用户名: 密码: 验证码:
偶氮苯磺酸衍生物插层材料结构的理论计算与分子模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用量子化学的密度泛函理论(DFT)研究了偶氮苯磺酸衍生物阴离子(AbS-)插层水滑石(LDH)的电子结构及相关性质。基于AbS-阴离子的电子结构和具有D3d对称性的LDH层板结构单元,从理论上构建了AbS--LDH的主体-客体及客体-客体相互作用模型,揭示了两种相互作用的本质,据此获得了AbS--LDH超分子体系的微观结构。在此基础上,进一步构建了AbS--LDH的晶体结构,并进行了粉末X射线衍射(PXRD)模拟。对于AbS--LDH超分子体系,首先采用B3LYP和B3PW91方法,分别在LANL2DZ.6-31G(d,p)和6-311++G(d,p)基组水平上计算了Mg/Al层板单元和AbS-阴离子的电子结构,获得了AbS--LDH的主体-客体相互作用体系的构型。计算结果表明,层板中部直立羟基附近的最低未占轨道(LUMO)与每种AbS-阴离子磺酸根上的最高未据轨道(HOMO)可以发生相互作用,易于形成AbS-阴离子垂直层板排列的插层结构;且体系的结合能均为负值,同样也有利于结合过程。磺酸根基团分别位于对称的para-和meta-位的双取代AbS-阴离子在水滑石层间形成单插层的结构,并可以直观的反映AbS-阴离子在层间的排布,其层间距分别为2.07 nm和1.82 nm;而同样在上述取代位的单取代的AbS-阴离子在层间呈交叉梳状的双层排列结构,其主体-客体作用模型不能显示出阴离子在层间的排布情况。在双插层结构体系中,主要存在主体-客体和客体-客体两种相互作用。为了获得单取代AbS-阴离子的双插层结构,首先探讨了Mg/Al-LDH层间客体的相互作用,将其转化为AbS-阴离子的聚集行为加以研究。为排除静电斥力等不利因素的影响,在AbS-阴离子的磺酸根基团引入一个质子以平衡其负电荷,对AbS分子的二聚行为进行研究。在B3LYP/6-31G(d,p)计算级别上,优化得到以平行位移式芳环堆积的AbS分子的二聚体稳定构型,且能很好地反映水滑石层间AbS-阴离子的聚集行为。基于B3LYP/6-31G(d,p)水平上得到的主体-客体(AbS--lamella)和客体-客体(AbS-AbS)相互作用的两组分子碎片的计算结果,采用构建超分子大体系结构的分子碎片组合计算方法,利用两组分子碎片之间的紧密联系,将其叠加组合得到单取代AbS-阴离子插层LDH的超分子结构模型,并获得p-AbS--LDh和m-AbS--LDH的双插层结构的理论层间距分别为2.37 nm和1.86 nm。
     基于上述构建的双取代的AbS-阴离子插层LDH的单层插层结构和单取代的AbS--LDH的双层插层结构,以及获得的分别具有的R-3m和R-3空间群对称性的Mg/Al=3和2的水滑石层板次级晶胞结构,将AbS-阴离子引入LDH层间,在充分考虑Mg/Al比和AbS-阴离子之间相互作用的同时,构建了阴离子在层间垂直取向的AbS--LDH的晶体结构,并对其进行PXRD模拟。结果表明,构建的每种晶体结构的(003)、(006)、(009)和(110)等特征衍射峰清晰可见。同时将双层插层的晶体结构的PXRD谱图与结构相近的阴离子插层LDH的PXRD的实验数据加以比较,验证了所构建的晶体结构的合理性以及模拟的PXRD谱图的有效性。
     在构建AbS--LDH超分子结构的基础上,研究了它们的光热稳定性,并与单分子AbS的性质加以比较,探讨了Mg/Al-LDH层板对AbS-阴离子性质的影响。AbS--LDH的热致异构反应机理为反转与旋转的一步协同反应;单分子AbS的顺反异构机理为旋转、反转、再旋转的连续过程,在其异构的势能面上,从反应的过渡态出发到达的两端既不是反应物也不是产物,而是具有低对称性的过渡态构型,它们又分别是顺反异构体中无取代基苯环旋转的过渡态,也就是在反应的途径上存在连续过渡态以连接反应物和产物。AbS与AbS--LDH的热致异构反应的能垒相比较,后者的能垒略高,表明Mg/Al-lamella对AbS-阴离子的异构存在一定的阻碍效应。AbS--LDH体系和单分子AbS的S1←S0(n→π*)和S2←S0(π→π*)的跃迁性质相似,即S1←S0跃迁是禁阻的,S2←S0跃迁是允许的。AbS--LDH的S2←S0跃迁较单分子AbS发生蓝移,即跃迁的能量增高,因此AbS--LDH超分子体系具有较强的光稳定性。通过对AbS--LDH体系和单分子AbS光热稳定性的研究,从理论上解释了AbS-阴离子插层LDH之后其光热稳定性提高的原因,并揭示了LDH作为“分子容器”的限域作用。
     本文还探讨了双取代的AbS分子的热致和光致异构途径。热致异构存在两种途径:一种是结合旋转的反转途径,其势能面上的总反应的过渡态连接两个具有低对称性的过渡态构型(即顺反异构体中一个苯环发生旋转地过渡态),同样也是旋转、反转、再旋转的连续过程;另一种是掺杂了反转的旋转途径,且势能面上仅存在一个过渡态并直接连接顺反异构体。两种途径势能面上的能量最高点为同一构型,即热致异构途径由反转和旋转两种机理协同作用。由于光致异构的反转途径存在多次的振动弛豫而产生多次的能量快速分配,导致这种异构化途径的效率很低;而沿着旋转途径,异构化主要通过由S1/S0的圆锥交叉点进行,也可以经由包含三线态的S0-T1-S0交叉区域发生异构化反应。
The structures and properties of azobenzene sulfonate derivatives intercalated into layered double hydroxides (LDH) have been studied by using density functional theory (DFT). The host-guest and guest-guest interaction models of the intercalated structures have been built based on the frontier molecular orbitals of the different intercalated azobenzene sulfonate anions (AbS-) and the lamella cluster with D3d symmetry of Mg/Al-LDH, so the supramolecular structures of AbS--LDH have been obtained. The interaction essence of the AbS--LDH is revealed from the microcosmic structures and energies point of view. Furthermore, the crystal structures of AbS--LDH have been built by their microcosmic structures, and the simulated powder X-Ray diffraction (PXRD) patterns of their crystal structures have also been obtained.
