用户名: 密码: 验证码:
CSTR和ABR处理有机废水产氢产甲烷特征与效能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧发酵技术是解决环境污染及能源需求问题的重要途径。本文针对常见的连续流搅拌槽式反应器(CSTR)和厌氧折流板反应器(ABR)两类反应器在发酵制氢和甲烷发酵中存在的理论和技术问题,开展了发酵产氢产甲烷系统的调控技术研究,并探讨ABR同步产氢产甲烷的的可行性,进一步研究了提高其效能的技术措施。
     以好氧污泥为启动接种物的CSTR发酵制氢系统的研究表明,通过工程控制技术,可以在系统内定向培育出丙酸型发酵、丁酸型发酵和乙醇型发酵等代谢类型不同的微生物群落,其中乙醇型发酵是厌氧活性污泥系统发酵产氢的最佳类型,其比产氢速率为2.89 mol/kgMLVSS·d,是丁酸型发酵的4倍,是丙酸型发酵的148倍。在CSTR发酵制氢系统中,其产氢机制主要为丙酮酸脱羧产氢和辅酶Ⅰ氧化还原平衡调节产氢,其产氢量对反应器总产氢量的贡献分别为82%和18%,而产氢产乙酸作用未得到发挥。同时发现,较低的污泥负荷率对乙醇型发酵的形成具有显著的促进作用。在相同条件下,CSTR启动污泥负荷为0.99 kgCOD/kgMLVSS·d,达到稳定乙醇型发酵的时间为30 d,而当污泥负荷降低为0.64 kgCOD/kgMLVSS·d时,乙醇型发酵的启动则可在16 d内完成。
     为解决CSTR发酵制氢系统存在的单位基质氢气转化率低及因搅拌带来的耗能问题,开展了ABR系统发酵产氢研究。结果表明,ABR是一种较为理想的有机废水发酵制氢反应设备,与CSTR相比,具有较高的微生物产氢活性、较低能源消耗等优点。在HRT 13.5 h、35℃和进水COD 5000 mg/L条件下,系统可在26 d达到乙醇型发酵,其比产氢速率为0.13 L/gMLVSS·d,而CSTR在同样条件下的比产氢速率仅为0.06 L/gMLVSS·d。
     在一定控制条件下,CSTR和ABR两类反应器内均可建立起完整的甲烷发酵微生物体系。CSTR在进水COD浓度为4000 mg/L、HRT为24 h等条件下,可以在73 d形成具有完整甲烷发酵过程的絮状悬浮厌氧活性污泥系统,其COD去除率维持在70%左右。而ABR以厌氧絮状污泥接种时,在进水COD、HRT相同的情况下,其COD去除率在17 d后即可达到74%,在有机负荷为4 kg/m3·d,COD去除率可稳定在90%以上。
     提出了借助ABR构建发酵联合产氢-产甲烷系统的技术思想,通过前端格室发酵产氢、后端格室发酵产甲烷的生物相功能调控,构建成功ABR发酵联合产氢-产甲烷系统,在进水COD 6000 mg/L、ALK 1900 mg/L条件下,系统的COD去除率提高到62%以上,产氢能力达到0.37 m~3/m~3·d,产甲烷能力达到1.66 m~3/m~3·d。研究表明,碱度调节可有效刺激ABR发酵联合产氢-产甲烷系统中厌氧活性污泥的增殖和产甲烷活性,但对前端格室厌氧活性污泥的发酵产氢所用有所抑制;而微量元素则对所有微生物类群的活性具有很好的提升效果,并可有效增加系统的生物多样性,但对微生物增殖的促进作用不显著。无论是进水COD浓度的改变、碱度的变化,还是微量元素的投加,都会引发ABR发酵联合产氢-产甲烷系统中微生物群落的演替,各格室厌氧活性污泥的群落构成也呈现有规律的更迭。
     在研究产氢氢化酶活性测定影响因素的基础上,优化并确立了一种具有较高灵敏度的产氢氢化酶活性测定方法,采用该方法检测到的产氢氢化酶活性,与ABR活性污泥的比产氢速率具有高度相关性,可用于评价ABR产氢效能。
Anaerobic fermentation technology is an important route to solve environmental pollution and resources problems. In this paper, the theoretical and technical characteristics of CSTR and ABR (anaerobic baffled reactor) during fermentation hydrogen production and methane fermentation were explored, and the adjustment of fermentation hydrogen-methane production was researched. Furthermore, the simultaneous hydrogen-methane production was tested and optimized.
