Tracing of Risky Sexual Contacts in a Sample of Chinese HIV-infected Men Who Have Sex With Men. Am J Epidemiol 2013,177:343-350.
    141. Zhang C, Xu S, Wei J, Guo H. Predicted co-receptor tropism and sequence characteristics of China HIV-1 V3 loops:implications for the future usage of CCR5 antagonists and AIDS vaccine development. Int J Infect Dis 2009,13:12.
    142. Philpott SM. HIV-1 coreceptor usage, transmission, and disease progression. Curr HIV Res 2003,1:217-227.
    143. Ng OT, Lin L, Laeyendecker O, Quinn TC, Sun YJ, Lee CC, et al. Increased rate of CD4+ T-cell decline and faster time to antiretroviral therapy in HIV-1 subtype CRF01_AE infected seroconverters in Singapore. PLoS One 2011,6:e15738.
    144. Breaux K, Gadde S, Graviss EA, Rodriguez-Barradas MC. One year survival of HIV-infected veterans with CD4< 100 cells/mm3:data from a veteran cohort. AIDS Care 2010,22:886-894.
    145. National Antiretroviral Treatment Manual (3rd edition). National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention,2012. [In Chinese]. Acess on July 18,2013. http://www.chain.net.cn/document/20120905162017665677.pdf.
    146. Mann B, Milloy MJ, Kerr T, Zhang R, Montaner J, Wood E. Improved adherence to modern antiretroviral therapy among HIV-infected injecting drug users. HIV Med 2012,13:596-601.
    147. Gonzalez A, Mimiaga MJ, Israel J, Andres Bedoya C, Safren SA. Substance use predictors of poor medication adherence:the role of substance use coping among HIV-infected patients in opioid dependence treatment. AIDS Behav 2013,17:168-173.
    148. Murray M, Hogg RS, Lima VD, May MT, Moore DM, Abgrall S, et al. The effect of injecting drug use history on disease progression and death among HIV-positive individuals initiating combination antiretroviral therapy:collaborative cohort analysis. HIV Med 2012,13:89-97.
    149. WHO Library Cataloguing-in-Publication Data, Global report:UNAIDS report on the global AIDS epidemic 2012. http://www.unaids.org/en/media/unaids/ contentassets/documents/epidemiology/2012/gr2012/20121120_UNAIDS_Global_Report_20 12_with_annexes_en.pdf.
    150. WHO Library Cataloguing-in-Publication Data, Global policy report on the prevention and control of viral hepatitis in WHO Member States. http://apps.who.int/iris/bitstream/10665/85397/1/9789241564632_eng.pdf.
    151. Kourtis AP, Bulterys M, Hu DJ, Jamieson DJ. HIV-HBV coinfection-a global challenge. N Engl J Med.2012; 366:1749-1752.
    152. Thio CL, Smeaton L, Saulynas M, Hwang H, Saravanan S, Kulkarni S, Hakim J, Nyirenda M, Iqbal HS, Lalloo UG, Mehta AS, Hollabaugh K, Campbell TB, Lockman S, Currier JS. Characterization of HIV-HBV coinfection in a multinational HIV-infected cohort. AIDS. 2013; 27:191-201.
    153. The UNAIDS China website,2012 China AIDS Response Progress Report. http://www.unaids.org.cn/pics/20130116094000.pdf.
    154. Cui Y, Jia J. Update on epidemiology of hepatitis B and C in China. J Gastroenterol Hepatol. 2013; 28:7-10.
    155. Wang H, Li Y, Zhang C, Han Y, Zhang X, Zhu T, Li T. Immunological and virological responses to cART in HIV/HBV co-infected patients from a multicenter cohort. AIDS.2012; 26:1755-1763.
    156. Chen X, He JM, Ding LS, Zhang GQ, Zou XB, Zheng J. Prevalence of hepatitis B virus and hepatitis C virus in patients with human immunodeficiency virus infection in central China. Arch Virol.2013; 158:1889-1894.
    157. Shen YZ, Wang ZY, Qi TK, Jiang XY, Song W, Tang Y, Wang JR, Liu L, Zhang RF, Zheng YF, Dai ZS, Lu HZ. Serological survey of viral hepatitis markers among newly diagnosed patients with HIV/AIDS in China. HIV Med.2013; 14:167-175.
    158. Chun HM, Roediger MP, Hullsiek KH, Thio CL, Agan BK, Bradley WP, Peel SA, Jagodzinski LL, Weintrob AC, Ganesan A, Wortmann G, Crum-Cianflone NF, Maguire JD, Landrum ML; Infectious Disease Clinical Research Program HIV Working Group.-Hepatitis B virus coinfection negatively impacts HIV outcomes in HIV seroconverters. J Infect Dis. 2012; 205:185-193.
    159. Nikolopoulos GK, Paraskevis D, Hatzitheodorou E, Moschidis Z, Sypsa V, Zavitsanos X, et al. Impact of hepatitis B virus infection on the progression of AIDS and mortality in HIV infected individuals:a cohort study and meta-analysis. Clin Infect Dis.2009; 48:1763-1771.
    160. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. http://aidsinfo.nih.gov/guidelines.
    161. WHO Library Cataloguing-in-Publication Data. Antiretroviral therapy for HIV infection in adults and adolescents:recommendations for a public health approach.2010 revision. http://whqlibdoc.who.int/publications/2010/9789241599764_ eng.pdf.