     The host-guest interaction model of AbS--LDH can be built based on the investigation of electronic structures for Mg/Al-lamella and AbS-anion by using B3LYP and B3PW91 methods at the levels of LANL2DZ, 6-31G(d,p), and 6-311++G(d,p). The calculated results show that the combination of AbS- anions and lamella is favored according to their energies and frontier molecular orbitals. The AbS- anions with di-sulfonic acid groups in the para-and meta-positions, respectively, should be vertical-arranging in the interlayer space and formed a single intercalation layer, and the calculated interlayer distances of p,p'-AbS--LDH and m,m'-AbS"-LDH is 2.07 and 1.82 nm, respectively. An arrangement of anions in the interlayer may be revealed from the host-guest interaction model. The monosubstituted AbS- anions in the same positions are also arranged perpendicular to the lamella, forming an interdigitated structure with double-layer in the interlayer space, while this structure cannot display the arrangement of anions.
     For the double-layer structure of monosubstituted AbS- anions intercalated into Mg/Al-LDH, there are two major interactions, the host-guest and guest-guest, respectively. The guest-guest interaction of AbS--LDH are studied by the same methods as the host-guest model, which has been modeled as the aggregation of AbS- anions. In order to eliminate the electrostatic repulsion effect, a proton is introduced into the sulfonic acid group to form a charge-neutral molecule, so a dimeric structure with parallel-displaced aromatic stacking interactions is obtained. Based on the relation between the host-guest and guest-guest interaction models, the intercalated structure with the interdigitated double-layer anion is obtained by using combinational calculation of molecular fragments (CCMF). The interlayer distances of p-AbS--LDH and m-AbS--LDH obtained from the theoretical calculated is 2.37 and 1.86 nm, respectively.
     The perfect crystal structures of AbS--LDH are constructed according to the above optimized geometries and the crystal structure of LDH with the pace group R-3m and R-3. In the simulated PXRD patterns, the characteristic peaks of each crystal structures for AbS--LDH can be clearly observed. Through a comparing between the simulated PXRD patterns of AbS--LDH and experimental data of interlayer anions with the similar to AbS- anion structure, it is confirmed that the crystal structure of AbS--LDH obtained from the theoretical model is reasonable.
     The photo-and thermal-stabilities of supramolecular structures of AbS--LDH are also investigated by using DFT method. Compared with the characters of AbS molecules, the influence of lamellae for AbS--LDH supramolecular structures is discussed. For AbS--LDH, the potential energy profile alone the thermal isomerization pathway can be described as the one-step concerted process of inversion and rotation, and the trans-and cis-isomers are separated by only one transition state duo to the strong electrostatic interaction between host and guest. The cis-trans isomerization form of AbS molecule concerns the complex pathway that is characterized by the inversion combined with certain degree of rotation, and it is worthy to notice that the potential energy profile from the transition state connects not to a reactant or to a product but to another transition state, which in turn connects two symmetrically structures with lower symmetry. The energy barrier of AbS--LDH is slight higher than that of AbS, and it indicates that there is some influence for the ismerization of AbS- anion in the interlayer space. The S1<←S0 (n→π*) and S2←S0 (π→π*) transitions for both AbS--LDH and AbS molecule appear exceedingly similar:the S1←S0 transition is forbidden and the S2←S0 transition is allowed. It is found a blue shift in S2←S0 transition for AbS--LDH because the energy for its transition increases. From the theoretically aspect, it can explain that AbS--LDH exhibits advanced photo-and thermal-stabilities compared with the individual AbS- anion.
     Finally, thermal and photochemical isomerization mechanisms of the AbS molecule with di-sulfonic acid groups have been studied. There are two pathways for thermal isomerization. One is the inversion combined with rotation, and the potential energy profile from the transition state connects not to a reactant or to a product but to another transition state, which in turn connects two symmetrically structures with lower symmetry. The other pathway is the rotation involved inversion, while the two isomers are connected through the only one transition state. The calculation results indicate that the molecular structures at the highest points on the potential energy profiles of two pathways are identical, which shows that two mechanisms (inversion and rotation) operate simultaneously for thermal isomerization. For the photochemical isomerization pathways, the results show that the rapid energy redistribution among the various vibrations renders the concentration of such amounts of energy in the inversion coordinate very improbable, while the isomerization can easily occur through the S0/S1 conical intersection and the S0-T1-S0 crossing to reach the product by the rotation pathway.
引文
[1]段雪,张法智.无机超分子材料的插层组装化学[M].北京:科学出版社,2009:8-10.
    [2]Ogawa M, Kuroda K. Photofunctions of intercalation compounds [J]. Chem.Rev.,1995, 95:399-438.
    [3]Whittingham M S, Jacobson A J. Intercalation Chemistry [M]. New York:Acedemic Press, 1982:445.
    [4]Pinnavaia T J. Intercalated Clay Catalysts [J]. Science,1983,220:365-371.
    [5]Johnson J W, Jacobson A J, Butler W M, Rosenthal S E, Brody J F, Lewandowski J T. Molecular recognition of alcohols by layered compounds with alternating organic and inorganic layers [J]. J.Am.Chem.Soc.,1989,111:381-383.
    [6]Cao G, Mallouk T E. Shape-selective intercalation reactions of layered zinc and cobalt phosphonates [J]. Inorg. Chem.,1991,30:1434-1438.
    [7]Clearfield A. Role of ion exchange in solid-state chemistry [J]. Chem. Rev.,1988,88: 125-148.
    [8]Ruiz-Hitzky E. Conducting Polymers Intercalated in Layered Solids [J]. Adv. Mater.,1993, 5:334-340.
    [9]Fitch A. Clay-modified electrodes:A review [J]. Clays Clay Miner.,1990,38:391-400.
    [10]段雪,张法智.插层组装与功能材料[M].北京:化学工业业出版社,2007.
    [11]Braterman P S, Xu Z P, Yarberry F. Handbook of Layered Materials [M]. New York: Marcel Dekker,2004:373-474.
    [12]Evans D G, Slade R C T. Structure aspects of layered double hydroxide [J]. Struct Bond, 2006,119:1-87.
    [13]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and application [J]. Catal Today,1991,11:173-301.
    [14]Leroux F, Taviot-Gueho C. Fine tuning between organic and inorganic host structure:new trend in layered double hydroxide hybrid assemblies [J]. J Mater Chem,2005,15: 3628-3642.
    [15]Choy J H, Choi S J, Oh J M, Park T. Clay minerals and layered double hydroxides for novel biological applications [J]. Appl. Clay. Sci.,2007,36:122-132.
    [16]Khan A I, O'Hare D. Intercalation chemistry of layered double hydroxides:recent developments and applications [J]. J Mater Chem,2002,12:3191-3198.
