用户名: 密码: 验证码:
改良A~2/O分段进水工艺处理低C/N市政废水的性能与优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
截止2011年全国污水处理厂中氧化沟系列的工艺占28.6%,传统连续流缺氧/好氧(A/O)工艺、厌氧/缺氧/好氧(A2/O)工艺系列占27.1%,续批式反应器(SBR)系列占16.5%,传统活性污泥工艺系列占27.8%。上述工艺由于存在单一污泥生长系统所固有的弊端,导致我国90%以上的污水处理厂不能实现稳定GB18918-2002一级A排放标准;尤其是低浓度、低COD/TN(C/N)废水更成为污水处理厂出水达标排放的一个“瓶颈”。如何合理地利用废水中的有机碳源以提高氮磷去除效率成为传统生物脱氮除磷技术出水达标排放的关键,同时可有效遏制缓流水体富营养化的进一步恶化。
     连续流分段进水工艺由于具有污泥浓度高、水力停留时间短、碳源利用率高、氮磷去除稳定高效、节省内回流等特点被国内外广泛研究、应用。因此,分段进水技术可为低浓度、低C/N废水处理提供一条达一级A标准的新途径。目前对分段进水工艺的研究主要基于实验室模拟废水以及较高浓度、较高C/N城市生活污水两个方面,国内外并未见任何有关利用分段进水技术处理低浓度、低C/N实际市政废水研究与应用的报道。
     为了推动分段进水工艺更广泛的应用,以及为我国南方低浓度、低C/N污水处理厂实际运行提供科学的指导,本研究开发了一套改良A2/O分段进水脱氮除磷新工艺。利用江苏省扬州市江都清源污水处理厂(40000m3.d-1)旋流式沉砂池出水作为研究对象,实验原污水平均COD、氨氮、总氮、总磷、COD/TN和COD/TP分别为146mg.L-1、30.8mg.L-1、31.4mg.L-1、2.9mg.L-1、4.77和52.8;在稳态进水和非稳态正弦波进水两种情况下,考察工艺脱氮除磷性能的影响因素以及优化运行策略:①稳态进水时,研究了工艺的最佳进水流量分配比、体积比、水力停留时间(HRT)、溶解氧(DO)的优化与运行策略,并且对强化系统的同步硝化反硝化(SND)效果以及如何实现短程硝化反硝化策略进行系统讨论;②非稳态正弦波进水时,研究了不同振幅对工艺污染物去除与出水变化规律的影响以及好氧段合理的DO控制范围,同时研究了恒曝气量和周期性变曝气量两种DO控制模式的优化策略,可为本工艺的设计以及后续实际运行提供更科学的参考。
     (1)稳态进水时,通过优化系统控制参数以及对工况下污染物出水效果的比较,确定了工艺的不同运行模式:
     ①单纯以活性污泥法实现脱氮除磷达一级A标准角度分析,获得系统最优且最经济的运行参数:进水流量分配比为20:35:35:10%、厌氧/缺氧/好氧体积比为4:8:10(每段缺氧/好氧体积比为1:1)、HRT为7h、SRT为15d、污泥回流比为75%、好氧段DO控制范围为0.8-1.2mg.L-1,平均出水COD、氨氮、总氮、总磷浓度分别为27.43mg.L-1、1.57mg.L-1、14.3mg.L-1、0.25mg.L-1,并且原水COD绝大部分作为厌氧释磷和反硝化脱氮所需碳源,系统对碳源有效利用率达70%以上;另外,通过控制好氧段DO为1.0-1.5mg.L-1、并在好氧段投加悬浮填料的策略可以将工艺的HRT进一步缩短至6h,平均出水COD、氨氮、总氮、总磷浓度分别为25.92mg.L-1、1.98mg.L-1、14.5mg.L-1、0.47mg.L-1,并且该运行控制条件下可强化系统中SND效果同时降低对碳源的需求。
     ②从活性污泥法结合化学法实现出水达一级A标准角度确定工艺的最佳运行参数如下:进水流量分配比为20:35:35:10%、厌氧/缺氧/好氧体积比为5:9:8(每段缺氧/好氧体积比为2:1)、HRT为7h、SRT为15d、污泥回流比为75%、好氧段DO控制范围为0.3-0.5mg.L-1,出水COD、氨氮、总氮和总磷分别为28mg.L-1、0.33mg.L-1、8.69mg.L-1和0.65mg.L-1。其中系统中氮去除主要通过短程硝化反硝化实现,亚硝化率达到58%,较低的DO和较短的好氧段HRT是分段进水工艺实现短程硝化反硝化的限制性因素;但总磷还需通过化学法进行深度去除。该运行条件的优势在于适用于低C/N废水并且大大节约曝气能耗,主要劣势在于实现短程硝化反硝化并大量富集AOB的控制条件相当严格且所需周期较长。
     (2)非稳态进水时,考察非稳态正弦波进水不同振幅对污染物去除的变化规律以及相应好氧段DO的控制策略,结果表明:
     ①进水流量分配比为20:35:35:10%、稳态进水时HRT为8.7h的条件下,非稳态正弦波进水振幅分别为±25%、±50%、±75%时,对COD去除影响不大,但出水氨氮、总氮和总磷浓度逐步增加;不同振幅条件下出水COD浓度均以分段函数形式变化,出水氨氮、总氮和总磷均以类似正弦曲线波动;当进水出现峰谷值时,三个工况出水氨氮的峰谷值都分别延后2h、3h、5h,出水硝态氮的峰谷值分别都延后8h、9h、11h,出水总氮的峰谷值分别延后8h、9h、5h,出水TP的峰谷值分别延后4h、3h和2h。
     ②周期性变曝气量和恒曝气量的两种运行控制模式,对COD和TP去除影响不显著,但是周期性变曝气量有利于提高对氨氮和TN的去除率;相对于恒曝气量,在进水波峰和波谷时周期性变曝气量的进水碳源有效利用率均提高。
     ③当恒定曝气量时,正弦波动振幅为±25%,控制平衡位置初始DO浓度为2mg.L-1,出水均可达一级A排放标准;当周期性变曝气量时,正弦波动振幅可提高至±50%,控制DO浓度为1-3mg.L-1,出水均可达一级A排放标准,并且相比于恒曝气量可节省9.2%的曝气能耗。
According to historical records, until2011, the national Wastewater TreatmentPlants(WWTP) were mainly consists of four types of biological nutrient removaltechnology: the oxidation ditch process(28.6%), the traditional A/O process or A2/Oprocess(27.1%), the SBR process(16.5%) and conventional activated sludge process(27.8%). However, the above processes due to the presence of the drawbacks inherentin a single sludge growth system, resulting in more than90%of WWTP could notachieve first level A discharge standards in China(GB18918-2002). Especially