     The CSTR fermentation hydrogen production system was initialed using aerobic sludge, and different anaerobic microorganisms were cultured to achieve propionic acid type fermentation, butyric acid type fermentation, and ethanol type fermentation. Ethanol type fermentation was the optimum one among all these types; the specific hydrogen production efficiency was 2.89 mol/kgMLVSS·d, 4 times that of butyric acid type fermentation and 148 times that of propionic acid type fermentation. In CSTR, the hydrogen production mechanisms included pyruvate decarboxylation hydrogen production and coenzymeⅠhydrogen redox balance adjustment, and their contributions were 82% and 18% respectively. Hydrogen-producing acetogens did not work. Lower sludge loading rate was beneficial to the formation of ethanol-type fermentation. It took 30 days to achieve stable ethanol-type fermentation when the sludge load was 0.99 kgCOD/kgMLVSS·d during start-up or 16 days when the load was 0.64 kgCOD/kgMLVSS·d.
     Results showed that ABR was an ideal facility for hydrogen production from organic wastewater fermentation. It had higher efficiency and lower energy consumption comparing with CSTR. ABR achieved stable ethanol type fermentation within 26 d with HRT of 13.5 h, 35℃and initial COD of 5000 mg/L, and the specific hydrogen production rate was 0.13 L/gMLVSS·d while that of CSTR under the same conditions was 0.06 L/gMLVSS·d.
     Both CSTR and ABR could establish complete methane fermentation microbial systems under certain controlled conditions. With an influent COD concentration of 4000 mg/L and HRT of 24 h, CSTR could form a suspended anaerobic sludge system with complete methane fermentation process within 73 d and the COD removal ratio was around 70%. Under the same conditions, ABR could achieve 74% COD removal within 17 d, and further improved to 90% COD removal with an organic load of 4 kg/m3·d.
     Based on above findings, simultaneous hydrogen-methane fermentation was proposed and realized in the ABR system. The first two compartments functioned as hydrogen production, while the last ones acted as methane production. When influent COD was 6000 mg/L and ALK was 1900 mg/L, COD removal ratio reached 62%, hydrogen production capacity reached 0.37 m~3/m~3·d, and methane production capacity was 1.66 m~3/m~3·d. Alkalinity adjustment could stimulate the proliferation and methanogenic activity of sludge in the back compartment’but inhibited the hydrogen production in front compartments. Trace element addition, on the other hand, stimulated the activity of all types of microorganisms, enhanced the bio-diversity of ABR, but did not change the amount of biomass. The influent COD change, alkalinity adjustment, and trace element addition caused succession of the microorganism communities in ABR. Accordingly, the microbial communities’formation in each compartment presented a regular variation.
     A novel method was built to measure the activity of hydrogen production hydrogenase. The hydrogenase activity measured using this method was highly relevant with the specific hydrogen production efficiency of the ABR, and, thus, could be used to evaluate the performance of ABR.