    [17]Newman S P, Jones W. Synthesis, characterization and applications of layered double hydroxides containing organic guests [J]. New J. Chem.,1998,22:105-115.
    [18]Bone J. S. Development and Characterisation of the Interlayer Chemistry of Layered Double Hydroxides [M]. Exter:University of Exter,1995.
    [19]沈家骢.超分子层状结构-组装与功能[M].北京:科学出版社,2003:125-185.
    [20]Rives V. Layered Double Hydroxides:Present and Future [M]. New York:Nova Science Publishers,2001.
    [21]Vaccari A. Clays and catalysis:a promising future [J]. Appl. Clay Sci.,1994,14:161-198.
    [22]Miyata S, Kumura T. Synthesis of new hydrotalcite-like compounds and their physicochemical properties [J]. Chem. Letters,1973,8:843-848.
    [23]Allmann R N. Refinement of the hybrid layer structure [Ca2Al(OH)6]+·[1/2SO4·3H2O] [J].
    Jhb Miner. Mh.,1977,3:136-144.
    [24]Brindley G W, Kikkawa S. Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite [J]. Clays Clay Miner,1980,28:87-91.
    [25]Mascolo G., Marino O. Discrimination between synthetic Mg-Al double hydroxides and related carbonate phases [J]. Thermochim. Acta.,1980,35:93-98.
    [26]肖轶,马骏,任韶玲.碳酸根离子柱撑钴铝的合成与表征[J].催化学报,1999,20:459-462.
    [27]Bhattacharyya A, Hall D B. Novel oligovanadate-pillared hydrotalcite [J]. Appl. Clay Sci., 1995,10:57-67.
    [28]Bhattacharyya A., Hall D B. New triborate-pillared hydrotalcite [J]. Inorg. Chem.,1992, 31:3689-3670.
    [29]Matrin K J, Pinnavaia T J. Layered double hydroxides as supported anionic reagents. Halide-ion reactivity in zinc chromium heahydroxide halide hydrates [Zn2Cr(OH)6XnH2O](X=Cl-,I) [J]. J. Am. Chem. Soc.,1986,108:541-542.
    [30]Genin J-M R. Thermodynamic equilibria in aqueous suspersions of synthesis and natural Fe(Ⅱ)-Fe(Ⅲ)green rusts:occurrences of the mineral in hydromorphic soils [J]. Environ.Sci.Tech.,1998,32:1058-1068.
    [31]Dimotakis E D, Pinnacaia T J. New route to layered double hydroxides intercalated by organic anions anions:precursors to polyoxometalate-pillared derivatives [J]. Inorg. Chem.,1990,29:2393-2394.
    [32]Chibwe K, Jones W. Synthesis of polyoxometalate-pillared layered double hydroxides via calcined precursors [J]. Chem. Mater.,1989,1:489-490.
    [33]Giannelis E P, Nocera D G, Pinnavaia T J. Anionic photocatalysts supported in layered double hydroxides:intercalation and photophysical properties of a ruthenium complex anion in synthjeetic hydrotalcite [J]. Inorg. Chem.,1987,26:203-205.
    [34]李兴林,佘益民,郭军,蒋大振.杂多阴离子柱撑LDH层柱相互作用(I)[J].应用化学,1997,14:105-107.
    [35]华瑞年,瞿伦玉,龚剑,等.钨硅系列三元杂多阴离子柱撑阴离子粘土的合成与表征[J].无机化学学报,1997,13:101-103.
    [36]ItayaKChang H C, Uchida I. Anion-exchanged clay (hydrotalcite-like compounds) modified Electrodes [J]. Inorg. Chem.,1987,26:624-626.
    [37]Lopez-Salinas E, Ono Y. Intercalation chemistry of a Mg-Al layered double hydroxides ion-exchanged with complex MCl42-(M=Ni,Co)ions from organic media [J]. Micropor. Mater.,1993,1:33-42.
    [38]Narita E, Kaviratna P, Pinnavaia T J. Synthesis of heteropolyoxometalate pillared layered double hydroxides via calcined ainc-aluminum oxide precursors [J]. Chem. Letters,1991, 5:805-808.
    [39]Kwon T, Pinnavaia T J. Pillaring of a layered double hydroxides by polyoxometalates with Keggin-ion structures [J]. Chem. Mater.,1989,1:381-383.
    [40]Ulibarri M A, Labajos F M, Rives V, et al. Comparative study of the synthesis and properties of vanadate-exchanged layered double hydroxides [J]. Inorg. Chem.,1994,33: 2592-2599.
    [41]Miyata S. Anion-exchange properties of hydrotalcite-like compounds [J]. Clays. Clay Miner.,1983,31:305-311.
    [42]Miyata S. The synthesis of hydrotalcite-like compounds and their structures and physico-chemical properties-Ⅰ:The system Mg2+-Al3+-NO3-, Mg2+-Al3+-CI-, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl-, and Zn2+-Al3+-Cl- [J]. Clay. Clay Miner.,1975,23: 369-375.
    [43]Taylor H F W. Crystal structures of some double hydroxide minerals [J]. Miner. Mag., 1973,39:377-389.
    [44]Mascolo G, Marino O. A new synthesis and characterization of magnesium-aluminimum hydroxides [J]. Miner. Mag.,1980,43:619-621.
    [45]Kagunya W, Hassan Z, Jones W. Catalytic properties of layered double hydroxides and their calcined derivatives [J]. Inorg. Chem.,199635:5970-5974.
    [46]袁琦.L型氨基酸插层水滑石的制备及其性能研究[D].北京:北京化工大学,2004.
    [47]Miyata S, Physicochemical properties of synthetic hydrotalcite in relation to composition [J]. Clays Clay Miner.,1980,28:50-55.
    [48]刘继云,郭军,孙铁,吕慧娟,毛丽秋,蒋大振,阎恩泽.杂多阴离子柱撑水滑石类层状材料中层柱相互作用研究[J].高等学校化学学报,1995,16:1329-1333.
    [49]Meyn M, Beneke K, Lagaly G. Anion-exchange reactions of layered double hydroxides [J]. Inorg. Chem.,1990,29:5201-5207.
    [50]邢颖,李殿卿,郭灿雄,Evans D G,段雪.Zn-Al-CO3水滑石晶粒尺寸控制与光屏蔽作用研究[J].精细化工,2003,20:1-7.
    [51]Zhao Y, Li F, Zhang R, Evans D G, Duan X. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater.,2002,14:4286-4291.
    [52]杜以波,何静,李峰,Evans D G,段雪,王作新.水滑石及柱撑水滑石的制备和表征[J].北京化工大学学报,1997,24:76-80.