for theweak wastewater with low C/N, which was considered to be a "bottleneck" of WWTP,and it was difficult for the conventional biological treatment processes to achieveefficient and stable removal of nitrogen and phosphorus. Therefor, it is very importantfor traditional BNR that how to use the organic carbon reasonably in order toimprove the efficiency of nitrogen and phosphorus removal, and which couldeffectively curb the further deterioration of the slow-flow water eutrophication.
     The continuous flow step-feed technology had been extensively studied andapplied at home and abroad because of higher mixed liquor suspended solids(MLSS),shorter hydraulic retention time(HRT), higher utilization of carbon sources, nitrogenand phosphorus removal stable and efficient, saving internal reflux et al. Therefore,the step-feed technology can provide a new way up to first level A discharge standardsfor weak wastewater with low C/N. But so far, the step-feed technology was studiedbased primarily on two aspects: one was the laboratory simulated wastewater, theother was the higher municipal sewage with higher C/N, so there is not any researchor application reports about using step-feed process to treat weak actual municipalwastewater with low C/N at home and abroad.
     In order to improve the development and the wider application of step-feedprocess,and provide scientific reference for the operation of sewage treatment planttreating weak wastewater(COD≤200mg.L-1,NH4+-N≤40mg.L-1) with low influent C/N,a pilot modified Anaerobic/Anoxic/Oxic(A2/O) step-feed process was applied forsimultaneous biological nitrogen(N) and phosphorus(P) removal. During theexperiment, the effluent of swirl grit tank as the research object from TianyuQingyuan Wastewater Treatment Plant(WWTP)(40,000m3.d-1) employing the OrbalOxidation Ditch process (OD) in Yang ZhouCity, Jiangsu Province, China. And the influent COD, NH4+-N, TN, TP, COD/TN and COD/TP were146mg.L-1,30.8mg.L-1,31.4mg.L-1,2.9mg.L-1,4.77and52.8, respectively. Under steady-state andunsteady-state sinusoidal influent conditions, and the different influence factorsaffecting denitrification and phosphorus removal performance and optimal operationstrategies were investigated. In the case of steady-state influent, this paper haddiscussed the optimization and operating strategy of different influent flowdistribution ratio, volume ratio, HRT and DO, and how to strengthen simultaneousnitrification and denitrification(SND) and nitritation-denitritation of the system to bestudied. In the case of unsteady-state sinusoidal influent, that the different amplitudesaffect pollutant removal efficiency and effluent variation as well as DO controloptimization strategy were closer to the actual operating conditions of sewagetreatment plant, which could provide scientific reference for the design and follow-upoperation. After these main elements of systems research into this subject, and thefollowing conclusions were obtained.