引文
1江曙光.中国水污染现状及防治对策.现代农业科技. 2010,7:312~315
    2曾文革,余元玲,许恩信.中国水资源保护问题及法律对策.重庆大学学报(社会科学版). 2008,14(6):92~95
    3王宝贞.城市水资源开发与水环境改善有效途径探讨.水工业市场. 2010,2:44~49
    4侯燕飞.当代中国的水问题和解决对策.海河水利. 2009,10:16~17
    5宋序彤,吕士健,吴彬彬.我国城市水污染控制和水环境综合整治标准体系框架结构的研究.给水排水. 2010,l136(13):31~35
    6田志红.我国水资源保护存在的问题与对策研究.科技情报开发与经济. 2010,20(2):149~151
    7刘晓丽,钟文保,解跃革.运城市水污染控制与污水资源化对策.中国环境管理干部学院学报. 2010,20(2):67~70
    8黄秋洪.体制创新是水污染防治的关键.水污染防治. 2007,(3):53~55
    9贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社. 1999: 5~10
    10赵立军,滕登用,刘金玲等.废水厌氧生物处理技术综述与研究进展.环境污染治理技术与设备. 2001,2(5):58~66
    11任南琪,王爱杰,马放.产酸发酵微生物生理生态学.科学出版社. 2005:82~113
    12赵文玉,吴振斌.新型厌氧处理反应器的发展及应用.四川环境. 2002,21(1): 32~36
    13李建政,李楠,张妮等.活性污泥的连续流发酵产氢实验研究.化工学报. 2004, 55:75~79
    14 Nan-Qi Ren, Bing-Feng Liu, Jie Ding, Guo-Jun Xie. Hydrogen production with R. faecalis RLD-53 isolated from freshwater pond sludge. Bioresource Technol. 2009,100:484~487
    15胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社. 2003:155~191
    16 S. M.斯特罗纳奇.工业废水处理的厌氧消化过程.李敬译.中国环境科学出版社. 1989:64~67
    17汪洪生.现代废水厌氧处理应用技术进展.污染防治技术. 2002,15(4):15~20
    18 R. E. Speece.工业废水的厌氧生物技术.李亚新译.中国建筑工业出版社. 2001:194~225,232~258
    19祖波,祖建,周富春.产甲烷菌的生理生化特性.环境科学与技术. 2008,31(3):5~8
    20柯益华,方治华,孙学梅.厌氧消化过程微生物生态系统的建模与生态规律的研究.中国沼气. 1994,12(2):10~14
    21 J. G. Eikus. Microbial Population in Digesters. Anaerobic Digestion Applied Science Publishers LTD. 2004:61~89
    22 A. Buchan, S. Y. Newell, M. Butler. Dynamics of bacterial and fungal communities on decaying salt marsh grass. App. Environ. Microbiol. 2003,69: 6676~6687
    23 C. Y. Li. Methanogenic Digestion Using Mixed Substrate of Acetic, Propionic And Butyric Acids. Water Res. 2006,20(3):385~394
    24 A. G. Lettinga. Use of Upflow Sludge Blanket (USB) Reactor Concept for Biological Wastewater Treatment. Biotech. Bioeng. 2000, (22):699~734
    25 H. J. Gijzen. Anaerobic Bacteria Community. Biotech and Bioeng. 2001,31(4): 418~425
    26 J.M.Alfons Stams, M. Caroline Plugge. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology. 2009,7:568~577
    27 R.E.Hungate. Hydrogen as an Intermediate in the Rumen Fermentation. Arch. Microbiol. 1967,59:158~164
    28 K. R. Ahring, M. P. Bryant. Propionate Degrading Bacterium, Syntrophobacter Wolinii, so. nov. From Methanogenic Ecosystems. App. envion. Microbia. 2005, 40(2):626~632
    29 R.E.Hungate, W.Smith. Formate as an Intermediate in the Bovine Rumen Fermentation. J. Bacteriol,1970,102(2):389~397
    30 McInerney MJ, Struchtemeyer CG, Sieber J. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci. 2008,1125(3):58~72
    31程光胜,屠雄海,东秀珠等.厌氧降解丁酸共培养物中产氢产乙酸细菌和产甲烷细菌的分离与再组合.微生物学报,1995,35(6):442~449
    32 A. W. Lawrence, P. L. McCarty. Kinetics of Methane Fermentation in Anaerobic Treatment. Journal of Water Pollution Control Federation. 1999,41: 1~17
    33 Tomoyuki Kosaka, Souichiro Kato, et al. The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res. 2008,18:442~448
    34 Alfons J.M.Stams and Caroline M.Plugge. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology. 2009,7:568~-577
    35东秀珠,屠雄海,苏京军等.利用氢和二氧化碳生长的一个泥杆菌新种.微生物学报.1994,34(3):173~178
    36 H.Platen, B.Schink.Methanogenic degradation of acetone by an enrichment culture, Arch. Microbiol. .1987, 149(2):136~141
    37 McInerney.J. et al. The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc. Natl. Acad. Sci. USA. 2007,104: 7600~7605
    38 S. Nachaiyasit, D. C. Stukey. Microbial Response to Environmental Changes in an Anaerobic Baffled Reactor. Antonie van Leeuwenhoek. 1995,67(2):111~123
    39 Van Ginkel SW, Logan B. Increased biological hydrogen production with reduced organic loading. Water Res. 2005,39: 3819~3826.