    162. Johnson VA, Calvez V, Gunthard HF, Paredes R, Pillay D, Shafer RW, Wensing AM, Richman DD. Update of the drug resistance mutations in HIV-1:March 2013. Top Antivir Med.2013; 21:6-14.
    163. Liaw YF, Kao JH, Piratvisuth T, Chan HLY, Chien RN, Liu CJ, Gane E, Locarnini S, Lim SG, Han KH, Amarapurkar D, Cooksley G, Jafri W, Mohamed R, Hou JL, Chuang WL, Lesmana L, Sollano J, Suh DJ, Omata M. Asian-Pacific consensus statement on the management of chronic hepatitis B:a 2012 update. Hepatol Int 2012; 6:531-561.
    164. Iser DM, Sasadeusz JJ:Current treatment of HIV/hepatitis B virus coinfection. J Gastroenterol Hepatol 2008,23:699-706.
    165. Matthews G, Bartholomeusz A, Locarnini S et al. Characteristics of drug resistant HBV in an international collaborative study of HIV-HBV-infected individuals on extended lamivudine therapy. AIDS 2006; 20:863-870.
    166. Gu L, Hosoya N, Kawana-Tachikawa A, Shiino T, Nakamura H, Koga M, Kikuchi T, Adachi E, Koibuchi T, Ishida T, Fu Gao G, Matsushita M, Sugiura W, Iwamoto A. Development and customization of a fluorescent microbeads-based assay for drug resistance in HIV-1 reverse transcriptase. JIAS.2013.
    167. Hoffmann CJ, Seaberg EC, Young S, Witt MD, D'Acunto K, Phair J, Thio CL. Hepatitis B and long-term HIV outcomes in coinfected HAART recipients. AIDS 2009; 23:1881-1889.
    168. Alter MJ. Epidemiology of viral hepatitis and HIV co-infection. J Hepatol 2006; 44:S6-S9.
    169. Thio CL. Hepatitis B and human immunodeficiency virus coinfection. Hepatology 2009; 49:S138-S145.
    170. Sheng WH, Chen MY, Hsieh SM, Hsiao CF, Wang JT, Hung CC, et al. Impact of chronic hepatitis B virus (HBV) infection on outcomes of patients infected with HIV in an area where-HBV infection is hyperendemic. Clin Infect Dis 2004; 38:1471-1477.
    171. Idoko J, Meloni S, Muazu M, Nimzing L, Badung B, Hawkins C, et al. Impact of hepatitis B virus infection on human immunodeficiency virus response to antiretroviral therapy in Nigeria. Clin Infect Dis 2009; 49:1268-1273.
    172. Law WP, Duncombe CJ, Mahanontharit A, Boyd MA, Ruxrungtham K, Lange JM, et al. Impact of viral hepatitis co-infection on response to antiretroviral therapy and HIV disease progression in the HIV-NAT cohort. AIDS 2004; 18:1169-1177.
    173. Konopnicki D, Mocroft A, de Wit S, Antunes F, Ledergerber B, Katlama C, et al. Hepatitis B and HIV:prevalence, AIDS progression, response to highly active antiretroviral therapy and increased mortality in the EuroSIDA cohort. AIDS 2005; 19:593-601.
    174. Filippini P, Coppola N, Pisapia R, Scolastico C, Marrocco C, Zaccariello A, et al. Impact of occult hepatitis B virus infection in HIV patients naive for antiretroviral therapy. AIDS 2006; 20:1253-1260.
    175. Matthews GV, Avihingsanon A, Lewin SR, Amin J, Rerknimitr R, Petcharapirat P, et al. A randomized trial of combination hepatitis B therapy in HIV/HBV coinfected antiretroviral naive individuals in Thailand. Hepatology 2008; 48:1062-1069.
    176. Zhang F, Dou Z, Ma Y, Zhao Y, Liu Z, Bulterys M, et al. Five Year Outcomes of the China National Free Antiretroviral Treatment Program. Ann Intern Med.2009 Aug 18; 151(4):241-51
    177. Zhong P, Kang L, Pan Q, Konings F, Burda S, Ma L, et al. Identification and distribution of HIV type 1 genetic diversity and protease inhibitor resistance-associated mutations in Shanghai, P. R. China. J Acquir Immune Defic Syndr 2003;34:91-101.
    178. Li JY, Li HP, Li L, Li H, Wang Z, Yang K, et al. Prevalence and evolution of drug resistance HIV-1 variants in Henan, China. Cell Res.2005; 15:843-849.
    179. Zhong P, Pan Q, Ning Z, Xue Y, Gong J, Zhen X, et al. Genetic Diversity and Drug Resistance of Human Immunodeficiency Virus Type 1 (HIV-1) Strains Circulating in Shanghai. AIDS Res and Human Retro 2007; 23:847-856.
    180. Taisheng L, Yi D, Jiqiu K, Jingmei J, Yang H, Zhifeng Q, et al. Three Generic Nevirapine-Based Antiretroviral Treatments in Chinese HIV/AIDS Patients:Multicentric Observation Cohort. Plos One 2008; 3:e3918.
