用户名: 密码: 验证码:
化学修饰电极的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极是20世纪70年代中期发展起来的一门新兴的、也是当前最活跃的电化学和电分析化学的前沿领域,目前已应用于生命科学、环境科学、食品科学、分析科学以及材料科学等许多方面。聚合物修饰电极能够有目的地在电极表面固定所选择的化学功能团,赋予电极某种特定的性质,可以高选择地进行所期望的反应。修饰电极制备方法简单,电极使川寿命长,从而得以广泛使用。
     本论文的采用化学或者电化学方法把特定官能团固定在电极表面,制备修饰电极,研究了该类修饰电极的电催化、吸附、富集等性能,并应用于Cu~(2+)离子和抗坏血酸的分析测定。
     1.采用自组装和电化学循环伏安法,制得了L-半胱氨酸修饰金(L-Cys/Au)电极,探讨了L-Cys/Au电极的电化学特性,研究了该修饰电极表面Cu~(2+)离子的吸附伏安行为,在含铜离子的磷酸缓冲液(pH=6.86)中搅拌富集,铜离子吸附在L-Cys/Au电极表面.在一定浓度范围内Cu~(2+)离子浓度的对数值与Cu~(2+)离子的吸附还原峰电流(I_(pc))呈良好的线性关系,最低检测限可达2.0×10~(-10)mol/L,由此建立了一种灵敏的、选择性良好的检测痕量Cu~(2+)离子的电化学新方法。
     2.通过电化学循环伏安法制备了L-谷氨酸/铁酸钾修饰玻碳电极,考察了Cu~(2+)离子在该修饰电极上的阳极溶出伏安行为,溶出峰电流(I_(pa))随Cu~(2+)离子浓度的增大而增大,并且在1.0×10~(-7)~1.0×10~(-3) mol/L浓度范围内,峰电流与Cu~(2+)离子浓度的对数存在良好的线性关系,建立了一种检测痕量铜离子的阳极溶出伏安新方法。
     3.采用电聚合的方法制备了聚L-谷氨酸修饰玻碳电极,探讨了聚L-谷氨酸修饰玻碳电极的电化学行为,该修饰电极对抗坏血酸(AA)具有良好的电化学响应,并对实验测定条件进行了优化。实验结果表明,在pH=4.0的邻苯二甲酸氢钾缓冲溶液中,扫描电位为-0.2~1.0V范围内,抗坏血酸在聚L-谷氨酸修饰玻碳电极表面出现稳定的氧化峰。氧化峰的峰电流(I_(pa))与抗坏血酸的浓度在2.0×10~(-5)~2.0×10~(-3) mol/L范围内有良好的线性关系,最低检测限可达2.0×10~(-6)mol/L。该电极制备方便,有良好的稳定性和重现性。
Chemically modified electrode,developed in the middle of the 70s of 20~(th) century,is the most active frontier in electrochemistry and electroanalytical chemistry,which has been widely applied in life science,environmental science,food science,analytical science and material science.Some special function groups can be selected on purpose to be polymerized on the surface of electrode and thus the polymer film modified electrodes are endowed with some particular qualities to have highly selective reactions as expected.Therefore,with its simple preparation method and long working life, chemically modified electrode is widely used in many fields.
     In this paper,the modified electrodes are prepared by some polymerizing special function groups onto the surface of electrode by chemical or electrochemical way.The properties of modified electrodes such as adsorbing capability and enrichment capability have been investigated.The modified electrodes have been successfully applied for the determination of Cu~(2+) ion and ascorbic acid.
     1.The L-Cys/Au electrode was prepared by using self-assemble and electrochemical cyclic voltammetry.The electrochemical properties of L-Cys/Au electrode and the adsorption behavior of Cu~(2+) on the electrode surface were studied.Cu~(2+) ion was adsorbed on the surface of L-Cys/Au electrode when the PBS(pH=6.86) containing Cu~(2+) ion was stirred.Reduction peak current(I_(pc)) of Cu~(2+) ion has a good linear relationship with logarithm of Cu~(2+) concentration in a certain Cu~(2+) concentration range.The detection limit for Cu~(2+) was 2.0 x 10~(-10) mol/L.A new electrochemical method with highly sensitivity and selectivity for analyzing trace Cu~(2+) has been established.
     2.The L-glutamic acid/Fe(CN)_6~(3-) modified glassy carbon electrode has been prepared by electrochemical cyclic voltammetry.The anticathode stripping behaviors of Cu~(2+) ion on the modified electrode was investigated.The stripping peak current(I_(pa)) increased with an increase in concentration of Cu~(2+) and was linear with logarithm of Cu~(2+) concentration in the range of 1.0×10~(-7)~1.0×10~(-3) mol/L.A new anticathode stripping voltammetry methode for the determination of trace Cu~(2+) was develpoed
     3.The poly-L-glutamic acid modified glassy carbon electrode was prepared by electrochemical polymerization.The electrochemical behaviors of the modified electrode were investigated.The modified electrode had good electrochemical response for ascorbic acid.The experimental conditions for the determination of ascorbic acid were optimized and the results showed that ascorbic acid in pH 4.0 buffer solution had steady oxidation peak on the surface of the poly-L-glutamic acid modified glassy carbon electrode in the scanning potential range of -0.2~1.0 V.The oxidation peak current(I_(pa)) has a good linear relationship with the concentration of ascorbic acid in the range of 2.0 x 10~(-5)~2.0×10~(-3) mol/L with the detection limit of 2.0×10~(-6) mol/L.The preparation of this electrode with good stability and repeatability is convenient.