    40李秋波,邢德峰,任南琪. C/N比对嗜酸细菌X-29产氢能力及其酶活性的影响.环境科学. 2006, 27(4):810~812.
    41任南琪,王宝贞.有机废水发酵法生物制氢技术——原理与方法.黑龙江科学技术出版社. 1994:40~44
    42任南琪.产氢产酸发酵细菌生态学研究——群落演替与内平衡反馈调节机制.国家地震局工程力学研究所博士后研究报告. 1998:32~45
    43李建政,任南琪,刘艳玲等.重要废水高效生物处理技术的研究.中国给水排水. 2000, 16(6): 5~9
    44李建政,任南琪,王爱杰等.二相厌氧生物工艺相分离优越性探讨.哈尔滨建筑大学学报. 1998, 31(2):50
    45李建政.连续流两相厌氧生物处理的生理生态学研究.哈尔滨建筑大学硕士学位论文. 1997:6~7
    46任南琪,秦智,李建政.不同产酸发酵菌群产氢能力的对比与分析.环境科学. 2003, 24(1):70~74
    47李建政,任南琪,秦智等.厌氧发酵产氢系统的启动与乙醇型发酵优势菌群的建立.高技术通讯. 2004, 14(9):90~94
    48王勇,任南琪,孙寓娇等.乙醇型发酵与丁酸型发酵产氢机理及能力分析.太阳能学报. 2002, 23(3):366~373
    49李永峰,任南琪,史英.有机废水生物制氢的连续流发酵工艺.新能源及工艺. 2004,(6):25~26
    50任南琪,李永峰,李建政等.中国发酵法生物制氢技术研究进展.化工学报. 2004, 55: 7~13
    51 Katherine D. McMahon, Peter G. Stroot, Roderick I. Mackie, et al. Anaerobic Codigestion of Municipal Solid Waste and Biosolids under Various Mixing Conditions—II: Microbial Population Dynamics. Water Research. 2005,7(35):1817~1827