    181.Bartlett JA, Ribaudoc HJ, Wallisd CL, Agac E, Katzensteine DA, Stevens WS, et al. Lopinavir/ritonavir monotherapy after virologic failure of first-line antiretroviral therapy in resource-limited settings. AIDS 2012; 26:1345-1353.
    182. Manosuthi W, Thongyen S, Nilkamhang S, Manosuthi S and Sungkanuparph S. Long-term treatment outcomes of ritonavirboosted lopinavir monotherapy among HIV infected patients who experienced NRTI and NNRTI failure. AIDS Research and Therapy 2012; 9:8.
    183. Fox M, Ive P, Long L, Maskew M, Sanne I. High rates of survival, immune reconstitution and virologic suppression on secondline antiretroviral therapy in South Africa. J Acquir Immun Def Syndr 2010; 53:500-506.
    184. Murphy R, Sunpath H, Lu Z, Chelin N, Losia E, Gordon M, et al. Outcomes after virologic failure of first-line ART in South Africa. AIDS 2010; 24:1007-1012.
    185. Hosseinipour M, Kumwenda J, Weigel R, Brown L, Mzinganjira D, Mhango B, et al. Second-line treatment in the Malawi antiretroviral programm:high early morality, but good outcomes in survivors, despite extensive drug resistance at baseline. HIV Med 2010; 11:510-518.
    186. Torti C, Pozniak A, Nelson M, Hertogs K, Gazzard BG. Distribution of K103N and/or Y181C HIV-1 mutations by exposure to zidovudine and non-nucleoside reverse transcriptase inhibitors. J Antimicrob Chemother 2001;48:113-116.
    187. Bacheler L, Jeffrey S, Hanna G, D'Aquila R, Wallace L, Logue K, et al. Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J Virol 2001;75:4999-5008.
    188. Byrnes VW, Emini EA, Schleif WA, Condra JH, Schneider CL, Long WJ, et al. Susceptibilities of human immunodeficiency virus type 1 enzyme and viral variants expressing multiple resistance-engendering amino acid substitutions to reserve transcriptase inhibitors. Antimicrob Agents Chemother 1994; 38:1404-1407.
    189. Huang W, Gamarnik A, Limoli K, Petropoulos CJ, Whitcomb JM. Amino acid substitutions at position 190 of human immunodeficiency virus type 1 reverse transcriptase increase susceptibility to delavirdine and impair virus replication. J Virol 2003; 77:1512-1523.
    190. Turner D, Wainberg MA. HIV transmission and primary drug resistance. AIDS Rev.2006; 8:17-23.
    191. Little SJ, Holte S, Routy JP, Daar ES, Markowitz M, Collier AC, et al. Antiretroviral-Drug Resistance among Patients Recently Infected with HIV. N Engl J Med.2002; 347:385-394.
    192. Weinstock HS, Zaidi I, Heneine W, Bennett D, Garcia-Lerma JG, Douglas JM Jr, et al. The epidemiology of antiretroviral drug resistance among drug-naive HIV-1-infected persons in 10 US cities. J Infect Dis.2004; 189:2174-2180.
    193. Cane P, Chrystie I, Dunn D, Evans B, Geretti AM, Green H, et al. Time trends in primary resistance to HIV drugs in the United Kingdom:multicentre observational study. BMJ.2005; 331:1368-1373.
    194. Oette M, Kaiser R, Daumer M, Petch R, Fatkenheuer G, Carls H, et al. Primary HIV drug resistance and efficacy of first-line antiretroviral therapy guided by resistance testing. J Acquir Immune Defic Syndr 2006; 41:573-581.
    195. Filip J, Maria CHA, Leo F, Magnus G, Lars H, Vidar O, et al. The relation between treatment outcome and efavirenz, atazanavir or lopinavir exposure in the NORTHIV trial of treatment-naive HIV-1 infected patients. Eur J Clin Pharmacol 2010; 66:349-357.
    196. KOU HJ, YE M, FU Q, HAN Y, DU XL, XIE J, et al. Simultaneous quantification of lopinavir and ritonavir in human plasma by high performance liquid chromatography coupled with UV detection. Sci China Life Sci 2012; 55:321-327.
    197. Anthony S Fauci. HIV and AIDS:20 years of science. Nature medicine 2003; 9:839-843.
    198. Jakobsen MR, Tolstrup M, Sogaard OS, Jorgensen LB, Gorry PR, Laursen A, et al. Transmission of HIV-1 drug-resistant variants:prevalence and effect on treatment outcome. Clin Infect Dis 2010; 50:566-573.
    [1]Coffin JM. HIV population dynamics in vivo:implications for genetic variation, pathogenesis, and therapy. Science 1995;267:483-9.
    [2]Mansky LM, Temin. HM. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 1995;69:5087-94.
    [3]Preston BD, B. J. Poiesz, Loeb LA. Fidelity of HIV-1 reverse transcriptase. Science 1988;242:1168-71.
    [4]Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988;242:1171-3.
    [5]Clavel F, Hance AJ. HIV drug resistance. The New England Journal of Medicine 2004;350(10):1023-35.
    [6]Zhang F, Haberer J, Wei H, et al. Drug resistance in the Chinese national pediatric highly active antiretroviral therapy cohort:implications for paediatric treatment in the developing world. Int J STD AIDS 2009;20:406-9.