     (1)When the influent was in steady-state mode, this experiment had studiedand optimized operation control parameters, and the effluent effects of pollutants werecompared at different conditions. At last we identified several different operatingmodels of modified A2/O step-feed process:
     ①Nitrogen and phosphorus removal only by activated sludge process andachieved first level A discharge standards in China(GB18918-2002), the optimum andmost economical operating parameters can be set as following: the inflow distributionratio was20:35:35:10%with HRT of7h and SRT of15d, the volume ratio ofanaerobic/anoxic/aerobic was4:8:10and the volume ratio of anoxic/oxic zone inevery step was1:1, sludge reflux ratio was75%, and DO concentration in every oxiczones were controlled between0.8mg.L-1to1.2mg.L-1; Under this condition, theaverage effluent of COD, ammonia nitrogen, total nitrogen, total phosphorus were27.43mg.L-1、1.57mg.L-1、14.3mg.L-1and0.25mg.L-1respectively, and the effluentconcentration was up to Grade A discharging standard of WWTP (GB18918-2002).The majority of COD in raw water was used as carbon source for anaerobicphosphorus release and denitrification, and more than70%of carbon sources wasutilized effectively. In addition, HRT could be reduced to6h when the DOconcentration in aerobic zones were controlled between1.0-1.5mg.L-1and addingsuspended carriers in aerobic zones, the effluent performance of COD, NH4+-N, TNand TP were25.92,1.98,14.5and0.47mg.L-1respectively; and with this operation control condition, SND performance could be enhanced while reducing the demandfor carbon sources.
     ②The effluent achieved first level A discharge standards took advantage ofactivated sludge process combine with chemical method, and this study proposed theoptimum operating parameters: the inflow distribution ratio was20:35:35:10%withHRT of7h and SRT of15d, the volume ratio of anaerobic/anoxic/aerobic was5:9:8and the volume ratio of anoxic/oxic zone in every step was2:1, sludge reflux ratiowas75%, and DO concentration in every oxic zones were controlled between0.3mg.L-1to0.5mg.L-1; Under this condition, the average effluent of COD, ammonianitrogen, total nitrogen, total phosphorus were28mg.L-1、0.33mg.L-1、8.69mg.L-1and0.65mg.L-1respectively. Wherein the nitrogen removal in the system mainly throughnitritation-denitritation, but phosphorus removal needed further chemical method.And the control strategy and the limiting factors of nitritation and denitritation instep-feed system were studied that lower DO concentration and shorter HRT inaerobic zones were key factors for step-feed process to accumulate nitrite. Nitritationwas achieved through a combination of short aerobic hydraulic retention time(HRT=2.5h) and low dissolved oxygen (DO) levels (0.3-0.5mg.L-1). The nitriteaccumulation rate was about58%and ammonia removal efficiency was over95%. Atthe same, the advantages and disadvantages of this model were analyzed. Theadvantages of second operating model is very suitable for low C/N wastewater andgreatly reduce aeration energy consumption, but the main disadvantage is that toachieve nitritation and denitritation and enrich large amount of Ammonia-oxidizingbacteria(AOB), which need very strict controlled conditions and will take a long time.And it is a big challenge for the actual WWTP to operate.
     (2)When the influent was in unsteady-state mode, this paper had discussed therelationship between unsteady sinusoidal influent and pollutants removal, variation instep-feed process, and obtain the optimal DO control parameters in aerobic zones. Theresults were as follows:
     ①Under the controlled condition: HRT was8.7h at unsteady influent equilibriumposition, influent flow distribution ratio was20:35:35:10%, and sludge reflux ratiowas75%. When Sinusoidal influent amplitude was increased from±25%to±75%,there was little effect on COD removal, but the effluent NH4+-N, TN and TPconcentration were gradually increased.
     ②The amplitudes of Sinusoidal influent were±25%,±50%and±75%under two operation modes of periodic variable aeration and constant aeration, effluentpollutants showed the same variation respectively: the effluent COD exhibit avariation of piecewise function, but the effluent NH4+-N, TN and TP show withsinusoidal function. When influent at peaks and troughs, effluent NH4+-Nconcentration of three different influent amplitudes appeared the peaks and troughswere delayed2h,3h and5h, respectively; effluent NO3-were delayed8h,9h and11h,respectively; effluent TN were delayed8h,9h and5h, respectively; effluent TP weredelayed4h,3h and2h, respectively.