    52 Van Ginkel SW, Oh SE, Logan BE. Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy 2005, 30:1535~1542.
    53秦智,任南琪,李建政等.产酸相反应器的过酸状态及其控制.哈尔滨工业大学学报. 2003, 35(9):1105~1108
    54 Li JZ, Ren NQ, Li BK et al. Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Biores Technol 2008, 99: 6528~6537
    55朱葛夫.厌氧折流板反应器应用技术及微生物群落生态学研究.哈尔滨工业大学博士学位论文. 2007:53~64
    56刘敏.产氢-产甲烷两相厌氧工艺运行特性研究.哈尔滨工业大学博士学位论文. 2004:18~24
    57 R. Tabassum, M. I. Rajoka. Methanogenesis of Carbohydrates And Their Fermentation Products By Dystrophic Methane Production Bacteria Isolated From Freshwater Sediments. Bioresource Technology. 2004,(72):199~205
    58刘艳玲.两相厌氧系统底物转化规律与群落演替的研究.哈尔滨工业大学博士学位论文. 2001:58~98
    59闵航,陈美慈,赵宇华等.厌氧微生物学.浙江大学出版社, 1993:162~178
    60邬小兵,徐惠娟,丛一博.产酸克雷伯氏菌耐氧产氢及其可溶性氢酶耐氧特性研究.生物技术. 2008,18 (4):31~34
    61 Mark D, Redwood, Lynne E. Macaskie. A two-stage,two-organism process for biohydrogen from glucose. Int J Hydrogen Energy. 2006,31:1514~1521
    62 Zhu GF, Li JZ, Wu P, Jin HZ, Wang Z. The performance and phase separated characteristics of an anaerobic baffled reactor treating soybean protein processing wastewater. Bioresour. Technol. 2008, 99:8027~8033.
    63 M. Hutnan, L. Mrafkova, M. Drtil, et al. Methanogenic and Nonmethanogenic Activity of Granulated Sludge in Anaerobic Baffled Reactor. Chem. Papers. 1999,53(6):374~378
    64孙剑辉,孙胜鹏,张波.厌氧折流板反应器处理硝基苯废水的研究.工业水处理. 2005,25(7):69~71
    65李清雪,王欣,刘书燕. ABR酸解及恢复过程中的特征研究.河北师范大学学报. 2007,31(2):225~227
    66尹军,赵纯广,张立国等.中温两相厌氧消化工艺处理混合污泥的效能.中国给水排水. 2008,24(5): 1~5
    67沈耀良,王宝贞.厌氧折流板反应器处理垃圾渗滤液混合废水.中国给水排水. 1999,15(5):10~12
    68 Y. Ueno, S. Haruta, M. Ishii. Microbial Community in Anaerobic Hydrogen- Producing Microflora Enriched from Sludge Compost. Appl Microbiol Biotechnol. 2005,( 57): 555~562
    69 S. Nachaiyasit and D. C. Stuckey. The Effect of Low Temperature on the Performance of an Anaerobic Baffled Reactor (ABR). J. Chem. Tech. Biotechnol. 1997, (69):276~284
    70曾国驱,任随周,许玫英等. ABR结合SBR法处理印染废水的研究.微生物学通报. 2005,32 (6):68~73
    71李建昌,张无敌.氢分压对种间氢转移的影响.云南师范大学学报. 2005,25(5): 21~25
    72吴慧芳,王世和,夏明芳等. ABR处理印染废水水温影响特性及降解模型.工业水处理. 2006,26 (10):39~43
    73何仕均,王建龙,罗艳.折流式厌氧反应器处理甜菜制糖废水的中试研究.中国给水排水. 2006,22(21): 74~77
    74李清雪,华玉芝.厌氧折流板反应器处理高浓度有机废水.河北建筑科技学院学报. 2003, 20(3):13~14
    75鲍立新,李建政,昌盛等,任南琪.ABR处理大豆蛋白废水的效能及微生物群落动态分析.环境科学. 2008,29(8):2206~2213
    76 N. Suyanee, C. D. David. The Effect of Shock Loads on the Performance of an Anaerobic Baffled Reactor (ABR). 1. Step Changes in Feed Concentration atConstant Retention Time. Water Research. 1997,31(11):2737~2746
    77 S. Uyanik, P. J. Sallis and G. K. Anderson. The Effect of Polymer Addition on Granulation in an Anaerobic Baffled Reactor (ABR). PartⅡ: Compartmentalization of Bacterial Populations. Water Research. 2002,(36):944~955
    78 P. L. McCarty. One Hundred Years of Anaerobic Treatment. Anaerobic Digestion. Elsevier biomedical press B.V. 2002:3~22