    [7]Liu L, Lu H-z, Henry M, Tamale C. Polymorphism and drug selected mutations of reverse transcriptase gene in 102 HIV-1 infected patients living in China. J Med Virol 2007;79:1593-9.
    [8]Zhang M, Han X-x, Cui W-g, et al. The impacts of current antiretroviral therapy regimens on Chinese AIDS patients and their implications for HIV-1 drug resistance mutation. Jpn J Infect Dis2008;61:361-5.
    [9]Zhong P, Pan Q, Ning Z, et al. Genetic diversity and drug resistance of human immunodeficiency virus type 1 (HIV-1) strains circulating in Shanghai. AIDS Res Hum Retroviruses 2007;23(7):847-56.
    [10]Han X, Zhang M, Dai D, et al. Genotypic resistance mutations to antiretroviral drugs in treatment-naive HIV/AIDS patients living in Liaoning province, China:baseline prevalence and subtype-specific difference. AIDS Res Hum Retroviruses 2007;23(3):357-64.
    [11]Little SJ, Holte S, Jean-Pierrerouty, et al. Antiretroviral-drug resistance among patients recently infected with HIV. The New England Journal of Medicine 2002;347(6):385-94.
    [12]Marconi VC, Sunpath H, Lu Z, et al. Prevalence of HIV-1 drug resistance after failure of a first highly active antiretroviral therapy regimen in KwaZulu Natal, South Africa. Clin Infect Dis 200815 May;46:1589-97.
    [13]Zhong P, Kang L-y, Pan Q-c, et al. Identification and distribution of HIV type 1 genetic diversity and protease inhibitor resistance-associated mutations in Shanghai, P. R. China. J Acquir Immune Defic Syndr 2003;34(1):91-101.
    [14]Hirsch MS, Gunthard HF, Schapiro JM, et al. Antiretroviral drug resistance testing in adult HIV-1 infection:2008 recommendations of an International AIDS Society-USA panel. Topics in HIV Medicine 2008;16(3):266-85.
    [15]The EuroGuidelines Group for HIV Resistance. Clinical and laboratory guidelines for the use of HIV-1 drug resistance testing as part of treatment management:recommendations for the European setting. AIDS 2001;15(3):309-20.
    [16]Caride E, Brindeiro R, Hertogs K, et al. Drug-resistant reverse transcriptase genotyping and phenotyping of B and non-B Subtypes (F and A) of Human Immunodeficiency Virus type 1 found in Brazilian patients failing HAART. Virology Journal 2000;275:107-15.
    [17]Bocket L, Yazdanpanah Y, Ajana F, et al. Thymidine analogue mutations in antiretroviral-naive HIV-1 patients on triple therapy including either zidovudine or stavudine. J Antimicrob Chemother 2004;53:89-94.
    [18]Nora T, Charpentier C, Tenaillon O, Hoede C, Clavel F, Hance AJ. Contribution of recombination to the evolution of Human Immunodeficiency Viruses expressing resistance to antiretroviral treatment. J Virol 2007;81(14):7620-8.
    [19]Hallack R, Doherty LE, Wethers JA, Parker MM. Evaluation of dried blood spot specimens for HIV-1 drug-resistance testing using the Trugene(?) HIV-1 genotyping assay. J Clin Virol 2008;41:283-7.
    [20]Hirigoyen DL, Cartwright CP. Use of sequence data generated in the Bayer TruGene genotyping assay to recognize and characterize non-subtype-B Human Immunodeficiency Virus type 1 strains. J Clin Microbiol 2005;43(10):5263-71.
    [21]Grant RM, Kuritzkes DR, Johnson VA, et al. Accuracy of the TRUGENE HIV-1 genotyping kit. J Clin Microbiol 2003;41(4):1586-93.
    [22]Kuritzkes DR, Grant RM, Feorino P, et al. Performance characteristics of the TRUGENE HIV-1 Genotyping Kit and the Opengene DNA sequencing system. J Clin Microbiol 2003;41(4):1594-9.
    [23]Gale HB, Kan VL, Shinol RC. Performance of the TruGene Human Immunodeficiency Virus type 1 genotyping kit and OpenGene DNA sequencing system on clinical samples diluted to approximately 100 copies per milliliter. Clinical and Vaccine Immunology 2006;13(2):235-8.
    [24]Church JD, Jones D, Flys T, et al. Sensitivity of the ViroSeq HIV-1 genotyping system for detection of the K103N resistance mutation in HIV-1 subtypes A, C, and D. Journal of Molecular Diagnostics 2006 September 2006;8(4):430-2.
    [25]Eshleman SH, Crutcher G, Petrauskene O, et al. Sensitivity and specificity of the ViroSeq Human Immunodeficiency Virus type 1 (HIV-1) genotyping system for detection of HIV-1 drug resistance mutations by use of an ABI PRISM 3100 Genetic analyzer. J Clin Microbiol 2005;43(2):813-7.
    [26]Chen JHK, Wong KH, Chan K, et al. Evaluation of an in-house genotyping resistance test for HIV-1 drug resistance interpretation and genotyping. J Clin Virol 2007;39:125-31.
    [27]Eshleman SH, Hackett J, Swanson P, et al. Performance of the Celera diagnostics ViroSeq HIV-1 genotyping system for sequence-based analysis of diverse Human Immunodeficiency Virus type 1 strains. J Clin Microbiol 2004 June 2004;42(6):2711-7.