引文
[1]金利通,全威,徐金瑞,等,化学修饰电极[M],华东师范大学出版社,1992.
    [2]董绍俊,车广礼,谢远武,化学修饰电极[M],科学出版社,1995.
    [3]董绍俊,车广礼,谢远武,化学修饰电极(修订版)[M],北京科学出版社,2003年.
    [4]Lane R.F.,Hubbard A.T.,Electrochemistry of chemisorbed molecules.1.reactants connected to electrodes through olefmic substituents[J],Journal of Physieal Chemistry,1973,77(11):1401-1410.
    [5]Watkins B.F.,Behing J.R.,E.Kariv,et al.,Chemistry electrode[J],J.Am.Chem.Sec.1975,97(12):3549-3550.
    [6]Moses P.R.,Wier L.,Murray R.W.,Chemically modified tin oxide electrode[J],Anal.Chem.,1975,47(12):1882-1886.
    [7]Wen M.,Qi H.,Zhao W.,et al.,Phase transfer catalysis:Synthesis of monodispersed FePt nanoparticles and its electrocatalytic activity[J],Colloids and Surfaces A,2008,312(1):73-78.
    [8]Xu Y.T.,Peng X.L.,Zeng H.T.,et al.,Study of an anti-poisoning catalyst for methanol electro-oxidation based on PAn-C composite carriers[J],Comptes Rendus Chimie,2008,11(1-2):147-151.
    [9]杨辉,李长志,陆天虹,等,甲醇在铂微粒修饰的聚硫荃电极上的电催化氧化[J],物理化学学报,1997,13(6):542-547.
    [10]吕艳卓,韩飞,刘长鹏,等,杂多酸修饰的电极对于甲醇电氧化的促进作用[J],高等学校化学学报,2004,25(10):1909-1911.
    [11]马玉荣,杨秋霞,李国宝,等,甲醛在脯氨酸膜修饰电极上的电催化氧化[J],电化学,2002,8(2):208-212.
    [12]Liu Z.Y.,Pan K.,Liu M.,et al.,Al_2O_3-coated SnO_2/TiO_2 composite electrode for the dye-sensitized solar cell[J],Electrochim.Acta.,2005,50(13):2583-2589.
    [13]Yu H.Z.,Wang Y.Q.,Liu Z.E,et al.,Fabricating electroactive azobenzene Self-assembled monolayers and theircharaeterization[J],Journal of Eleetroanalytical Chemistry,1995,395(1,2):327-330.
    [14]王永强,王健,于化忠,等,金表面偶氮苯自组装膜的光电化学响应[J],高等学校化学学报,1996,17(7):1130-1132.
    [15]Li C.,Tsukasa H.,Masayuki T.,et al.,Facile design of poly(3,4-ethylenedioxythiophene)-tris(2,2'-bipyridine)ruthenium(Ⅱ) omposite film suitable for a three-dimensional light-harvesting system[J],Tetrahedron,2004,60(37):8037-8041.
    [16]Park K.W.,Song Y.J.,Lee J.M.,et al.,Influence of Pt and Au nanophases on electrochromism of WO_3 in nanostructure thin-film electrodes[J],Electrochem.Commun.,2007,9(8):2111-2115.
    [17]Chen Y.H.,Wu J.Y.,Chung Y.C.,Preparation of polyaniline-modified electrodes containing sulfonated polyelectrolytes using layer-by-layer techniques[J],Biosensors and Bioelectronics,2006,22(4):489-494.
    [18]Rahul M.K.,Purvi B.D.,Ashwini K.S.,Behavior of riboflavin on plain carbon paste and aza macrocycles based chemically modified electrodes[J],Sens.Actuat.B,2007,124(1):90-98.
    [19]Yang N.J.,Wang X.X.,Wan Q.J.,Silver nucleation on mercaptoacetic acid covered gold electrodes[J],Electrochim.Acta.,2007,52(14):4818-4824.
    [20]Cheng X.,Zhang S.,Zhang H.Y.,Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode[J],Food Chemistry,2008,106(2):830-835.
    [21]Holm A.H.,Vase K.H.,Jensen B.W.,Evaluation of variousstrategies to formation of pH responsive hydroquinone-terminated films on carbon electrodes[J],Electrochim.Acta.,2007,53(4):1680-1688.
    [22]Besbes S.,Ltaief A.,Reybier K.,et al.,Injection modifications by ITO functionalization with a self-assembled monolayer in OLEDs[J],Synthetic Metals,2003,138(1-2):197-200.
    [23]Cazzanelli E.,Marino S.,Bruno V.et al.,Characterizations of mixed Bi/V oxide films,deposited via sol-gel route,used as electrodes in asymmetric liquid crystal cells[J],Solid State Ionics.,2003,165(1-4):201-208.
    [24]Panagoulis D.,Pontiki E.,Skeva E.,et al.,Synthesis and pharmacochemical study of new Cu(Ⅱ)complexes with thiophen-2-yl saturated and α,β-unsaturated substituted carboxylic acids[J],J.Inorg.Biochem.,2007,101(4):623-634.