    [53]Kloprogge J T, Frost R L. Fourier Transform Infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites [J]. J. Solid State Chem.,1999,146: 506-515.
    [54]Reichle W T. Catalytic reaction by thermally activated, synthetic anionic clay minerals[J]. J. Catal.,1985,94:547-557.
    [55]Bone J S. Development and Characterisation of the Interlayer Chemistry of Layered Double Hydroxides [M]. Exter:University of Exter,1995.
    [56]Li F, Duan X. Applications of layered double hydroxides [J]. Struct. Bond.,2006,119: 193-223.
    [57]Monte R D, Kaspar J. Towards understanding, control and application of layered double hydroxide chemistry [J]. J. Mater. Chem.,2005,15:633-648.
    [58]Evans D G, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]. Chem. Commun.,2006:485-496.
    [59]Daza C E, Gallego J, Moreno J A, Mondragon F, Moreno S, Molina R. CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides [J]. Catal. Today,2008,133-135:357-366.
    [60]Mas V, Dieuzeide M L, Jobbagy, Baronetti G, Amadeo N, Laborde M. Ni(Ⅱ)-Al(Ⅲ) layered double hydroxide as catalyst precursor for ethanol steam reforming:activation treatments and kinetic studies [J]. Catal. Today,2008,133-135:319-323.
    [61]Melo F, Morlanes N. Synthesis, characterization and catalytic behaviour of NiMgAl mixed
    oxides as catalysts for hydrogen production by naphtha steam reforming [J]. Catal. Today, 2008,133-135:383-393.
    [62]Kapoor M P, Matsumura Y. Liquid-phase methanol carbonylation catalyzed over tin promoted nickel-aluminium layered double hydroxide [J]. Catal. Today,2004,93-95: 287-291.
    [63]Dumitriu E, Guimon C, Cordoneanu A, Casenave S, Hulea T, Chelaru C, Martinez H, Hulea V. Heterogeneous sulfoxidation of thioethers by hydrogen peroxide over layered double hydroxides as catalysts [J]. Catal. Today,2001,66:529-534.
    [64]Tsyganok A, Green R G, Giorgi J B, Sayari A. Non-oxidative dehydrogenation of ethane to ethylene over chromium catalysts prepared form layered double hydroxide precursors [J]. Catal. Commun.,2007,8:2186-2193.
    [65]Goh K H, Lim T T, Dong Z. Application of layered double hydroxides for removal of oxyanions:a review [J]. Water Res.,2008,42:1343-1368.
    [66]邢颖,李殿卿,任玲玲,Evans D G,段雪.超分子结构水杨酸根插层水滑石的组装及结构与性能研究[J].化学学报,2003,61:267-272.
    [67]矫庆泽,赵芸,谢晖,Evans D G,段雪.水滑石的插层及其选择性红外吸收性能[J].应用化学,2002,19:1011-1013.
    [68]谢晖.层状结构阴离子型选择性红外吸收材料制备与性能研究[D].北京:北京化工大学,2000.
    [69]黄宝晟,李峰,张慧,矫庆泽,段雪.纳米双羟基复合金属氧化物的阻燃性能[J].应用化学,2002,19:71-75.
    [70]赵芸,李峰,Evans D G,段雪,郝建薇.纳米LDH对环氧树脂燃烧的抑烟作用[J].应用化学,2002,19:954-957.
    [71]Lin Y J, Li D Q, Evans D G, Duan X. Modulating effect of Mg-Al-CO3 layered double hydroxides on the thermal stability of PVC resin [J]. Polym. Degrad. Stabil.,2005,88: 286-293.
    [72]Khan A I, Lei L, Norquist A J, O'Hare D. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide [J]. Chem. Commun.,2001:2342-2343.
    [73]Ambrogi V, Fardella G, Grandolini G, Perioli L. Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents-Ⅰ. Intercalation and in vitro release of ibuprofen [J]. Int. J. Pharm.,2001,220:23-32.
    [74]Li B, He J, Evans D G, Duan X. Enteric-coated layered double hydroxides as a controlled release drug delivery system [J]. Int. J. Pharm.,2004,287:89-95.
    [75]孟锦宏,张慧,Evans D G,段雪.超分子结构草甘膦插层水滑石的组装及结构研究[J].高等学校化学学报,2003,24:1315-1319.
    [76]孟锦宏,张慧,Evans D G,段雪.新型层状农药缓/控释材料—草甘膦插层双金属氢氧化物的超分子结构与缓释性能[J].科学通报,2005,50:208-214.
    [77]Huang L, Li D Q, Evans D G, Duan X. Preparation of highly dispersed MgO and its bactericidal properties [J]. Eur. Phys. J. D,2005,34:321-323.
    [78]Li X D, Yang W S, Li F, Evans D G, Duan X. Stoichiometric synthesis of pure NiFe2O4 spinel from layered double hydroxide precursors for use as the anode material in lithium-ion batteries [J]. J. Phys. Chem. Solids,2006,67:1286-1290.
    [79]Wang Y, Yang W, Zhang S, Evans D G, Duan X. Synthesis and electrochemical characterization of Co-Al layered double hydroxides [J]. J. Electrochem. Soc.,2005,152: A2130-A2137.
    [80]周彤,李峰,战可涛,Evans D G,段雪,张密林.层状前体镍铁水滑石及磁性材料的制备及表征[J].化学学报,2002,60:1078-1083.
    [81]周彤,战可涛,李峰,Evans D G,段雪,张密林.层状前体镁铁水滑石及磁性材料的制备及表征[J].无机化学学报,2002,18:777-781.
    [82]Sun W, He Q, Lu L, Liu H. Synthesis and properties of layered double hydroxides intercalated with cinnamic acid series organic UV ray absorbents [J]. Mater. Chem. Phys., 2008,107:261-265.
    [83]Tang P, Xu X, Lin Y, Li D. Enhancement of the thermo-and photostability of an anionic dye by intercalation in a zinc-aluminum layered double hydroxide host [J]. Ind. Eng. Chem. Res.,2008,47:2478-2483.
    [84]Chai H, Lin Y, Evans D G, Li D. Synthesis and UV absorption properties of 2-naphthylamine-1,5-disulfonic acid intercalated Zn-Al layered double hydroxides [J]. Ind. Eng. Chem. Res.,2008,47:2855-2860.
    [85]Wei M, Xu X, Wang X, Li F, Zhang H, Lu Y, Pu M, Evans D G, Duan X. Study on the photochromism of Ni-Al layered double hydroxides containing nitrate anions [J]. Eur. J. Inorg. Chem.,2006, (14):2831-2838.