    [28]Saravanan S, Vidya M, Balakrishanan P, et al. Evaluation of two human immunodeficiency virus-1 genotyping systems:ViroSeqTM 2.0 and an in-house method. J Virol Methods 2009;159:211-6.
    [29]Giinthard HF, Wong JK, Ignacio CC, et al. Human Immunodeficiency Virus replication and genotypic resistance in blood and lymph nodes after a year of potent antiretroviral therapy. J Virol 1998;72(3):2422-8.
    [30]Gonzalez R, Masquelier B, Fleury H, et al. Detection of Human Immunodeficiency Virus type 1 antiretroviral resistance mutations by High-Density DNA probe arrays. J Clin Microbiol 2004;42(7):2907-12.
    [31]Vahey M, Nau ME, Cooley JD, et al. Performance of the Affymetrix GeneChip HIV PRT 440 platform for antiretroviral drug resistance genotyping of Human Immunodeficiency Virus Type 1 clades and viral Isolates with length polymorphisms. J Clin Microbiol 1999;37(8):2533-7.
    [32]Sulaiman IM, Liu X, Frace M, et al. Evaluation of Affymetrix Severe Acute Respiratory Syndrome resequencing GeneChips in characterization of the genomes of two strains of Coronavirus infecting humans. Appl Environ Microbiol 2006;72(1):207-11.
    [33]Sulaiman IM, Tang K, Osborne J, Sammons S, Wohlhueter RM. GeneChip resequencing of the Smallpox virus genome can identify novel strains:a biodefense application. J Clin Microbiol 2007;45(2):358-63.
    [34]Parkin NT, Hellmann NS, Whitcomb JM, Kiss L, Chappey C, Petropoulos CJ. Natural variation of drug susceptibility in wild-type Human Immunodeficiency Virus type 1. Antimicrob Agents Chemother 2004;48(2):437-43.
    [35]Demarest JF, Amrine-Madsen H, Irlbeck DM, Kitrinos KM. Virologic failure in first-line Human Immunodeficiency Virus therapy with a CCR5 entry inhibitor, Aplaviroc, plus a fixed-dose combination of Lamivudine-Zidovudine:nucleoside reverse transcriptase inhibitor resistance regardless of envelope tropism. Antimicrob Agents Chemother 2009;53(3):1116-23.
    [36]Little SJ, Frost SDW, Wong JK, et al. Persistence of transmitted drug resistance among subjects with primary Human Immunodeficiency Virus infection. J Virol 2008;82(11):5510-8.
    [37]Jesus ED, Gottlieb MS, Gathe JC, Greenberg ML, Guittari CJ, Zolopa AR. Safety and efficacy of enfuvirtide in combination with Darunavir-Ritonavir and an optimized background regimen in treatment-experienced Human Immunodeficiency Virus-infected patients:the below the level of quantification study. Antimicrob Agents Chemother 2008;52(12):4315-9.
    [38]Salazar-Gonzalez JF, Bailes E, Pham KT, et al. Deciphering Human Immunodeficiency Virus type 1 transmission and early envelope diversification by single genome amplification and sequencing. J Virol 2008 Apr.2008;82(8):3952-70.
    [39]Palmer S, Kearney M, Maldarelli F, et al. Multiple, linked Human Immunodeficiency Virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J Clin Microbiol 2005 Jan.2005;43(1):406-13.
    [40]Torti C, Pozniak A, Nelson M, Hertogs K, Gazzard BG. Distribution of K103N and/or Y181C HIV-1 mutations by exposure to zidovudine and non-nucleoside reverse transcriptase inhibitors. J Antimicrob Chemother 2001;48:113-6.
    [41]Tang YW, Huong JT-J, Lloyd RM, Spearman P, Haas DW. Comparison of Human Immunodeficiency Virus type 1 RNA sequence heterogeneity in cerebrospinal fluid and plasma. J Clin Microbiol 2000;38(12):4637-9.
    [42]Peduzzi C, Pierotti P, Venturi G, Romano L, Mazzotta F, Zazzi M. Performance of an in-house genotypic antiretroviral resistance assay in patients pretreated with multiple human immunodeficiency virus type 1 protease and reverse transcriptase inhibitors. J Clin Virol 2002;25:57-62.
    [43]Bile EC, Adje-Toure C, Borget M-Y, et al. Performance of drug-resistance genotypic assays among HIV-1 infected patients with predominantly CRF02 AG strains of HIV-1 in Abidjan, Cote d'Ivoire. J Clin Virol 2005;32:60-6.
    [44]Resch W, Parkin N, Stuelke EL, Watkins T, Swanstrom R. A multiple-site-specific heteroduplex tracking assay as a tool for the study of viral population dynamics. Proc Natl Acad Sci U S A 2001;98(1):176-81.
    [45]Delwart EL, Pan H, Neumann A, Markowitz M. Rapid, transient changes at the env locus of plasma Human Immunodeficiency Virus type 1 populations during the emergence of protease inhibitor resistance. J Virol 1998;72(3):2416-21.
    [46]Watkins T, Resch W, Irlbeck D, Swanstrom R. Selection of high-level resistance to Human Immunodeficiency Virus type 1 protease inhibitors. Antimicrob Agents Chemother 2003;47(2):759-69.