    [25]Vanessa B.,Federica V.,Emanuela T.,et al.,Synthesis and characterization of polymeric films and nanotubule nets used to assemble selective sensors for nitrite detection in drinking water[J],Sens.Actuat.B,2007,122(1):236-242.
    [26]Dhana L.,Piyush S.S.,Bhim B.P.,Imprinted polymer-modified hanging mercury drop electrode for differential pulse cathodic stripping voltammetric analysis of creatine[J],Biosensors and Bioelectronics,2007,22(12):3302-3308.
    [27]Mary T.V,Sheela B.,Selective NO reduction using blue ferrocenyl cation[J],Electrochim.Acta.,2006,52(2):567-574.
    [28]Rusling J.F.,Variations in Electron-Transfer Rate at Polished Glassy Carbon Electrodes Exposed to Air[J],Anal.Chem.,1984,56(3):575-578.
    [29]Evans J.F.,Kuwana T.,Introduction of Functional Groups onto Carbon Electrodes via Treatment with Radio-Frequency Plasmas[J],Anal.Chem.,1979,51(3):358-365.
    [30]Melanie P.,Richard L.M.,In Situ Laser Activation of Glassy Carbon Electrodes[J],Anal.Chem.,1986,58(13):2745-2750.
    [31]Kolthoff I.M.,Nobuyuki T.,Rotated and Stationary Platinum Wire Electrodes Residual Current-Voltage Curves and Dissolution Patterns in Supporting Electrolytes[J],Anal.Chem.,1954,26(4):632-636.
    [32]Adams R.N.,“Electrochemistry at Solid Electrodes”[M],Marcel Dekker,New York,1969.
    [33]Feng J.X.,Michael B.,Kenneth R,Electrochemical Pretreatment of Carbon Fibers for in Vivo Electrochemistry:Effects on Sensitivity and Response Time[J],Anal.Chem.,1987,59(14):1863-1869.
    [34]J(u|¨)rgen M.,Hallmeier K.,Karel T.,Pretreatment of glassy carbon electrodes by anodic galvanostatic pulses with a large amplitude[J],Electroanlysis,1989,1(5):405-412.
    [35]董绍俊,一种新型有序超薄有机膜—自组膜[J],化学通报,1995,10:11-18.
    [36]Untereker D.E,Lennox J.C.,Wier L.M.,et al.,Chemically modified electrodes:Part Ⅳ.Evidence for formation of monolayers of bonded organosilane reagents[J],J.Electroanal.Chem.,1977,81(2):349-318.
    [37]Mark S.W.,Michael C.P.,Andrew B.B.,et al.,Preparation of chemically derivatized platinum and gold electrode surfaces:Synthesis,characterization,and surface attachment of trichlorosilylferrocene,(1,1'-ferrocenediyl)dichlorosilane and 1,1'-bis(triethoxysilyl)ferrocene [J],J.Am.Chem.Soc.,1978,100(23):7264-7271.
    [38]Fujihira M.,poosittisak S.,Eleetrocatalysis by electrode posited Pt from PtC1_6~(2-) Confined in a Langmuir-Blodgett film on a glassy carbon electrode[J],J.Electroanal.Chem.,1986,199(2):481-484.
    [39]董慧民,郑浩,王淑洁,等,杯芳烃LB膜修饰电极及其识别性能[J],化学通报,2006,69(2):127-129.
    [40]李富友,余军华,张宝文,等,含不同链长的三个叶琳LB膜修饰电极的光电响应研究[J],化学学报,2006,64(4):301-305.
    [41]Miller L.L.,Vande M.R.,Electrode surface modification via polymer adsorption[J],J.Am.Chem.Soc.,1978,100(2):639-640.
    [42]Daum P.,Murray R.W.,Charge-transfer diffusion rates and activity relationships during oxidation and reduction of plasma-polymerized vinylferrocene films[J],J.Phys.Chem.,1981,85(4):389-396.
    [43]吕紫玲,董绍俊,化学修饰电极的研究Ⅷ.聚乙烯二茂铁(PVFc)薄膜电极和电催化效应[J],物理化学学报,1986,2(05):408-416.
    [44]Volkov A.,Tourillon G.,Lacaze P.C.,Electrochemical polymerization of aromatic amines:IR,XPS and PMT study of thin film formation on a Pt electrode[J],J.Eleetroanal.Chem.,1980,115(2):279-291.
    [45]Leon S.V.,Charles R.M.,Electrochemical investigations of electronically conductive polymers.4.Controlling the supermolecular structure allows charge transport rates to be enhanced[J],Langmuir,1990,6(6):1118-1123.
    [46]陈衍珍,黄海涛,田昭武,水溶液中噻吩的电化学聚合成膜[J],高等学校化学学报,1986,7(10):917-923.
    [47]傅谊,马建标,聚苯胺膜修饰电极对儿茶酚及对苯二酚的催化氧化[J],分析测试学报,1998,17(5):43-46.
    [48]Benito D.,Garcia J.J.,Navarro L.J.,et al.,Electrochemical behaviour of poly(neutral red)on an ITO electrode[J],J.Electroanal.Chem.,1998,446(1-2):47-55.