    [86]Greenwell H C, Jones W, Coveney P V, Stackhouse S. On the application of computer simulation techniques to anionic and cationic clays:a materials chemistry perspective [J]. J. Mater. Chem.,2006,16:708-723.
    [87]Luty B A, Davis M E, Tironi I G, Van Gunsteren W F. A comparison of particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems [J]. Mol. Simul.,1994,14:11-20.
    [88]Toukmaji A Y, Board Jr J A. Ewald summation techniques in perspective:a survey [J]. Comput. Phys. Commun.,1996,95:73-92.
    [89]Tuckerman M E, Berne B J, Martyna G J. Molecular dynamics algorithm for multiple time scales:systems with long rang forces [J]. J. Chem. Phys.,1991,94:6811-6815.
    [90]Pu M, Zhang B F. Theoretical study on the microstructures of hydrotalcite lamellae with Mg/Al ratio of two [J]. Mater. Lett.,2005,59:3343-3347.
    [91]Pu M, Wang Y L, Liu L Y, Liu Y H, He J, Evans D G. Quantum chemistry and molecular mechanics studies of the lamella structure of hydrotalcite with Mg/Al ratio of 3 [J]. J. Phys. Chem. Solids,2008,69:1066-1069.
    [92]Fogg A M, Rohl A L, Parkinson G M, O'Hare. Predicting guest orientations in layered double hydroxide intercalates [J]. Chem. Mater.,1999,11:1194-1200.
    [93]朱玥,蒲敏.反式对称取代的偶氮苯磺酸衍生物插层材料结构的理论研究[J].工业催化,2008,16:239-243.
    [94]Newman S P, Williams S J, Coveney P V, Jones W. Interlayer arrangement of hydrated MgAl layered double hydroxides containing guest terephthalate anions:comparison of simulation and measurement [J]. J. Phys. Chem. B,1998,102:6710-6719.
    [95]Newman S P, Cristina T D, Coveney P V, Jones W. Molecular dynamics simulation of cationic and anionic clays containing amino acids [J]. Langmuir,2002,18:2933-2939.
    [96]Greenwell H C, Jones W, Newman S P, Coveney P V. Computer simulation of interlayer arrangement in cinnamate intercalated layered double hydroxides [J]. J. Mol. Struct.,
    2003,647:75-83.
    [97]Thyveetil M A, Coveney P V, Greenwell H C, Suter J L. Computer simulation study of the structural stability and materials properties of DNA-intercalated layered double hydroxides [J]. J. Am. Chem. Soc.,2008,130:4742-4756.
    [98]Wang J, Kalinichev A G, Kirkpatrick R J, Hou X. Molecular modeling of the structure and energetics of hydrotalcite hydration [J]. Chem. Mater.,2001,13:145-150.
    [99]Hou X, Kalinichev A G, Kirkpatrick R J. Interlayer structure and dynamics of Cl-LiAl2-layered double hydroxide:35Cl NMR observations and molecular dynamics modeling [J]. Chem. Mater.,2002,14:2078-2085.
    [100]Mohanambe L, Vasudevan S. Structure of a cyclodextrin functionalized anionic clay:XRD analysis, spectroscopy, and computer simulations [J]. Langmuir,2005,21:10735-10742.
    [101]Mohanambe L, Vasudevan S. Anionic clays containing anti-inflammatory drug molecules: comparison of molecular dynamics simulation and measurements [J]. J. Phys. Chem. B, 2005,109:15651-15658.
    [102]Li H, Ma J. Molecular dynamics modeling of the structures and binding energies of α-nickel hydroxides and nickel-aluminum layered double hydroxides containing various interlayer guest anions [J]. Chem. Mater.,2006,18:4405-4414.
    [103]Kumar P P, Kalinichev A G, Kirkpatrick R J. Molecular dynamics simulation of the energetics and structure of layered double hydroxides intercalated with carboxylic acids [J]. J. Phys. Chem. C,2007,111:13517-13523.
    [104]Kumar P P, Kalinichev A G, Kirkpatrick R J. Hydration, swelling, interlayer structure, and hydrogen bonding in organolayered double hydroxides:insights from molecular dynamics simulation of citrate-intercalated hydrotalcite [J]. J. Phys. Chem. B,2006,110:3841-3844.
    [105]Trave A, Selloni A, Goursot A, Tichit D, Weber J. First principles study of the structure and chemistry of Mg-based hydrotalcite-like anionic clays [J]. J. Phys. Chem. B,2002, 106:12291-12296.
    [106]Nijs H, Bock M D, Maes N, Vansant E F. Theoretical evaluation of the microporosity of pillared layered double hydroxides [J]. J. Porous Mater.,1999,6:307-321.
    [107]Bravo-Suarez J J, Paez-Mozo E A, Oyama T. Microtextural properties of layered double hydroxides:a theoretical and structural model [J]. Micropor. Mesopor. Mat.,2004,67: 1-17.
    [108]李丹,倪哲明,方彩萍,潘国强.类水滑石微观结构的理论计算[J].石油化工,2004,33:437-440.
    [109]Greenwell H C, Stackhouse S, Coveney P V, Jones W. A density functional theory study of catalytic trans-esterification by tert-butoxide MgAl anionic clays [J]. J. Phys. Chem. B, 2003,107:3476-3485.
    [110]Sato H, Morita A, Ono K, Nakano H, Wakabayashi N, Yamagishi A. Templating effects on the mineralization of layered inorganic compounds:(1) density functional calculations of the formation of single-layered magnesium hydroxide as a brucite model [J]. Langmuir, 2003,19:7120-7126.
    [111]Xu Z P, Lu G Q. Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3:LDH formation mechanism [J]. Chem. Mater.,2005,17: 1055-1062.
    [112]Andrea S, Giuliana G, Mariarosaria T, et al. Incorporation of Mg-Al hydrotalcite into a biodegradable Poly(3-caprolactone) by high energy ball milling [J]. Polymer,2005,46: 1601-1608.
    [113]Wang J W, Andrey G K, James K. Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces:A molecular dynamics modeling study [J]. Geochimica et Cosmochimica Acta,2006,70:562-582.
    [114]Baranek P, Lichanot A, Orlando R, et al. Structure and vibrational properties of solid Mg(OH)2 and Ca(OH)2-performances of various Hamiltonians [J]. Chemical Physics Letters 2001340:362-369.
    [115]胥倩,倪哲明,潘国祥,等.水滑石限域空间中Cl-与H2O的超分子作用[J].物理化学学报,2008,24:601-606.