    [47]Kapoor A, Jones M, Shafer RW, Rhee S-Y, Kazanjian P, Delwart EL. Sequencing-Based detection of low-frequency Human Immunodeficiency Virus type 1 drug-resistant mutants by an RNA/DNA Heteroduplex Generator-Tracking assay. J Virol 2004;78(13):7112-23.
    [48]Quinones-Mateu ME, Gao Y, Ball SC, Marozsan AJ, Abraha A, Arts EJ. In vitro intersubtype recombinants of Human Immunodeficiency Virus type 1:comparison to recent and circulating in vivo recombinant forms. J Virol 2002;76(19):9600-13.
    [49]Doukhan L, Delwart E. Population genetic analysis of the protease locus of Human Immunodeficiency Virus type 1 quasispecies undergoing drug selection, using a denaturing gradient-Heteroduplex Tracking assay. J Virol 2001;75(14):6729-36.
    [50]Troyer RM, Collins KR, Abraha A, et al. Changes in Human Immunodeficiency Virus type 1 fitness and genetic diversity during disease progression. J Virol 2005;79(14):9006-28.
    [51]Riddle TM, Shire NJ, Sherman MS, Franco KF, Sheppard HW, Nelson JAE. Sequential turnover of Human Immunodeficiency Virus type 1 env throughout the course of infection. J Virol 2006;80(21):10591-9.
    [52]Ngrenngarmlert W, Kwiek JJ, Kamwendo DD, et al. Measuring allelic heterogeneity in Plasmodium falciparum by a Heteroduplex Tracking assay. Am J Trop Med Hyg 2005;72(6):694-701.
    [53]Juliano JJ, Trottman P, Mwapasa V, Meshnick SR. Detection of the dihydrofolate reductase-164L mutation in Plasmodium falciparum infections from malawi by Heteroduplex Tracking assay. Am J Trop Med Hyg 2008;78(6):892-4.
    [54]Stuyver L, Wyseur A, Rombout A, et al. Line Probe assay for rapid detection of drug-selected mutations in the Human Immunodeficiency Virus type 1 reverse transcriptase gene. Antimicrob Agents Chemother 1997;41(2):284-91.
    [55]Descamps D, Calvez V, Collin G, et al. Line Probe assay for detection of Human Immunodeficiency Virus type 1 mutations conferring resistance to nucleoside inhibitors of reverse transcriptase:comparison with sequence analysis. J Clin Microbiol 1998;36(7):2143-5.
    [56]Sturmer M, Morgenstern B, Staszewski S, Doerr HW. Evaluation of the LiPA HIV-1 RT assay version 1:comparison of sequence and hybridization based genotyping systems. J Clin Virol 2002;25:S65-S72.
    [57]Landegren U, Kaiser R, Sanders J, Hood L. A ligase-mediated gene detection technique Science 1988;241(4869):1077-80.
    [58]Landegren U, Kaiser R, Caskey CT, Hood L. DNA diagnostics--molecular techniques and automation. Science 1988;242(4876):229-37.
    [59]Nickerson DA, Kaiser R, Lappin S, Stewart J, Hood L, Landegren U. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc Natl Acad Sci U S A 1990;87:8923-9.
    [60]Ellis GM, Mahalanabis M, Beck IA, et al. Comparison of Oligonucleotide Ligation assay and consensus sequencing for detection of drug-resistant mutants of Human Immunodeficiency Virus type 1 in peripheral blood mononuclear cells and plasma. J Clin Microbiol 2004;42(8):3670-4.
    [61]Edelstein RE, Nickerson DA, Tobe VO, Manns-Arcuino LA, Frenkel LM. Oligonucleotide Ligation Assay for detecting mutations in the Human Immunodeficiency Virus type 1 pol gene that are associated with resistance to Zidovudine, Didanosine, and Lamivudine. J Clin Microbiol 1998;36(2):569-72.
    [62]Beck IA, Mahalanabis M, Pepper G, et al. Rapid and sensitive Oligonucleotide Ligation Assay for detection of mutations in Human Immunodeficiency Virus type 1 associated with high-level resistance to protease inhibitors. J Clin Microbiol 2002;40(4):1413-9.
    [63]Wallis CL, Mahomed I, Morris L, et al. Evaluation of an oligonucleotide ligation assay for detection of mutations in HIV-1 subtype C individuals who have high level resistance to nucleoside reverse transcriptase inhibitors and non-nucleoside reverse transcriptase inhibitors. J Virol Methods 2005;125:99-109.
    [64]Vega Y, Perez-Alvarez L, Delgado E, et al. Oligonucleotide Ligation assay for detection of mutations associated with reverse transcriptase and protease inhibitor resistance in non-B subtypes and recombinant forms of Human Immunodeficiency Virus type 1. J Clin Microbiol 2005;43(10):5301-4.
    [65]Jallow S, Kaye S, Schutten M, et al. Development and evaluation of an Oligonucleotide Ligation assay for detection of drug resistance-associated mutations in the Human Immunodeficiency Virus type 2 pol gene J Clin Microbiol 2007;45(5):1565-71.
    [66]Lalonde MS, Troyer RM, Syed AR, et al. Sensitive Oligonucleotide Ligation assay for low-level detection of nevirapine resistance mutations in Human Immunodeficiency Virus type 1 quasispecies. J Clin Microbiol 2007;45(8):2604-15.