     ③Two operation modes of periodic variable aeration and constant aeration, thathad no significantly impact on COD and TP remove, but periodic variable aerationwas conducive to improve ammonia and TN removal efficiency; and when influent atpeaks and troughs that influent carbon source effective utilization was increased undervariable aeration mode compared to the constant aeration mode.
     ④From up to level A emission standard measured, when the system wasoperated with constant aeration mode, influent fluctuation amplitude only was±25%and DO concentration was controlled of2.0mg·L-1in aerobic zones at unsteadyinfluent equilibrium position, the effluent of COD、NH4+-N、TN and TP were21.82,0.59,11.87and0.26mg·L-1, respectively. However, when the system was operatedwith periodic variable aeration mode, influent fluctuation amplitude could beincreased to±50%, and the effluent of COD、NH4+-N、TN and TP were23.19、1.50、13.88and0.48mg.L-1, respectively; and compared to the constant aeration mode,periodic variable aeration mode could save9.2%aeration energy consumption.
引文
[1]张忠祥,钱易.废水生物处理新技术[M].清华大学出版社.2004:349-357.
    [2]刘一平,郭绍辉,王嘉麟.城市污水回用于工业的现状分析[J].环境工程,2005,23(3):15-18.
    [3]中国工程院,中国水资源报告(第1卷)—《中国可持续发展水资源战略研究综合报5及各专题报告》.北京:中国水利出版社,2001.12.
    [4]国家环境保护总局,国家质量监督检验检疫总局.GB18918-2002.城镇污水处理厂污染物排放标准[S].北京:中国标准出版社,2002.
    [5]陈家琦,王洁.水资源概论[M].北京:中国水利水电出版社,1996.
    [6]曹贵华,黄勇,潘杨.常规生物脱氮除磷工艺中的问题及对策[J].水处理技术,2009,25(3):102-106.
    [7]李建政.环境工程微生物学[M].北京:化学工业出版社,2004.
    [8]沈耀良,王宝贞.废水生物处理新技术—理论与应用(第二版)[M].北京:中国环境科学出版社,2006,177-180.
    [9]王毓仁.提高废水生物硝化效果的理论探讨及工艺对策[J].给水排水,1994,8:30-33.
    [10]许乐中. pH值碱度对脱氮除磷效果的影响及其控制因素[J].给水排水,1996,22(1):10-13.
    [11]潘杨,黄勇.单级生物膜法脱氮机理及影响因素[J].苏州城建环保学院学报,2000,13(4):90-91.
    [12] Neufeld R.D.. Phenol and Free Ammonia Inhibition to Nitrosomonas Activity[J]. Wat. Res.,1980,14:1695-1703.
    [13] Groenestijn J.W.v., Deinema M.H., Zehnder A.J.B.. ATP production from polyphosphate inAcinetobacter strain210A. Arch. Microbiol.,1987,148:14-19.
    [14] Smolders G.J.F., van der Meij J., van Loosdrecht M.C.M., et al. Model of the anaerobicmetabolism of the biological phosphorus removal process: Stoichiometry and pH influence.Biotech. Bioeng.,1994,43:461-470.
    [15] Comcan Y., Hall K. J.. Biochanism Modle for Enhanced Biological Phosphorus Removal[J].Wat. Res.,1986,20:1511-1521.
    [16] Comeau Y., et al. Phosphate Release and Uptake in Enhanced Biological PhosphorusRemoval from Wastewater[J]. Journal WPCF,1987,59:707-715.
    [17] Mino T., Van Loosdrecht M.C.M., Heijnen J.J. Microbiology and biochemistry of theenhances biological phosphate removal process[J]. Wat. Res.,1998,32(11):3193-3207.
    [18] Martin H.G., Ivanova N., Kunin V., et al. Metagenomic analysis of two enhanced biologicalphosphorus removal(EBPR) sludge communities[J]. Nature Biotech.,2006,24(10):1263-1269.
    [19] Oehmen A., Lemos P.C., Carvalho G., et al. Advances in enhanced biological phosphorusremoval: From micro to macro scale[J]. Wat. Res.,2007,41(11):2271-2300.
    [20] Saunders A.M., Mabbett A.N., McEwan A.G.,et al. Proton motive force generation fromstored polymers for the uptake of acetate under anaerobic conditions[J]. FEMS Microbiol.Lett.,2007,274(2):245-251.
    [21]张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水,1997,13(3):7-10.
    [22]朱怀兰,史家梁,徐亚同. SBR生物除磷工艺的研究[J],上海环境科学,1993,12(8):8-13.