    [49]Zhang G.F.,Chen H.Y.,Studies f polyluminol modified electrode and its application in elecrochemiiluminescence analysis with flow system[J],Anal.China.Acta.,2000,419(1):25-31.
    [50]孙登明,陈宁生,冷艳芳,聚甲基蓝修饰电极的制备及对多巴胺的测定[J],分析试验室,2004,23(5):41-43.
    [51]Gaspar S.,Haberm(u|¨)ller K.,Csoregi E.,et al.,Hydrogen peroxide sensitive biosensor based on plant peroxidases entrapped in Os-modified polypyrrole films.Sensors and Actuators[J],Chemical,2001,72(1):63-68.
    [52]Wang P.,Yuan Y.,Jing X.Y.,Amperometric determination of thiosulfate at a surface-renewable nickel(Ⅱ) hexacyanoferrate-modified carbon ceramic electrode[J],Talanta,2001,53(4):863-869.
    [53]Long D.D.,Marx K.A.,Zhou T.,Amperometric hydrogen peroxide sensor electrodes coated with electropolymerized tyrosine derivative and phenolic films[J],J.Electroanal.Chem.2001,501(1-2):107-113.
    [54]Bonfranceschi A.,Cordoba A.,Keunchkarian S.,Transport across poly(o-aminophenol)modified electrodes in contact with media containingredox active couples.A study using rotating disc electrode voltammetry[J],J.Electroanal.Chem.1999,477(1):1-13.
    [55]万其进,喻玖宏,王刚,聚茜素红膜修饰电极控制电位扫描法分别测定多巴胺和抗坏血酸[J],高等学校化学学报,2000,21(11):1651-1654.
    [56]丁杰,董绍俊,导电高分子薄膜修饰电极的研究(Ⅱ)—杂聚阴离子掺杂聚吡咯膜的性质[J],高等学校化学学报,1996,17(8):1191-1194.
    [57]侯士峰,方惠群,陈洪渊,聚乙撑二氧噻吩修饰电极的电化学行为及对抗坏血酸的电催化作用[J],高等学校化学学报,1995,16(1):39-42.
    [58]吴婉群,万本强,聚2,5—二甲氧基苯胺薄膜电极对氢醌的电催化作用[J],分析化学,1994,22(9):951-954.
    [59]罗济文,李家洲,黄志伟,聚吡咯掺杂溴酚蓝修饰玻碳电极的制备和电化学性质[J],玉林师范学院学报,2005,26(3):48-50.
    [60]胡艳琴,罗红群,李念兵,咖啡酸掺杂聚苯胺修饰玻碳电极的制备及其电化学特性[J],西南大学学报(自然科学版),2008,21(1):27-31.
    [61]Song F.Y.,Shiu K.K.,Preconcentration and electroanalysis of silver species at polypyrrole film modified glassy carbon electrodes[J],J.Electroanal.Chem.,2001,498(1-2):161-170.
    [62]Betova I.,Bojinov M.,Lankinen E.,Studies on the redox behaviour of some polythiophene derivatives by impedance spectroscopy in symmetrical and asymmetrical configurations[J],J.Electroanal.Chem.,1999,472(1):20-32.
    [63]Komura T.,Funahasi Y.,Yamaguti T.,et al.,Dependence of redox-kinetic parameters at poly(o-phenylenediamine)-modified electrodes upon the oxidation and protonation levels of the polymer[J],J.Electroanal.Chem.1998,446(1-2):113-123.
    [64]Malinauskas A.,Holze R.,A UV-vis spectroelectrochemical study of redox reactions of solution species sat a polyaniline electrode in the conducting and the reduced state[J],J.Electroanal.Chem.,1999,461(1-2):184-193.
    [65]邢丽,张复实,向军辉,等,自组装技术及其研究进展[J],世界科技研究与发展,2007,29(3):39-44.
    [66]Sagiv J.,Organized monolayers by adsorption Formation and structure of oleophobic mixed monolayers on solid surfaces[J],J.Am.Chem.Soc.,1980,102:92-98.
    [67]方程,周性尧,自组装膜研究进展及其在传感器技术中的应用[J],分析科学学报,2003,19(1):81-85.
    [68]霍莉,丁克强,左卫霞,等,自组装膜的研究应用新进展[J],河北师范大学学报(自然科学版),2003,27(6):608-612.
    [69]Bigelow W.C.,Pickett D.L.,Zisman W.A.,Oleophobic monolayers:Films adsorbed from solution in nonpolar liquids[J],J.Colloid Interface Sci.,1946,1:513-538.
    [70]Prozorov T.,Gedanken A.,“Melting point”of alkanethiol-coated amorphous Fe_2O_3nanoparticles[J],Adv.Mater,1998,10:532-535.
    [71]Ulman A.,An introduction to ultrathin organic films from Langmuir-Blodgett to Self-assembly [M],New York,Academic Press,1991.
    [72]Shimazaki Y.,Mitsaishi M.,Yamamoto M.,Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction[J],Langmuir,1997,13:1385-1387.
    [73]Anzai J.,Kobayashi Y.,Hoshi T.,et al.,Layer-by-layer construction of multilayer thin films composed of avidin and biotin-labeled poly(amine)s[J],Langmuir,1999,15:221-226.
    [74]Wang X.G.,Chen J.,Martur S.,et al.,Epoxy-based nonlinear optical polymers functionalized with tricyanovinyl chromophores[J],Chem.Mater.,1997,9:45-50.