    [116]潘国祥,倪哲明,李小年.类水滑石主体层板与客体CO32-、H2O间的超分子作用[J].物理化学学报,2007,23:1195-1200.
    [117]倪哲明,潘国祥,王力耕,等.二元类水滑石层板组成、结构与性能的理论研究[J].无机化学学报,2006,22:91-95.
    [118]Muraoka T, Kinbara K, Kobayashi Y, Aida, T. Light-driven open-close motion of chiral molecular scissors [J]:J. Am. Chem. Soc.,2003,125:5612-5613.
    [119]Harada A. Cyclodextrin-based molecular machines [J]. Acc. Chem. Res.,2001,34: 456-464.
    [120]Balzani V, Credi A, Marchioni F, Stoddard J F. Artificial molecular-level machines. Dethreading-rethreading of a pseudorotaxane powered exclusively by light energy [J]. Chem. Commun.,2001,1:1860-1861.
    [121]Ballardini R, Balzani V, Credi A, Gandolfi M T, Venturi M. Artificial molecular-level machines:Which energy to make them work? [J]. Acc. Chem. Res.,2001,34:445-455.
    [122]Balzani V, Credi A, Venturi M. Photochemistry and photophysics of coordination compounds:An extended view [J]. Coord. Chem. Rev.,1998,171:3-16.
    [123]Natansohn A, Rochon P. Photoinduced motions in azo-containing polymers [J]. Chem. Rev.,2002,102:4139-4176.
    [124]Delaire J A, Nakatani K. Linear and nonlinear optical properties of photochromic molecules and materials [J]. Chem. Rev.,2000,100:1817-1846.
    [125]Berg R H, Hvilsted S, Ramanujam P S. Peptide oligomers for holographic data storage [J]. Nature,1996,383:505-508.
    [126]Ikeda T Tsutsumi O. Optical switching and image storage by means of azobenzene liquid-crystal films [J]. Science,1995,168:1873-1875.
    [127]Rau H. In Photochromism:Molecular and Systems [M]. Amsterdam:Elsevier,1990,165.
    [128]Rau H, Laddeke E. On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion [J]. J. Am. Chem. Soc.,1982,104: 1616-1620.
    [129]Monti S, Orlandi G, Palmieri P. Features of the photochemically active state surfaces of azobenzene [J] Chem. Phys.,1982,71:87-99.
    [130]Lednev I K, Ye T-Q, Hester R E, Moore J N. Femtosecond time-Resolved UV-Visible absorption spectroscopy of trans-azobenzene in solution [J]. J. Phys. Chem.,1996,100: 13338-13341.
    [131]Lednev I K, Ye T-Q, Matousek P, Towrie M, Foggi P, Neuwahl F V R, Umpathy S, Hester R E, Moore J N. Femtosecond time-resolved UV-visible absorption spectroscopy of
    trans-azobenzene:dependence on excitation wavelength [J]. Chem. Phys. Lett.,1998,290: 68-74. [132] Lednev I K, Ye T-Q, Abbot L C, Hester R E, Moore J N. Photoisomerization of a capped azobenzene in solution probed by ultrafast time-resolved electronic absorption spectroscopy [J]. J. Phys. Chem. A,1998,102:9161-9166. [133] Hirose Y, Yui H, Sawada T. Effect of potential energy gap between the n-π* and the π-π* state on ultrafast photoisomerization dynamics of an azobenzene derivative [J]. J. Phys. Chem. A,2002,106:3067-3071. [134] Cattaneo P, Persico M. An ab initio study of the photochemistry of azobenzene [J]. Phys. Chem. Chem. Phys.,1999,1:4739-4743. [135] Crecca C R, Roitberg A E. Theoretical study of the isomerization mechanism of azobenzene and disubstituted azobenzene derivatives [J]. J. Phys. Chem. A,2006,110: 8188-8203. [136] Blevins A A, Blanchard G J. Effect of positional substitution on the optical response of symmetrically disubstituted azobenzene derivatives [J]. J. Phys. Chem. B,2004,108: 4962-4968. [137] Fujino T, Tahara T. Picosecond time-resolved raman study of trans-azobenzene [J]. J. Phys. Chem. A,2000,104:4203-4210. [138] Fujino T, Arzhantsev S Y, Tahara T. Femtosecond time-resolved fluorescence study of photoisomerization of trans-azobenzene [J]. J. Phys. Chem. A,2001,105:8123-8129. [139] Gagliardi L, Orlandi G, Bernardi F, Cembran A, Garavelli M. A theoretical study of the lowest electronic states of azobenzene:the role of torsion coordinate in the cis-trans photoisomerization [J]. Theor. Chem. Acc.,2004,111:363-372. [140] Cembran A, Bernardi F, Garavelli L, Gagliardi L, Orlandi G. On the mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene:S0, S1, and T1 [J]. J. Am. Chem. Soc.,2004,126:3234-3243.
    [141]Ishikawa T, Noro T. Theoretical study on the photoisomerization of azobenzene [J]. J. Chem. Phys.,2001,115:7503-7512. [142] Tiago M L, Ismail-Beigi S, Louie S G Photoisomerization of azobenzene from first-principles constrained density-functional calculations [J]. J. Chem. Phys.,2005,122: 94311-94317. [143] Ciminelli C, Granucci G, Persico M. The photoisomerization mechanism of azobenzene:a semiclassical simulation of nonadiabatic dynamics [J]. Chem.-Eur. J.,2004,10: 2327-2341. [144] Diau E W-G. A new trans-to-cis photoisomerization mechanism of azobenzene on the S1 (n,π*) surface [J]. J. Phys. Chem. A,2004,108:950-956. [145] Yeh S J, Jaffe H H. Tautomeric equilibria. V. the basicities of disubstituted azobenzenes [J]. J. Am. Chem. Soc.,1959,81:3279-3283. [146] Schmidt B, Sobotta C, Malkmus S, Laimgruber S, Braun M, Zinth W, Gilch P. Femtosecond fluorescence and absorption dynamics of an azobenzene with a strong push-pull substitution [J]. J. Phys. Chem. A,2004,108:4399-4404. [147] Hagiri M, Ichinose N, Zhao C, Horiuchi H, Hiratsuka H, Nakayama T. Sub-picosecond time-resolved absorption spectroscopy of a push-pull type p,p'-substituted trans-azobenzene [J]. Chem. Phys. Lett.,2004,391:297-301.
    [148]Wang L X, Wang X G. An ab initio study of stable conformation and thermal isomerization of p-aminoazobenzene [J]. J. Mol. Struct:Theochem.,2007,806:179-186.