    [23]马文漪等.环境微生物工程[M].南京:南京大学出版社,1998.
    [24]环境工程手册(水污染防治卷)[M].高教出版社,1996.
    [25]郑兴灿,李亚新著.污水除磷脱氮技术[M].中国建筑出版社,1998.
    [26]沈耀良,王宝贞.废水生物除磷工艺中聚磷菌的作用机制及运行控制要点[J].环境科学与技术,1995,2:11-16.
    [27]徐乐中. PH值碱度对脱氮除磷效果的影响及控制方法[J].给水排水,1996,22(1):10-13.
    [28] Wang X. L., Peng Y. Z., Wang S. Y., et al. Influent of wastewater composition on nitrogen andphosphorus removal and process control in A2O process[J]. Bioprocess BiosystemEngineering,2006,28:397-404.
    [29]杨麒,李小明,曾光明,等.同步硝化反硝化机理的研究进展[J].微生物学通报,2003,30(4):88-91.
    [30]陈坚.环境生物技术[M].北京:中国轻工业出版社,1999,188-191.
    [31] Hong W Zhao, Donald S Mavinic. Controlling factors for simultaneous nitrification anddenitrification in a two stage intermittent aeration process treating domestic sewage[J]. Wat.Res.,1999,33(4):961-970.
    [32] H. Yoo. Nitrogen removal from synthetic wastewater by simultaneous nitrification anddenitrification via nitrite in an intermittently-aerated reactor[J]. Wat. Res.,1999,33(1):146-152.
    [33]高大文,彭永臻,王淑莹.高氮豆制品废水的亚硝酸型同步硝化反硝化生物脱氮工艺[J].化工学报,2005,56(4):699-704.
    [34] K. Pochana, J. Keller, P. Lant. Model development for simultaneous nitrification anddenitrification[J]. Wat. Sci. Technol.,1999,39(1):235-243.
    [35] E. Morgentoth, T. Sherden, M. C. M. van Loosdrecht. Aerobic granulation in a sequencingbatch reactor[J]. Wat. Res.,1997,31(12):3191-3194.
    [36]李汝琪,孔波,钱易.曝气生物滤池处理生活污水试验[J].环境科学,1999,20(5):69-71.
    [37] Domenic C., Joanne R. P., Thomas C. H. Pathway of oxidation of pyruvic oxime by aheterotrophic nitrifier of the genus Alcaligenes: Evidence against hydrolysis to pyruvate andhydroxylamine[J]. Archives of Biochemistry and Biophysics,1983,224(2):587-593.
    [38]吕锡武,李峰,稻森悠平,等.氨氮废水处理过程中的好氧反硝化研究[J].中国给水排水,2000,26(4):17-20.
    [39] A. B. Gupta. Thiosphaera pantotropha: a sulphur bacterium capable of simultaneousheterotrophic nitrification and aerobic denitrification[J]. Enzyme Microb. Technol.,1997,21:589-595.
    [40]郭劲松,黄天寅,龙腾锐.生物脱氮除磷工艺中的微生物及其相互关系[J].环境污染治理技术与设备,2000,1(1):8-13.
    [41]Peng Y. Z., Zhu G. B., Wang S. Y., et al. Pilot-scale studies on biological treatment ofhypersaline wastewater at low temperature[J]. Wat. Sci. Technol.,2005,52(10-11):129-137.
    [42]Fdz Polanco F., Villaverde S., Garcia P. A.. Nitrite accumulation in submerged biofilterscombined effects[J]. Wat. Sci. Technol.,1996,34(3-4):371-378.
    [43]Van Dongen U., Jetten M. S. M., Van Loosdrecht M. C. M.. The SHARON-Anammox processfor treatment of ammonium rich wastewater[C]. Wat. Sci. Technol.,2001.
    [44] I. Schmidt, O. Sliekers, M. Schmid, et al. New concepts of microbial treatment processes forthe nitrogen removal in wastewater[J]. FEMS Microbiol. Rev.2003,27:481-492.
    [45] T. Kuba, G. Smolders, M. C. M. van Loosdrecht, et al. Phosphorus removal from wastewaterby anaerobic-anoxic sequencing batch reactor[J]. Wat. Sci. Technol.,1993,27(5-6):241-252.
    [46] K. Pochana, J. Keller, P. Lant. Model development for simultaneous nitrification anddenitrification[J]. Wat. Sci. Technol.,1999,39(1):235-243.