    [67]Wilson JW, Bean P, Robins T, Graziano F, Persing DH. Comparative evaluation of three Human Immunodeficiency Virus genotyping systems:the HIV-GenotypR method, the HIV PRT GeneChip assay, and the HIV-1 RT Line Probe assay. J Clin Microbiol 2000;38(8):3022-8.
    [68]Servais J, Lambert C, Fontaine E, et al. Comparison of DNA sequencing and a Line Probe assay for detection of Human Immunodeficiency Virus type 1 drug resistance mutations in patients failing highly active antiretroviral therapy. J Clin Microbiol 2001;39(2):454-9.
    [69]Jagodzinski LL, Cooley JD, Weber M, Michael NL. Performance characteristics of Human Immunodeficiency Virus type 1 (HIV-1) genotyping systems in sequence-based analysis of subtypes other than HIV-1 subtype B. J Clin Microbiol 2003;41(3):998-1003.
    [70]Erali M, Page S, Reimer LG, Hillyard DR. Human Immunodeficiency Virus type 1 drug resistance testing:a comparison of three sequence-based methods. J Clin Microbiol 2001;39(6):2157-65.
    [71]Korn K, Reil H, Walter H, Schmidt B. Quality control trial for Human Immunodeficiency Virus type 1 drug resistance testing using clinical samples reveals problems with detecting minority species and interpretation of test results. J Clin Microbiol 2003;41(8):3559-65.
    [72]Zazzi M, Romano L, Venturi G, et al. Comparative evaluation of three computerized algorithms for prediction of antiretroviral susceptibility from HIV type 1 genotype. J Antimicrob Chemother 2004;53:356-60.
    [73]Hertogs K, Bethune M-PD, Miller V, et al. A rapid method for simultaneous detection of phenotypic resistance to inhibitors of protease and reverse transcriptase in recombinant Human Immunodeficiency Virus type 1 isolates from patients treated with antiretroviral drugs. Antimicrob Agents Chemother 1998;42(2):269-76.
    [74]Covens K, Dekeersmaeker N, Schrooten Y, et al. Novel recombinant virus assay for measuring susceptibility of Human Immunodeficiency Virus type 1 group M subtypes to clinically approved drugs. J Clin Microbiol 2009;47(7):2232-42.
    [75]Bacheler L, Jeffrey S, Hanna G, et al. Genotypic correlates of phenotypic resistance to Efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J Virol 2001;75(11):4999-5008.
    [76]Sturmer M, Staszewski S, Doerr H-W, Larder B, Bloor S, Hertogs K. Correlation of phenotypic Zidovudine resistance with mutational patterns in the reverse transcriptase of Human Immunodeficiency Virus type 1:interpretation of established mutations and characterization of new polymorphisms at codons 208,211, and 214. Antimicrob Agents Chemother 2003;47(1):54-61.
    [77]Garcia-Lerma JG, MacInnes H, Bennett D, Weinstock H, Heneine W. Transmitted Human Immunodeficiency Virus type 1 carrying the D67N or K219Q/E mutation evolves rapidly to Zidovudine resistance in vitro and shows a high replicative fitness in the presence of zidovudine. J Virol 2004;78(14):7545-52.
    [78]Gu Z, Allard B, Muys JMd, et al. In vitro antiretroviral activity and in vitro toxicity profile of SPD754, a new deoxycytidine nucleoside reverse transcriptase inhibitor for treatment of Human Immunodeficiency Virus infection. Antimicrob Agents Chemother 2006;50(2):625-31.
    [79]Fletcher P, Harman S, Azijn H, et al. Inhibition of Human Immunodeficiency Virus type 1 infection by the candidate microbicide Dapivirine, a nonnucleoside reverse transcriptase inhibitor. Antimicrob Agents Chemother 2009;53(2):487-95.
    [80]Santos AF, Abecasis AB, Vandamme A-M, Camacho RJ, Soares MA. Discordant genotypic interpretation and phenotypic role of protease mutations in HIV-1 subtypes B and G. J Antimicrob Chemother 2009;63:593-9.
    [81]Soares EA, Santos AF, Gonzalez LM, et al. Mutation T74S in HIV-1 subtype B and C proteases resensitizes them to ritonavir and indinavir and confers fitness advantage. J Antimicrob Chemother 2009;64:938-44.
    [82]Svicher V, Sing T, Santoro MM, et al. Involvement of novel Human Immunodeficiency Virus type 1 reverse transcriptase mutations in the regulation of resistance to nucleoside inhibitors. J Virol 2006;80(14):7186-98.
    [83]Kitrinos KM, Amrine-Madsen H, Irlbeck DM, Word JM, Demarest JF. Virologic failure in therapy-naive subjects on aplaviroc plus lopinavir-ritonavir:detection of aplaviroc resistance requires clonal analysis of envelope. Antimicrob Agents Chemother 2009;53(3):1124-31.
    [84]Little SJ, D'Aquila RT, Keiser PH, et al. Reduced antiretroviral drug susceptibility among patients with primary HIV infection. JAMA 1999;282(12):1142-9.
    [85]Havlir DV, Hellmann NS, Petropoulos CJ, et al. Drug susceptibility in HIV infection after viral rebound in patients receiving Indinavir-containing regimens. JAMA 2000;283(2):229-34.