    [149]Wang L X, Wang X G. Ab initio study of photoisomerization mechanisms of push-pull p,p'-disubstituted azobenzene derivatives on S1 excited state [J]. J. Mol. Struct: Theochem.,2007,847:1-9.
    [150]Wang L X, Xu J, Zhou H T, Yi C H, Xu W L. Cis-trans isomerization mechanism of 4-aminoazobenzene in the So and S1 states:A CASSCF and DFT study [J]. J. Photochem. Photobiol. A,2009,205:104-108.
    [151]Chippendale A M, McGeorge G, Harris R K, Brennan C M. Carbon-13 and nitrogen-15 solution-and solid-state NMR of some sulphonated azobenzene dyestubs [J]. Magn. Reson. Chem.,1999,37:232-238.
    [152]Zhu Y, Pu M, Fang D C, He J, Evans D G. A Density Functional Theory Study on the Thermal and Photochemical Isomerization Mechanism of 4,4'-Azobenzene Disulfonate [J]. J. Photochem. Photobiol. A,2010,211:89-98.
    [153]朱明,蒲敏,何静,Evans D G.偶氮苯磺酸衍生物的光致顺反异构化机理[J].物理化学学报.2009,25:2296-2304.
    [154]Laguna H, Loera S, Ibarra I A, Lima E, Vera M A, Lara V. Azoic dyes hosted on hydrotalcite-like compounds:non-toxic hybrid pigments [J]. Micropor. Mesopor. Mat., 2007,98:234-241.
    [155]Melanova K, Benes L, Zima V, Svoboda J. Intercalation of dyes containing SO3H groups into Zn-Al layered double hydroxide [J]. J. Incl. Phenom. Macro.,2005,51:97-101.
    [156]Liu L Y, Pu M, Yang L, Li D Q, Evans D G, He J. Experimental and theoretical study on the structure of acid orange 7-pillared layered double hydroxide [J]. Mater. Chem. Phys., 2007,106:422-427.
    [157]Taviot-Gueho C, Illaik A, Vuillermoz C, Commereuc S, Verney V, Leroux F. LDH-dye hybrid material as coloured filler into polystyrene:structural characterization and rheological properties [J]. J. Phys. Chem. Solids,2007,68:1140-1146.
    [158]Hussein M Z, Zainal Z, Yahaya A H, Aziz A A. Synthesis of layered organic-inorganic nanohybrid material:an organic dye, naphthol blue black in magnesium-aluminum layered double hydroxide inorganic lamella [J]. Mater. Sci. Eng. B,2002,88:98-102.
    [159]Hussein M Z, Yahaya A H, Shamsul M, Salleh H M, Yap T, Kiu J. Acid fuchsin-interleaved Mg-Al-layered double hydroxide for the formation of an organic-inorganic hybrid nanocomposite [J]. Mater. Lett.,2004,58:329-332.
    [160]Hussein M Z, Yahaya A H, Ping L M. Dye-interleaved nanocomposite:Evan's Blue in the lamella of Mg-Al-layered double hydroxide [J]. Dyes Pigments,2004,63:135-140.
    [161]Costantino U, Coletti N, Nocchetti M. Anion exchange of methyl orange into Zn-Al synthetic hydrotalcite and photophysical characterization of the intercalates obtained [J]. Langmuir,1999,15:4454-4460.
    [162]Guo S, Li D, Zhang W, Pu M, Evans D G, Duan X. Preparation of an anionic azo pigment-pillared layered double hydroxide and the thermo-and photostability of the resulting intercalated material [J]. J. Solid State Chem.,2004,177:4597-4604.
    [163]Guo S, Evans D G, Li D. Preparation of C.I. pigment 52:1 anion-pillared layered double hydroxide and the thermo-and photostability of the resulting intercalated material [J]. J. Phys. Chem. Solids,2006,67:1002-1006.
    [164]Tian Y, Wang G, Li F, Evans D G. Synthesis and thermo-optical stability of o-methyl red-intercalated Ni-Fe layered double hydroxide material [J]. Mater. Lett.,2007,61: 1662-1666.
    [165]Kun R, Balazs M, Derkany I. Photooxidation of organic dye molecules on TiO2 and zinc-aluminum layered double hydroxide ultrathin multilayers [J]. Colloid. Surface. A: Physicochem. Eng. Aspects,2005,265:155-162.
    [166]Zhu M X, Li Y P, Xie M, Xin H Z. Sorption of an anionic dye by uncalcined and calcined layered double hydroxides:a case study [J]. J. Hazard. Mater. B,2005,120:163-171.
    [167]Hu Q, Xu Z, Qiao S, Haghseresht F, Wilson M, Lu G Q. A novel color removal adsorbent form heterocoagulation of cationic and anionic clays [J]. J. Colloid Interf. Sci.,2007,308: 191-199.
    [168]Auxilio A R, Andrews P C, Junk P C, Spiccia L, Neumann D, Raverty W, Vanderhoek N. Adsorption and intercalation of acid blue 9 on Mg-Al layered double hydroxides of variable metal composition [J]. Polyhedron,2007,26:3479-3490.
    [169]Ni Z M, Xia S J, Wang L G, Xing F F, Pan G X. Treatment of methyl orange by calcined layered double hydroxides in aqueous solution:adsorption property and kinetic studies [J]. J. Colloid Interf. Sci.,2007,316:284-291.
    [170]Geraud E, Bouhent M, Derriche Z, Leroux F, Prevot V, Forano C. Texture effect of layered double hydroxides on chemisorption of orange II [J]. J. Phys. Chem. Solids,2007,68: 818-823.
    [171]Takei M, Yui H, Hirose Y, Sawada T. Femtosecond Time-Resolved Spectroscopy of Photoisomerization of Methyl Orange in Cyclodextrins [J]. J. Phys. Chem. A,2001,105: 11395-11399.
    [172]Kojima M, Nakajoh M, Nebashi S, Kurita N. Effect of metal cation on photoisomerization of azobenzenes in zeolite nanocavities [J]. Res. Chem. Intermediat.,2004,30:181-190.
    [173]G Hu, D O'Hare. Unique Layered double hydroxide morphologies using reverse microemulsion synthesis [J]. J. Am. Chem. Soc.,2005,127:17808-17813.
    [174]Q L Wu, A Olafsen, O B Vistad, J Roots, P Norby. Delamination and restacking of a layered double hydroxide with nitrate as counter anion. Journal of Materials Chemistry [J]. J. Mater. Chem.,2005,15:4695-4700.
    [175]Born M, Oppenheimer J R. Zur quantentheorie der molekeln [J]. Ann. Physik.,1927, band 84:361-376.