    [75]杨涛,杨婕,张伟,等,聚合物膜与自组装膜法制备电化学DNA传感器的研究进展[J],分析测试学报,2007,26(3):431-437.
    [76]刘斌,孙向英,徐金瑞,含硼酸基的自组装膜对糖的电化学识别[J],分析化学,2004,32(5):601-605.
    [77]白燕,郭书好,李继革,卟啉修饰电极的制备及金属离子的电位溶出行为[J],暨南大学学报(自然科学版),2001,22(3):71-76.
    [78]胡文英,孙向英,何燕芳,铜铁自组装多层膜修饰电极的制备及性能[J],华侨大学学报(自然科学版),2008,29(1):30-33.
    [79]Lu X.Q.,Liu B.Q.,Xue Z.H.,et al.,Monomolecular films for electrocatalytic oxidation of ascorbic acid at gold electrodes[J],Anal.Lett.,2002,35(11):1811-1822.
    [80]程广军,于化忠,邵会波,等,二茂铁硫醇自组装膜的电化学行为及其离子对效应[J],高等学校化学学报[J],1997,7:1141-1146.
    [81]Walczak M.M.,Popenoe D.D.,et al.,Reductive desorption of alkanethiolate monolayers at gold:a measure of surface coverage[J],Langrnuir,1991,7:2687-2693.
    [82]刘胜,陈淼,李进都,含有偶氮苯单体的肽核酸寡聚体自组装膜电化学传感器在DNA序列检测方面的应用[J],中国科学B:化学,2008,38(9):793-797.
    [83]文莉,林仲华,翁少煌,自组装金团簇电极库仑台阶现象和电化学阻抗谱研究[J],高等学校化学学报,2008,29(2):350-355.
    [84]张俊苓,杨芳,郑文杰,自组装单分子膜及其表征方法[J],化学进展,2005,17(2):203-208.
    [85]程志亮,杨秀荣,电化学交流阻抗技术表征自组装多层膜[J],分析化学,2001,29(1):6-100.
    [86]崔晓莉,江志裕,膜电阻对自组装膜修饰电极电化学行为的影响[J],电化学,2001,7(3):270-275.
    [87]孙乔玉,张校刚,李晓红,等,溶剂对自组装单分子膜电化学行为的影响[J],高等学校化学学报,2001,22(10):1693-1696.
    [88]丁克强,王庆飞,贾振斌,等,Schiff碱在金电极上的自组装膜[J],电化学,2002,8(2):219-223.
    [89]王升富,杜丹,邹其超,磷钼钨杂多酸-L-半胱氨酸自组装膜电极的电化学性质[J],物理化学学报[J],2001,17(12):1102-1106.
    [90]Bain C.D.,Whitesides G.M.,Formation of monolayers by the coadsorption of thiols on gold:variation in the head group,tail group,and solvent[J],J.Am.Chem.Soc.,1989,111:7155-7164.
    [91]吴涛,张希,自组装超薄膜:从纳米层状构筑到功能组装[J],高等学校化学学报,2001,22(6):1057-1065.
    [92]黄春辉,李富友,黄岩谊,光电功能超薄膜[M],北京大学出版社,2001.
    [93]汪夏燕,崔兴品,崔运梅,中性溶液中抗坏血酸在六合亚铁酸钴铜膜修饰铂电极上现场红外光谱电化学研究[J],高等学校化学学报,2002,23(8):1498-1500.
    [94]马晓玲,杨海峰,孙小靖,等,金电极上L-半胱氨酸短链分子自组装单层膜的电化学性能和拉曼光谱研究[J],化学学报,2007,65(16):1617-1620.
    [95]纪佳华,杨海峰,马晓玲,等,锌电极上2-巯基吡啶自组装单层的原位表面增强拉曼光谱电化学观察[J],化学学报,2008,66(11):1333-1336.
    [96]安静,贾慧颖,赵冰,等,磺化双酞菁钴自组装膜结构的表面增强拉曼光谱[J],高等学校化学学报,2007,28(12):2355-2358.
    [97]崔兴晶,汪夏燕,张雷,六合铁酸铜钴薄膜修饰铂电极的电化学、XRD及XPS研究[J],化学学报,2002,60(4):704-710.
    [98]孙向英,翁文婷,荧光性自组装双层膜的制备及其性能研究[J],高等学校化学学报,2005,26(6):1030-1034.
    [99]Sun X.Y.,Liu B.,Weng W.T.,et al.,A nobel fluorometric detection of Cu~(2+) based on self-assembled bilayers[J],Talanta,2004,62:1035-1040.
    [100]邓文礼,杨大本,硫醇在Au表面的SA膜的AFM观察[J],电子科技大学学报[J],1995,24(6):601-603.
    [101]王桂香,徐法君,刘道杰,化学修饰电极在选择性富集分离中的应用[J],冶金分析,2004,24(2):19-23.
    [102]陈颖,分子自组装膜在电分析化学中的应用进展[J],福建分析测试,2006,15(1):45-49.
    [103]朱杰,孙润广,LB膜技术在生命科学中的应用研究[J],生命科学仪器,2005,3(1):5-8.