    79 A. J. Silva, E. Veresche, E. Foresti, et al. Sulphate Removal from Industrial Wastewater Using a Packed-BED Anaerobic Reactor. Process Biochemistry. 2005,(37): 927~935
    80 B. Inanc, S. Master, S. Ide. Propionic Acid Accumulation and Controlling Factors in Anaerobic Treatment of Carbohydrate: Effects of H2 and pH. Wat. Sci. Tech.2006,34:317~325
    81 J. H. Tay, K. Y. Show and S. Jeyaseelan. Affects of Media Characteristics on The Performance of Upflow Anaerobic Packed-bed reactors. J. Environ. Eng. 2003, 122(6): 469~476
    82曹晓莹,沈耀良. ABR反应器处理草柑膦废水的研究.工业水处理.2004, 24(7):28~30
    83崔玉波,朱宝英,李影.分区进水ABR酸化反应器去除污染物性能研究.大连民族学院学报. 2007,3 (38):8~11
    84牛莉莉,刘晓黎,陈双雅等.一个新的高温产氢菌及产氢特性的研究.微生物学报. 2006,46(2):280~284
    85 J. Xing and A. Tilche. The Effect of Hydraulic Retention Time on the Hybrid Anaerobic Baffled Reactor Performance at Constant Loading. Biomass Bioenergy. 1999,3(1):25~29
    86李建政,叶菁菁,王卫娜等.制糖废水CSTR甲烷发酵系统的污泥驯化与运行特征.科技导报. 2008,26(10) :54~57
    87林明,任南琪,王爱杰.几种金属离子对高效产氢细菌产氢能力的促进作用.哈尔滨工业大学学报. 2003, 35(2):147~15l
    88柴社立,蔡晶,芮尊元.微量营养物质对有机废水厌氧消化过程的调控作用.环境科学与技术. 2006,9(29):85~89
    89国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.第四版.中国环境科学出版社,2002: 27~30
    90李建政,张妮,李楠等. HRT对发酵产氢厌氧活性污泥系统的影响.哈尔滨工业大学学报. 2006, 11(38):1140~1146
    91 R. J. Parkers. Analysis of Microbial Communities within Sediments Using Biomarkers, in: Ecology of Microbial Communities, Cambridge University Press, Cambridge. England. 2004:147~177
    92 L. Raskin, J. M. Stromley, B. E. Rittmann, and D. A. Stahl. Group-specific 16S rRNA Hybridization Probes to Describe Natural Communities of Methanogens. App. Environ. Microbiol. 2004,60:1232~1240
    93连莉文,郭学敏,姚蓉.产甲烷菌的MV氢化酶活性分析法.中国沼气.1987,11(5):6~10
    94尹小波,连莉文,徐洁泉.产甲烷过程的独特酶类及生化监测方法.中国沼气. 1998, 16 (3):8~13
    95卢文玉,刘铭辉,陈宇等.厌氧发酵法生物制氢的研究现状和发展前景.中国生物工程杂志. 2006,26(7):99~104
    96王海宾,贾万利,柳耀辉.生物制氢的现状与发展趋势.生物技术. 2005,8(15):91~92
    97王勇,任南琪. Fe对产氢发酵细菌发酵途径及产氢能力影响.太阳能学报. 2003, 24(2):222~226
    98 Ren Nanqi, Wang Baozhen, et al. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng. 1997, 54:197~200
    99 Shireen Meher Kotay, Debabrata. Biohydrogen as a renewable energy resource—Prospects and potentials. Int J Hydrogen Energy. 2008,33:258~263
    100 Nanqi Ren, Jianzheng Li,Yong Wang, et al. Biohydrogen Production from Molasses by Anaerobic Fermentation with a Pilot-scale Bioreactor System. Int. J. Hydrogen Energy. 2006, (31):2147~2157
    101李建政,蒋凡,郑国臣. ABR发酵产氢系统的控制运行及产氢效能.环境科学学报. 2010,30(1):79~87
    102 Jackson B E and McInerney M J. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature. 2002,415: 454~456
    103 Das D, Veziroglu TN. Advances in biological hydrogen production processes. Int. J. Hydrogen Energy.2008,33:6046~6057
    104 Kyazze G., Martinez-Perez N., Dinsdale R., et al. In?uence of Substrate Concentration on the Stability and Yield of Continuous Biohydrogen Production. Biotechnology and Bioengineering. 2006, 93(5):971~979