    [176]Born M, Huang K. Dynamical theory of crystal lattices [M]. Oxford Uniersity Preess, New York,1954.
    [177]Hartree D R. The wave mechanism of an atom with a non-coulomb central field. Ⅰ. Theory and methods. Ⅱ. Some results and discussion [J]. Proc. Cambirdge Phil. Soc.,1928,24: 89-132.
    [178]Fock V. "Self-consistent field" with interchange for sodium [J]. Z. Physik,1930,62: 795-805.
    [179]Hartree D. Calcaulations of Atomic Structure [M]. Wiley,1957.
    [180]Ira N.赖文.量子化学(宁世光,余敬曾,刘尚长译)[M].北京:人民教育出版社,1980
    [181]Roothaan C C J. New developments in molecular orbital theory [J]. Rev. Mod. Phys., 1951,23:69-89.
    [182]Heher W J, Radon L, Schleyer P V, et al. Ab initio Moleculaar Orbital Theory [M]. Jhon
    Wiley & Sons, Inc.,1986.
    [183]Mcquarrie D A. Quantum Chemistry University Science Books [M]:Mill Vally. CA., 1983.
    [184]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [185]徐光宪,黎乐民,王德民.量子化学基本原理和从头算方法(中册)[M].北京:科学出版社,1985.
    [186]Parr R G, Yang W. Density-functional theory of atoms and molecules [M]. Oxford University Press:Oxfird,1989.
    [187]赵成大.固体量子化学—材料化学的理论基础[M].北京:高等教育出版社,2003,第二版.
    [188]Labanowski J K, Andzelm, J. Density functional methods in chemistry [M]. Springer-Verlag:New York,1991.
    [189]Hohenbergh P C, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev.,1964,136: B864-B871.
    [190]Murphy D R. Sixth-order term of the gradient expansion of the kinetic-energy density functional [J]. Phys. Rev. A,1981,24:1682-1688.
    [191]Yang W. Gradient correction in Thomas-Fermi theory [J]. Phys. Rev. A,1986,34: 4575-4585.
    [192]Perdew J P, Wang Y. Theory of the cyclotron resonance spectrum of a polaron in two dimensions [J]. Phys. Rev. B,1986,33:8800-8809.
    [193]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B,1992,46:6671-6687.
    [194]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A,1988,38:3098-3100.
    [195]Perdew J P. Generalized gradient approx for exchange and approximation correlation:a look backward and forward [J]. Physica B,1991,172:1-2.
    [196]Becke A D. Density-functional thermochemistry. Ⅰ. The effect of the exchange-only gradient correction [J]. J. Chem. Phys.,1992,96:2155-2160.
    [197]Becke A D. Density-functional thermochemistry. Ⅳ. A new dynamical correction functional and implications for exact-exchange mixing [J]. J. Chem. Phys.,1996,104: 1040-1046.
    [198]Peuckert V. A new approximation method for electron systems [J]. J. Phys. C:Solid State Phys.1978,11:4945-4956.
    [199]Runge E, Gross E K U. Density-Function Theory for Time-Dependent Systems [J]. Phs. Rev. Lett.,1984,52:997-1000.
    [200]Petersika M, Gossmann U J, Gross E U K. Excitation energies from Time-Dependent Density-Functional Theory [J]. Phys. Rev. Lett.,1996,76:1212-1215.
    [201]McIver Jr J W, Komornicki A. Structure of transition states in organic reactions. General theory and an application to the cyclobutene-butadiene isomerization using a semiempirical molecular orbital method [J]. J. Am. Chem. Soc.,1972,94,2625-2633.
    [202]Garrett B C, Truhlar D G. Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules [J]. J. Phys. Chem.,1979, 83:1052-1079.
    [203]Fukui K, Tachibana A, Yamashita K. Toward chemodynamic s [J]. Int. J. Quantum. Chem., 1981,15:621-632.
    [204]Ishida K, Morokuma K, Komornicki A. The intrinsic reaction coordinate. An ab initio calculation for HNC-HCN and H-+CH4→CH4+H-[J]. J. Chem. Phys.,1977,66: 2153-2156.
    [205]Eyring H, Lin S H, Lin S M. Basic Chemical Kinetics [M]. John Wiley and Sons,1980.
    [206]Truhlar D G, Garrett B C, Klippenstein S J. Current status of transition-state theory [J]. J. Phys. Chem.,1996,100:12771-12800.
    [207]张瑞勤,步宇翔,李述汤,黄建华,韩克利,何国钟.一种选择从头算基函数的有效方法[J].Science in China (B),2000,30:419-427.
    [208]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision B.04, Gaussian, Inc., Pittsburgh PA,2003.
    [209]Pople J A, Head-Gordon M, Fox D J, Raghavachari K, Curtiss L A. Gaussian-1 theory:A general procedure for prediction of molecular energies [J]. J.Chem. Phys.,1989,90: 5622-5629.
    [210]钱逸泰.结晶化学[M].合肥:中国科学技术大学出版社,1988,1-201.
    [211]周公度,段连运.结构化学基础[M].北京:北京大学出版社,2002,263-299.
    [212]韩建成.多晶x射线结构分析[M].上海:华东师范大学出版社,1989,1-173.
    [213]Stanjek H, Hausler W. Basics of X-ray Diffraction [J]. Hyperfine Interactions,2004,154: 107-119.
    [214]刘亚辉.镁铝水滑石晶体结构的理论构建与PXRD计算机模拟[D].北京,北京化工大学,2008.
    [215]Reeves R L, Magglo M S, Harkaway S A. A critical spectrophotometric analysis of the dimerization of some ionic azo dyes in aqueous solution [J]. J. Phys. Chem.,1979,83: 2359-2368.
    [216]Karukstis K K, Perelman L A, Wong W K. Spectroscopic characterization of azo dye aggregation on dendrimer surfaces [J]. Langmuir,2002,18:10363-10371.
    [217]刘灵燕.酸性橙Ⅱ水滑石插层结构的实验与理论研究[D].北京,北京化工大学,2008.
    [218]刘瑞芳.甲基橙水滑石插层结构的实验与理论研究[D].北京,北京化工大学,2009.
    [219]Zhou C, Birney D M. Sequential transition states and the valley-ridge inflection point in the formation of a semibullvalene [J]. Org. Lett.2002,4:3279-3282.
    [220]Silva M A, Goodman J M. Aziridinium ring opening:a simple ionic reaction pathway with sequential transition states [J]. Tetrahedron Lett.2005,46:2067-2069.
    [221]Taketsugu T, Tajima N, Hirao K. Approaches to bifurcating reaction path [J]. J. Chem. Phys.1996,105:1933-1939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700