    [86]Boden D, Hurley A, Zhang L, et al. HIV-1 drug resistance in newly infected individuals. JAMA 1999;282(12):1135-41.
    [87]Petropoulos CJ, Parkin NT, Limoli KL, et al. A novel phenotypic drug susceptibility assay for Human Immunodeficiency Virus type 1. Antimicrob Agents Chemother 2000;44(4):920-8.
    [88]Grant RM, Hecht FM, Warmerdam M, et al. Time trends in primary HIV-1 drug resistance among recently infected persons. JAMA 2002;288(2):181-8.
    [89]Garcia-Lerma JG, Nidtha S, Blumoff K, Weinstock H, Heneine W. Increased ability for selection of zidovudine resistance in a distinct class of wild-type HIV-1 from drug-naive persons. Proc Natl Acad Sci U S A 2001;98(24):13907-12.
    [90]Johnston E, Winters MA, Rhee S-Y, Merigan TC, Schiffer CA, Shafer RW. Association of a novel Human Immunodeficiency Virus type 1 protease substrate cleft mutation, L23I, with protease inhibitor therapy and in vitro drug resistance. Antimicrob Agents Chemother 2004;48(12):4864-8.
    [91]Garcia-Lerma JG, MacInnes H, Bennett D, et al. A novel genetic pathway of Human Immunodeficiency Virus type 1 resistance to Stavudine mediated by the K65R mutation. J Virol 2003;77(10):5685-93.
    [92]Gulick RM, Lalezari J, Goodrich J, et al. Maraviroc for previously treated patients with R5 HIV-1 infection. The New England Journal of Medicine 2008;359(14):1429-41.
    [93]Tsibris AMN, Sagar M, Gulick RM, et al. In vivo emergence of Vicriviroc resistance in a Human Immunodeficiency Virus type 1 subtype C-infected subject. J Virol 2008;82(16):8210-4.
    [94]Grossman Z, Paxinos EE, Averbuch D, et al. Mutation D30N is not preferentially selected by Human Immunodeficiency Virus type 1 subtype C in the development of resistance to Nelfinavir. Antimicrob Agents Chemother 2004;48(6):2159-65.
    [95]Nissley DV, Boyer PL, Garfinkel DJ, Hughes SH, Strathern JN. Hybrid Tyl/HIV-1 elements used to detect inhibitors and monitor the activity of HIV-1 reverse transcriptase. Proceedings of the National Academy Sciences of the United States of America 1998;95:13905-10.
    [96]Nissley DV, Halvas EK, Hoppman NL, Garfinkel DJ, Mellors JW, Strathern JN. Sensitive phenotypic detection of minor drug-resistant Human Immunodeficiency Virus type 1 reverse transcriptase variants. J Clin Microbiol 2005;43(11):5696-704.
    [97]Halvas EK, Aldrovandi GM, Balfe P, et al. Blinded, multicenter comparison of methods to detect a drug-resistant mutant of Human Immunodeficiency Virus type 1 at low frequency. J Clin Microbiol 2006;44(7):2612-4.
    [98]Nissley DV, Radzio J, Ambrose Z, et al. Characterization of novel non-nucleoside reverse transcriptase (RT) inhibitor resistance mutations at residues 132 and 135 in the 51 kDa subunit of HIV-1 RT. Biochem J 2007;404:151-7.
    [99]Machado ES, Afonso AO, Nissley DV, et al. Emergency of primary NNRTI resistance mutations without antiretroviral selective pressure in a HAART treated child. PLoS ONE 2009;4(3):e4806-e11.
    [100]Heneine W, Yamamoto S, Switzer WM, Spira TJ, Folks TM. Detection of reverse transcriptase by a highly sensitive assay in sera from persons infected with Human Immunodeficiency Virus type 1. J Infect Dis 1995;171:1210-7.
    [101]Yamamoto S, Folks TM, Heneine W. Highly sensitive qualitative and quantitative detection of reverse transcriptase activity:optimization, validation, and comparative analysis with other detection systems. J Virol Methods 1996;61:135-43.
    [102]Garcia-Lerma JG, Yamamoto S, Gomez-Cano M, Soriano V, Green TA, Busch MP. Measurement of Human Immunodeficiency Virus type 1 plasma virus load based on reverse transcriptase (RT) activity:evidence of variabilities in levels of virion-associated RT. J Infect Dis 1998;177:1221-9.
    [103]Garcia-Lerma JG, Heneine W. Rapid biochemical assays for phenotypic drug resistance testing of HIV-1. J Antimicrob Chemother 2002;50:771-4.
    [104]Flys T, Nissley DV, Claasen CW, et al. Sensitive drug-resistance assays reveal long-term persistence of HIV-1 variants with the K103N Nevirapine (NVP) resistance mutation in some women and infants after the administration of single-dose NVP:HIVNET 012. Journal of Infectious Disease 2005; 192:24-9.
    [105]Qari SH, Respess R, Weinstock H, et al. Comparative analysis of two commercial phenotypic assays for drug susceptibility testing of Human Immunodeficiency Virus type 1. J Clin Microbiol 2002;40(1):31-5.
    [106]Shafer RW. Genotypic testing for Human Immunodeficiency Virus type 1 drug resistance. Clin Microbiol Rev 2002;15(2):247-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700