    105 Wang CH, Chang JS. Continuous biohydrogen production from starch withgranulated mixed bacterial microflora. Energy Fuels.2008,22:93~97
    106常磊峰,邱广亮,陈香君.硫酸盐还原菌氢化酶的分离纯化及酶学性质研究.内蒙古师范大学学报. 2008,37(3):412~414
    107 P. Weiland, A. Rozzi. The Start-up, Operation and Monitoring of High Rate Anaerobic Treatment Systems: discusser. Sreport. Wat. Sci. Tech. 2001,24(8): 257~277
    108 Gregory von Abendroth,Sven Stripp,Alexey Silakov,Christian Croux,Philippe Soucaille, Laurence Girbal,Thomas Happe.Optimized over-expression of [FeFe] hydrogenases with high specific activity in Clostridium acetobutylicum. Int. J. Hydrogen Energy. 2008,33:6076 ~6081
    109 Luo G, Xie L, Zou ZH, Wang W, Zhou Q. Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour. Technol.2010, 101:959~964.
    110 Hwang MH, Jang NJ, Hyun SH. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J. Biotechnol. 2004,111:297~230
    111 S. Beaty and M. J. Mcinernery. Growth of Syntrophomonas Wolfei in pure culture on crotonate. Arch Microbiol. 2003,147: 389~393
    112李建政,马超,郭晓宇.产氢产乙酸菌株AX2的生长条件及产乙酸特性.哈尔滨工业大学学报. 2009,4(41):100~103
    113 Zhang ZP, Show KY, Tay JH. Enhanced continuous biohydrogen production by immobilized anaerobic microflora. Energy Fuels. 2008,22:87~92
    114 W. R. Ross, J. P. Barnard, N. H. K. Strohwald. Practical Application of ADUF Process to the Full-scale Treatment of Amaize Processing Effluent. Water Science and Technology. 2002,25(10): 27~39
    115 A. Bachmann, V. L. Beard , P. L. McCarty. Comparison of Fixed Film Reactors with a Modified Sludge Blanket Reactor, Fixed Film Biological Processed for Wastewater Treatment. Y. C. Wu and E. D. Smith. Noyes Data, NJ. 2003: 98~109
    116 A. Cohen, J. M. Van Gemert, R. J. Zoetemeyer. Main Characteristics and Stoichiometric Aspects of Acidogenesis of Soluble Carbohydrate Containing Wastewater. Proc. Biochem. 2004,(19): 228~237
    117 G. L. Schroepfer. The Anaerobic Contact Process as Applied to Packing House Wastes. Sewage and Ind. Wastes. 2005, 27(4): 460~480
    118 M. Henze, P. Harremoes. Anaerobic Treatment of Wastewater in Fixed Film Reactors: aliterature review. Wat. Sci. Tech. 2005,15(8-9):100~111
    119 B. Schink, P. K. Thauer. Granular Anaerobic Sludge, In: Microbiology and Technology. Pudoc. Wageningen. The Netherlands. 1998:5~17
    120 P. B. William and C. S. David. The Use of the Anaerobic Baffled Reactor (ABR) for Wastewater Treatment: a review. Wat. Res. 1999,33(7):1559~1578
    121 Kim M S, Baek J S, Yun Y S. Hydrogen production form Chlamydomonas reinhardtiibiomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy. 2006,31: 812~816
    122 A. M. W. Grobicki and D. C. Stuckey. Performance of the Anaerobic Baffled Reactor under Steady State and Shock Loading Conditions. Biotechnol. Bioeng. 2001,(37):344~355
    123 Bing-Feng Liu, Nan-Qi Ren, De-Feng Xing.Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. Bioresource Technol. 2009, 100:2719~2723