    [104]杨建东,原慧卿,李秀娟,巯基卟啉自组装膜的制备及应用研究进展[J],分析化学,2007,35(11):1679-1684.
    [105]邹小勇,陈汇勇,李荫,电化学DNA传感器的研制及其医学应用[J],分析测试学报,2005,24(1):123-128.
    [106]王志贤,于赤胤,胡效亚,化学修饰电极的制备及其药物分析应用的研究进展[J],化学传感器,2007,27(4):9-15.
    [107]马心英,傅佑丽,氨基酸化学修饰电极的研究与应用[J],曲阜师范大学学报,2006,32(4):91-94.
    [108]张玉龙,温金凤,崔胜云,抗坏血酸在L-半胱氨酸自组装膜修饰电极上的电化学特性[J],延边大学学报(自然科学版),2008,34(2):121-124.
    [109]孙登明,胡文娜,马伟,聚L-精氨酸修饰电极的制备及对尿酸的测定[J],应用化学,2008,25(8):913-917.
    [1]Mahendra N.,Gangaiya P.,Sotheeswaran S.,et al.,Investigation of a fibre optic copper sensor based on immobilised α-benzoinoxime(cupron)[J],Sesor Actuat.B,2003,90:118-123.
    [2]Jer(?)nimo P.C.A.,Ara(?)jo A.N.,Conceic(?)o M.,et al.,Direct detormination of copper in urine using a sol-gel optical sensor coupled to a multicommutated flow system[J],Anal.Bioanal.Chem.,2004,380:108-114.
    [3]Safavi A.,Bagheri M.,Design of a copper(Ⅱ) optode based on immobilization of dithizone on a triacetylcellulose membrane[J],Sesor Actuat.B,2005,107:53-58.
    [4]Gholivand M.B.,Niroomandi P.,Yari A.,et al.,Characterization of an optical copper sensor based on N,N'-bis(salycilidene)-1,2-phenylenediamine[J],Anal.Chim.Acta.,2005,538:225-231.
    [5]Sun X.Y.,Liu B.,Jiang Y.B.,An extremely sensitive mono-boronic acid based fluorescent sensor for glucose[J],Analytica.Chimica.Acta.,2004,515:285-290.
    [6]Sun X.Y.,Liu B.,Weng W.T.,et al.A novel fluorometric detection of Cu~(2+) based on self-assembled bilayers[J],Talanta,2004,62:1035-1040.
    [7]Espenscheid M.W.,Ghatak-Roy A.R.,Moore R.B.,et al.,Sensors from Polymer modified electrodes[J],J.Chem.Soe.,Faraday Trans.,1986,82:1051-1070.
    [8]Odashima K.,Sugawara M.,Umezawa Y.,Trends Biomembrane mimetic sensing chemistry[J],Trends Anal.Chem.,1991,10:207-215.
    [9]Murray R.W.,(ed.),"Molecular design of electrode surfaces."[M]J.Wiley and Sons.,Ine.,New York.1992,49-50.
    [10]Wang J.,"Electroanalytieal chemistry.A series of advances"[M](A.J.Bard,ed.),Vol.16,p.1.Marcel Dekke,Inc.,New York,1989.
    [11]Gold V.,Loening K.L.,McNaught A.D.et al.,Compendium of chemical terminology,IUPAC Recommendations[M],Blackwll Scientific Publications,Oxford,1987.
    [12]Nuzzo R.G.,Allara D.L.,Adsorption of biofunctional organic disulfides on gold surfaces[J],J.Am.Chem.Soc.,1983,105:4481-4483.
    [13]Nuzzo R.G.,Fusco E A.,Allara D.L.,Spontaneously organic molecular assemblies 3.P rearation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces [J],J.Am.Chem.Soc.,1987,109,:2358-2368.
    [14]Fenter P.,Eberhardt A.,Eisenberger O.,Self-assembly ofn-Alkyl thiols as disulfides on An(111)[J],Science,1994,266:1216-1218.
    [15]Rubinstein I.,Steinberg S.,Tor Y.,Role of the membrane surface in concentration polarization at ion-exchange membrane[J],Nature,1988,332:426-429.
    [16]Durrieu C.,Tran-Minh C.,Optical algal biosensor using alkaline phosphatase for determination of heavy metala[J],Environ.Safety,2002,51:206-206.
    [17]Li J.,Lu Y.,A highly sensitive and selective catalytic DNA biosensor for lead ions[J],J.Am.Chem.Soc.,2000,122:10466-10467.
    [18]Hu X.Y.,Xiao Y.,Chen H.Y.,Adsorption characteristics Fe(CN)_6~(3-/4-) on Au colloids as monolayer films on cysteamine-modified gold electrode[J].J.Electroanal.Chem.,1999,66(1):26-30.
    [19]Buck R.P.,"Theory and principles of membrane electrodes," Chapt.1,Ion-Selective Electrodes in Analytical Chemistry,Vol.1[M],H.Freisered.,Plenum Press,NY,1978.
    [20]牛凌梅,李念兵,康维钧,等,2,3-巯基乙二酸自组装膜的电化学行为及应用研究[J],化学传感器,2008,28(1):34-38.
    [21]李春香,李劲,萧浪涛,等,基于巯基自组装单层膜的植物生长激素吲哚乙酸电化学免疫传感器的研究[J],化学学报,2003,61(5):790-794.