    [47] T. Kuba, M. C. M. van Loosdrecht, J. J. Heijnen. Biological dephosphatation by activatedsludge under denitrifying conditions: pH influence and occurrence of denitrifyingdephosphatation in a full-scale waste water treatment plant[J]. Wat. Sci. Technol.,1999,36(12):75-82.
    [48]宋学起,彭永臻.以氯化方法实现生物膜法短程硝化[J].中国给水排水.2005,21(12):10-14.
    [49]罗志腾.污染控制工程微生物学[M].北京科学技术出版社,1988.
    [50]章非娟.生物脱氮技术[M].中国环境科学出版社,1992.
    [51] J. Y. Hu, S.L. Ong, W. J. Ng, et al. A new method for characterizing denitrifying phosphorusremoval bacteria by using three different types of electron acceptors[J]. Wat. Res.2003,37:3463-3471.
    [52] S. FUJII. Theoretical analysis on nitrogen removal of the step-feed anoxic-oxic activatedsludge process and its application for the optimal operation[J]. Wat. Sci. Technol.,1996,34(1-2):459-466.
    [53] N. FUNAMIZU. Simulation of the operational conditions of the full-scale municipalwastewater treatment plant to improve the performance of nutrient removal[J]. Wat. Sci.Technol.,1997,36(12):9-18.
    [54] Larrea Urcola Maria Asuncion. Proceso de fangos activos con alimentacion escalonada paraeliminacion de nitrogeno. Analisis de su potencialy optimizacion del disenoy operacion[J].Universidad de Navarra (Spain),1998:263-270.
    [55] B. R. Johnson, et al.,A comparison between the theory and reality of full-scale step-feednutrient removal systems[J]. Wat. Sci. Technol.,2005,52(10-11):587-596.
    [56] Carrio L., Streett F., Mahoney K., et al. Practical consider-allon for design of a step-feedbiological nutnent removal system[A]. Proceedings of73rdAnnual Conference andExposition[C]. USA: Anaheim, California,2000.
    [57] Milind V Wable, Carlo Spani. Side by side comparison of step feed and plug flow activatedsludge process performance at the rock creek advanced wastewater treatment facility[A].Proceedings of75thAnnual Technical Exhibition and Conference[C]. IllinoisUSA:McCormick Place,Chicago,2002.
    [58] Fillos J., Ramalingam K., Cal Tio L. A.. Full-scale evaluation of step-feed BNR process at aNew York City water pollution control plant[A].Proceedings of75thAnnual TechnicalExhibition and Conference[C]. Illinois USA: McCormick Place,Chicago,2002.
    [59] Crawford G., Black S., Stafford D., et al.The step bio-P process at lethbridge–over one fullyear of operation [A]. Proceedings of73rdAnnual Conference and Exposition [C].USA:Anaheim,California,2000.
    [60] G. B. ZHU, et al. Effect of influent flow rate distribution on the performance of step-feedbiological nitrogen removal process[J].Chemical Engineering Journal,2007,131(1-3):319-328.
    [61]祝贵兵;彭永臻;吴淑云;王淑莹.碳氮比对分段进水生物脱氮的影响[J].中国环境科学,2005,25(6).641-645.
    [62] Zhu Guibing, Peng Yongzhen, Wu Shuyun, Wang Shuying. Automatic control strategy forstep feed biological nitrogen removal process[J]. J. Environ. Sci.,2005.17(3):455-457.
    [63] Zhu Guibing,Peng Yongzhen et al..Performance and optimization of biological nitrogenremoval process enhanced by anoxic/oxic step feeding. Biochemical Engineering Journal[J],2009,43(3):280-287.
    [64] Zhu Guibing,Peng Yongzhen,Ma Bin,Wang Yu,Yin Chengqing. Optimization of anoxic/oxicstep feeding activated sludge process with fuzzy control model for improving nitrogenremoval[J].Chemical Engineering Journal,2009,151(1-3):195-201.
    [65] G. ZHU, et al.. Development and Experimental Evaluation of a Steady-state Model for theStep-feed Biological Nitrogen Removal Process[J]. Chinese Journal of Chemical Engineering,2007,15(3):411-417.
    [66]王伟,彭永臻,孙亚男,王淑莹.分段进水A/O工艺流量分配方法与策略研究[J].环境工程学报,2009,01,89-92.
    [67]王伟,王淑莹,孙亚男,郭瑾.多段A/O工艺流量及体积分配方法与优化控制策略[J].北京工业大学学报,2009,02,240-245.
    [68]王伟,王淑莹,孙亚男,彭永臻.分段进水A/O工艺流量分配专家系统的建立与应用,化工学报,2008,59(10):2608-2615.