    124 P. Fox and F. G. Pohland. Anaerobic Treatment Applications and Fundamentals: Substrate Specificity during Phase Separation. Water Environ. Res. 2004,66(5): 716~724
    125 Jianzheng Li, Baikun Li, Gefu Zhu, et al. Hydrogen Production from Diluted Molasses by Fermentative Mixed Microbe Flora Culture in an Anaerobic Baffled Reactor (ABR). Int. J. Hydrogen Energy. 2007, 28(6):1~10
    126 Bucsu D, Nemestothy N, Pientka Z, Gubiczaa L, Belafi-Bako K. Modelling of biohydrogen production and recovery by membrane gas separation. Desalination. 2009,240:306~310
    127 Sasikala C, Ramana VC, Raghuveer P. Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy. 1995, 20(2):123~126
    128 Younesi H, Najafpour G, Ku Ismail KS, Mohamed AR, Kamaruddin AH. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum. Bioresour. Technol. 2008,99:2612~2619
    129 Davila-Vazquez G, Cota-Navarro CB, Rosales-Colunga LM, de Leon-Rodriguez A, Razo-Flores E. Continuous biohydrogen production using cheesewhey: Improving the hydrogen production rate. Int. J. Hydrogen Energy. 2009,34:4296~4304
    130 Denac, M. Automatic control of effluent quality from a high rate anaerobic treatment system. Water Re search ,1990 ,24 (5) :583~586
    131 KhanalS K, ChenW H, Li L, et al. Biological hydrogen production: effects of pH and Intermediate products. Int J HydrogenEnergy. 2004, 29: 1123~1231
    132 J. Iza. Anaerobic Fluidized Bed Reactors (AFBR): Performance and Hydraulic Behavior. Anaerobic Digestion. 2003, (2):155~163
    133张自杰,林荣忱,金儒霖.排水工程.中国建筑工业出版社第四版. 1999:40~44
    134丁杰.金属离子和半胱氨酸对产氢能力的影响及调控对策研究.哈尔滨工业大学博士学位论文. 2005.6,22~24
    135 J.L.Young, M. Takashi, N. Tatsuya. Effect of iron concentration on hydrogen fermentation. Bioresource Technology. 2001,80:227~231
    136 Krishnan Vijayaraghavan, Desa Ahmad, Christianto Soning. Bio-hydrogen generation from mixed fruit peelwaste using anaerobic contact filter. Int. J. Hydrogen Energy. 2007 (32) :4754~4760
    137 Nan-Qi Ren, Dong-Yang Wang, Chuan-Ping Yang,et al. Selection and isolation of hydrogen-producing fermentative bacteria with high yield and rate and its bioaugmentation process. Int. J. Hydrogen Energy. 2009, (5) :1~6
    138 Wu X, Zhu J, Dong CY, Miller C, Li YC, Wang L, et al. Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy. 2009, 34:6636~6645.
    139 Hwang MH, Jang NJ, Hyun SH. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J. Biotechnol. 2004,111:297~230
    140李伟伟,刘均洪.氢化酶在生物技术中的应用.化工生产与技术. 2005,2(12):26~29
    141 Bruno Soffientino,Arthur J. Spivack,David C. Smith,et al. A versatile and sensitive tritium-based radioassay for measuring hydrogenase activity in aquatic sediments.Journal of Microbiological Methods. 2006, (66): 136~146
    142 Vincent Artero, Marc Fontecave. Some general principles for designing electrocatalysts with hydrogenase activity. Coordination Chemistry Reviews. 2005, (24) :1518~1535

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700