    [22]Finklea H.O.,Rubinstein I.,Electrolytic preparation of highly loaded deuterides of palladium[J],J.Electroanal.Chem.,1996,19:121-131.
    [1]孔祥瑞,必需微量元素的营养、生理及临床意义[M],合肥:安徽科学技术出版社,1982.
    [2]Liu A.C.,Chen D.C.,Lin C.C.,et al.,Application of cysteine monolayers for electrochemical determination of Sub-ppb Copper(Ⅱ)[J],Anal.Chem.,1999,71(8):1549-1552.
    [2]Arrigan D.W.M.,Bihan L.L.,A study of L-cysteine adsorption on gold via electrochemical desorption and copper(Ⅱ) ion complexation[J],Analyst,1999,124(1):1645-1649.
    [3]Yang W.R.,Gooding J.J.,Hibbert D.B.,Redox voltammetry of sub-parts per billion levels of Cu~(2+) at polyaspartate-modified gold electrodes[J],Analyst,2001,126(9):1573-1577.
    [4]Yang W.R.,Jaramillo D.,Gooding J.J.,et al.,Sub-ppt detection limits for copper ionswith Gly-Gly-Hismodified electrodes[J],Chem.Commun.,2001,19:1982-1983.
    [5]Tudos A.J.,Vandeberg P.J.,Johnson D.C.,Evaluation of EQCM data from a study of cysteine adsorption on gold electrodes in acidic media[J],Anal.Chem.,1995,67(3):552-556.
    [6]Tudos A.J.,Johnson D.C.,Dissolution of gold electrodes in alkaline media containing cysteine [J],Anal.Chem.,1995,67(3):557-560.
    [7]Yang W.R.,Googing J.J.,Hibbert D.B.,Charateristation of gold electrodes modified with self-assembled momolayers of L-cysteine for the adsorptive stripping analysis of copper[J],Electoanal.Chem.,2001,516(1):17-22.
    [8]贾品晶,张国荣,聚L-谷氨酸/铁根修饰玻碳电极的制备及其对镉离子的识别[J],化学传感器,2006,26(3):48-50.
    [9]Bing C.,Ngoh-Khang G.,Lian S.C.,Determination of copper by zeolite molecular sieve modified electrode[J],Electrochimca.Acta.,1997,42(4):595-604.
    [10]Etienne M.,Bessiere J.,Walcarius A.,Voltammetric detection of copper(Ⅱ) at a carbon paste electrode containing an organically modified silica[J],Sensors and Actuators B,2001,76(13):531-538.
    [11]Abbaspour A.,Moosavi S.M.M.,Chemically modified carbon paste electrode for determination of copper(Ⅱ) by potentiometric method[J],Talanta,2002,56:91-96.
    [12]Lisdal F.,Karube I.,Copper proteins immobilized on gold electrodes for(bio) analytical studies [J],Biosensors and Bioelect ronies,2002,17(12):1051-1057.
    [13]Regina M.,Andr'e L.,Pedro M.,et al.,Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica[J],Talanta,2007,71:771-777.
    [1]丁素芳,溴酸钾-溴酚蓝-锰(Ⅱ)催化体系的研究及其在测定抗坏血酸方面的研究[J],理化检验-化学分册,2005,41(9):642-643.
    [2]孙登明,萃取催化光度法间接测定痕量抗坏血酸[J],分析试验室,2005,24(1):1-4.
    [3]孙光,张文德,动力学光度法测定抗坏血酸-基于对甲苯胺蓝的还原褪色反应[J],理化检验-化学分册,2008,44(3):218-220.
    [4]杨怀成,十六烷基三甲基溴化铵为增敏剂光度法测定抗坏血酸[J],福建分析测试,2007,16(3):54-57.
    [5]李冰冰,周晓光,朱泮民,紫外光度法测定药品中抗坏血酸的研究[J],光谱实验室,2005,22(1):152-154.
    [6]宋丰,磷钼杂多酸光度法测定水果、蔬菜、药物中抗坏血酸[J],华中师范大学学报(自然科学版),2001,35(3):309-312.
    [7]刘胜辉,臧小平,高效液相色谱法测定水果中的抗坏血酸[J],生命科学仪器,2005,3(4):38-40.
    [8]刘云,食品、生物样品和药物中抗坏血酸的检测[J],化学试剂,1994,16(5):282-288.
    [9]王琦,吴俊森.电化学分析法测定抗坏血酸的研究与应用[J],山东师范大学学报,2005,20(4):38-40.
    [10]金利通,赵桂珠,方禹之,聚邻苯二胺修饰电极抗坏血酸氧化酶生物传感器的研究[J],高等学校化学学报,1994,15:189-192.
    [11]封满良,吕九如,张晓燕,等,流动注射化学发光分析法测定痕量抗坏血酸分析化学[J],1996,24(11):1364-1367.
    [12]陈贤光,王壬,赵国芳,等,聚对苯二酚修饰玻碳电极的制备及其对抗坏血酸的催化氧化作用[J],分析化学,2006,34(8):1063-1067.
    [13]陶海升,靳桂英,程旺兴,等,抗坏血酸在聚阿魏酸修饰玻碳电极上的电化学行为研究[J],分析试验室,2005,24(10):17-20.