    [69]王伟,彭永臻,王海东,张树军,令云芳.溶解氧对分段进水工艺的影响[J].中国环境科学,2006,26(3):293-297.
    [70]王伟,王淑莹,孙亚男.分段进水A/O工艺在低DO下处理生活污水研究[J].中国给水排水,2007,21,1-5.
    [71] Hanwen Liang,Min Gao,Junxin Liu, et al.. A novel integrated step-feed biofilm process forthe treatment of decentralized domestic wastewater in rural areas of China[J]. J. Environ. Sci.,2010,22(3):321–327.
    [72] Wang Bing, Wang Wei, Han Hongjun, et al. Nitrogen removal and simultaneous nitrificationand denitrification in a fluidized bed step-feed process[J]. J. Environ. Sci.,2012,24(2):303-308.
    [73]黄利彬.分段进水脱氮工艺试验研究[D].西安建筑科技大学.硕士学位论文,2007
    [74]朱海荣.分段进水A/O工艺中试研究[D].西安建筑科技大学.硕士学位论文,2005
    [75]王伟,彭永臻,殷芳芳,王淑莹.改进分段进水A/O生物脱氮工艺强化生物除磷[J].环境科学,2009,10,2968-2974.
    [76] W. WANG, et al.. Enhanced Biological Nutrients Removal in Modified Step-feedAnaerobic/Anoxic/Oxic Process[J]. Chinese Journal of Chemical Engineering,2009,17(5):840-848.
    [77] Shijian Ge, Yongzhen Peng, Shuying Wang et al. Enhanced nutrient removal in a modifiedstep feed process treating municipal wastewater with different inflow distribution ratios andnutrient ratios[J]. Bioresour. Technol.,2010,101:9012–9019.
    [78]张雁秋,张连信.一个新的生物化学动力学基本方程[J].中国矿业大学学报,1994,23(4):84-87.
    [79] Zhang Y. Q., Xu A. T., Li G.. Research on dynamics design for activated sludge system[J].Journal of China University of Mining&Technology,2002,12(2):148-151.
    [80] Zhu Guibing, Peng Yongzhen, et al. Simultaneous nitrification and denitrification in step-feedbiological nitrogen removal Process[J]. Chemical Engineering Journal.2007,19:1043–1048.
    [81]王伟,王淑莹,孙亚男,殷芳芳,彭永臻.流量分配对分段进水A/O脱氮性能的影响.环境科学,2009,3(1):89-91.
    [82] Peng Y.Z., Zhu G.B., Wang S.Y.. Use of C/N ratio as fuzzy control parameter for improvednitrogen removal in step-feed biological nitrogen removal process[J]. Environmental InFormatics Archives,2004(2):706-713.
    [83]王伟,王淑莹,孙亚男,郭瑾.多段A/O进水流量、缺氧/好氧体积分配方法与优化.北京工业大学学报,2009,35(2):7-13.
    [84]王伟,彭永臻,孙亚男.分段进水A/O工艺流量分配优化控制策略,环境工程学报,2009,3(1):89-91.
    [85] APHA. Standard Methods for the Examination of Water and Wastewate[rM].(21stedition).Washington, DC,APHA/AWWA/WEF,2005.
    [86] Gorgun,E., Artan,E., Orhon,D., Sozen,S.. Evaluation of nitrogen removal by step feeding inlarge treatment plants[J]. Wat. Sci. Technol.,1996,34(1–2):253–260.
    [87] Fillos,J., Diyamandoglu,V., Carrio,L.A., Robinson,L.. Full-scale evaluation of biologicalnitrogen removal in the step-feed activated sludge process[J]. Wat. Environ. Res.,1996,68(2):132–142.
    [88]张建丰.活性污泥法工艺控制[M].中国电力出版社,2007.
    [89] Vaiopoulou,E., Melidis,P., Aivasidis,A.. An activated sludge treatment plant for integratedremoval of carbon, nitrogen and phosphorus[J]. Desalination,2007,211:192-199.
    [90] SAKAI Y, KOIKE S. Development of step-feed multi stage denitrification-nitrificationprocess [A]. Proceedings of Water Environment Federation71st Annual Conference andExposition [C].1998,USA: Orlando, FL.
    [91]葛士建,彭永臻.连续流分段进水工艺生物脱氮除磷技术分析及优化控制[J].环境科学学报,2009,29(12):2465-2470.
    [92]曹贵华,王淑莹,彭永臻,等.流量分配比对改良A/O分段进水脱氮除磷特性的影响[J].化工学报,2012,63(4):1249-1257.