    [14]钟霞,王娜,戴建远,等,聚品红修饰玻碳的电化学性质及对抗坏血酸的测定[J],化学传感器,2005,25(1):49-51.
    [15]刘海燕,王艳玲,张国荣,壳聚糖修饰电极上的铁根离子对抗坏血酸的电催化氧化作用[J],分析试验室,2003,22(1):5-8.
    [16]Ren Wang,Luo Hong Qun,Li Nian Bing,Electrocatalytic Oxidation of AA at GCE Modified by Electrodeposited Films of Caffeic Acid[J],J.Southwest China Normal University(Natural Science),2005,30(5):843-848.
    [17]黄杉生,于耀强,林辉概,等,聚萘胺化学修饰电极对抗坏血酸的电催化研究[J],高等学校化学学报,1992,13(1):35-36.
    [18]杨怀成,孔波,魏万之,聚溴酚蓝/壳聚糖修饰玻碳电极对抗坏血酸的电催化氧化作用[J],化学试剂,2008,30(9):665-668.
    [19]Sun Yuanxi,Ye Baoxian,Zhang Wuming,et al.,Simultaneous Determination of Dopamine and Ascorbic Acid at Poly(Neutral Red) Modified Elect rodes[J],Ana Chim Acta,1998,363:75-80.
    [20]周跃明,马建国,范杰平,等,聚灿烂甲酚蓝膜修饰电极测定抗坏血酸的研究[J],分析试验室,2005,24(7):51-54.
    [21]阚显文,张文芝,邓湘辉,等,抗坏血酸在β-环糊精/二茂铁甲酸修饰电极上的电化学行为及测定[J],分析化学,2005,33(11):1573-1576.
    [22]Ijeri V.S.,Jaiswal P.V.,Srivastava Ashwini K.Chemically Modified Electrodes Based on Macrocyclic Compounds for Determination of Vitamin C by Electrocatalytic Oxidation[J],Anal.Chim.Acta,2001,439(2):291-297.
    [23]Janhan B.R.,Reza O.,Abolfazl K.,Carbon Paste Electrode Spiked with Ferrocene Carboxylic Acid and its Application to the Electrocatalytic Determination of Ascorbic Acid[J],J.Elect roanal.Chem.,2001,515(12):45-51.
    [24]Nalini B.,Sirman N.S.Amperometric Determination of Ascorbic Acid Based on Electrocatalytic Oxidation Using a Ruthenium(Ⅲ) Diphenyldithiocarbamate-Modified Carbon Paste Electrode[J],Anal.Chim,Acta,2000,405(12):93-97.
    [25]Arvand M.,Sohrabnezhad S.,Mousavi M.F.,et al.,Electrochemical Study of Methylene Blue Incorporated Into Mordenite Type Zeolite and its Application for Amperometric Determination of Ascorbic Acid in Real Samples[J],Anal.Chim.Acta,2003,491(2):193-201.
    [26]傅崇岗,苏昌华,单瑞峰,L-半胱氨酸自组装膜修饰金电极对抗坏血酸的电催化作用及其测定[J],分析化学,2004,32(10):1349-1352.
    [27]Ren wang,Luo hongqun,Li nianbing,Electrocatalytic Oxidation of AA at GCE Modified by Electrodeposited Films of Caffeic Acid[J],Journal of Southwest China Normal University (Natural Science),2005,30(5):843-848.
    [28]Nian Bing Li,Wang Ren,Hong Qun Luo,Simultaneous voltammetric measurement of ascorbic acid and dopamine on poly(caffeic acid)-modified glassy carbon electrode[J],J.Solid State Electrochem.,2008,12:693-699.
    [29]吴婧,刘国东,俞汝勤,等,2-氨基吡啶修饰电极的电化学性质及对抗坏血酸的测定[J],分析化学,2001,29(10):1140-1143.
    [30]卢小泉,吕宝强,薛中华,等,4-巯基吡啶自组装修饰金电极的电化学性质及对抗坏血酸的测定[J],分析化学,2003,31(6):686-688.
    [31]张海丽,柳华春,闫红云,等,钛钼氧化物负载硅钨酸盐聚苯胺膜修饰电极制备及对抗坏血酸的电催化[J],分析化学,2007,35(2):211-215.
    [32]Murthy A.S.N.,Sharma J.,Benzoquinone Modified Electrode for Sensing NADH and Ascorbic Acid[J],Talanta,1998,45(5):951-956.
    [33]刘传银,陆光汉,巯基乙酸自组装电极对多巴胺的电催化及其分析应用[J],理化检验(化学分册),2005,41(9):644-647.
    [34]Yu A.M.,Sun D.M.,Gu H.Y.,Catalytic Oxidation of Ascorbic Acid at a Polyhistidine Modified Electrode and Its Application to the Voltammetric Resolution of Ascorbic and Dopamine[J].Anal Lett,1996,29:2633-2643.
    [35]Munoz R.A.A.,Matos R.C.,Angnes L.,Gold Electrodes from Compact Discs Modified with Platinum for Amperometric Determination of Ascorbic Acid in Pharmaceutical Formulations,Acid[J].Talanta,2001,55:855-860.
    [36]Murthy A.S.N.,Sharma J.,Benzoquinone Modified Electrode for Sensing NADH and Ascorbic Acid[J].Talanta,1998,45:951-956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700