    [93] Wei Zeng, Lei Li, Yingying Yang, Shuying Wang, Yongzhen Peng. Nitritation anddenitritation of domestic wastewater using a continuous anaerobic-anoxic-aerobic (A2O)process at ambient temperatures. Bioresour. Technol.,2010,101(21):8074–8082.
    [94] Wei Zeng, Lei Li, Ying-ying Yang, Xiang-dong Wang, Yong-zhen Peng,Denitrifyingphosphorus removal and impact of nitrite accumulation on phosphorus removal in acontinuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater. Enzymeand Microbial Technology,2011,48:134–142.
    [95]葛士建,王淑莹,曹旭,等.分段进水脱氮除磷工艺中反硝化除磷的实现与维持[J].化工学报,2011,62(9):2615-2622.
    [96]王伟,王淑莹,孙亚男.分段进水A/O工艺在低DO下处理生活污水研究[J].中国给水排水,2007,23(21):1-5.
    [97] Yongzhen Peng, Shijian Ge. Enhanced nutrient removal in three types of step feeding processfrom municipal wastewater. Bioresour. Technol.,2011,102:6405-6413.
    [98]WACHTMEISTER A, KUBA T, VAN LOOSDRECHT MCM, et al. A sludgecharacterization assay for aerobic and denitrifying phosphorus removing sludge[J]. Wat. Res.,1997,31(3):471-478.
    [99]张自杰,林荣忱,金儒霖.排水工程[M].四版.北京:中国建筑工业出版社,1999:306-315.
    [100] Metcalf&Eddy,Inc.Wastewater Engineering Treatment and Reuse(Fourth Edition)[M].清华大学出版社,2003.
    [101] KUGLEMAN I J, SPECTOR M, HARVILLA A, et al. Aerobic denitrification in activatedsludge[J]. J. Environ. Eng.,1991,117(2):312-318.
    [102] TONKOVIC Z. Energetic of enhanced biological phosphorus and nitrogen removalprocesses. Wat. Sci. Technol.,1998,38(1):177-184.
    [103] LITTLETON H X, DAIGGER G T, STROM P F, et al. Evaluation of autotrophicdenitrification, heterotrophic nitrification, and PAOs in full scale simultaneous biologicalnutrient removal systems[J]. Wat. Sci. Technol.,2002,46(1-2):305-312.
    [104]Cao Guihua, Wang Shuying, Peng Yongzhen, et al. Biological nutrient removal by applyingmodified four step-feed technology to treat weak wastewater[J]. Bioresour. Technol.,2013,128:604-611.
    [105]Vaiopoulou, E, Aivasidis, A. A modified UCT method for biological nutrient removal:configuration and performance[J]. Chemosphere,2008,72:1062-1068.
    [106]Ge Shijian, Zhu Yunpeng, Lu Congcong, et al. Full-scale demonstration of step-feed conceptfor improving an anaerobic/anoxic/aerobic nutrient removal process[J]. Bioresour. Technol.,2012,120:305-313.
    [107]Elisabeth V Munch, Paul Lant, Jurg Keller. Simultaneous nitrification and denitrification inbench-scale sequencing batch reactors[J]. Wat. Res.,1996,30(2):277-284.
    [108]Third K A, Burnett N, Cord-Ruwisch C. Simultaneous nitrification and denitrificationusing stored substrate(PHB) as the electron donor in an SBR[J]. Biotechnol. Bioeng.,2003,83(6):706-720.
    [109]Spagni A, Marsili-Libelli S. Nitrogen removal via nitrite in a sequencing batch reactortreating sanitary landfill leachate[J]. Bioresour. Technol.,2009,100(2):609-614.
    [110]He Shengbing, Xue Gang, Wang Baozhen. Factors affecting simultaneous nitrification andde-nitrification (SND) and its kinetics model in membrane bioreactor[J]. J. Hazard. Mater.,2009,168(2-3):704-710.
    [111]Joo H S, Hirai M, Shoda M. Piggery wastewater treatment using Alcaligenes faecalis strainNo.4with heterotrophic nitrification and aerobic denitrification[J]. Wat. Res.,2006,40(16):3029-3036.
    [112]杨帅,杨凤林,付志敏.移动床膜生物反应器同步硝化反硝化特性[J].环境科学,2009,30(3):803-808.
    [113]王永才,陈卫,郑晓英,等.生物接触氧化法的同步硝化反硝化影响因素研究[J].中国给水排水,2011,27(7):22-25.
    [114]杨殿海,王峰,夏四清.废水处理工艺中同步硝化/反硝化研究进展[J].上海环境科学,2003,22(12):878-881.
    [115]邹联沛,刘旭东,王宝贞,等. MBR中影响同步硝化反硝化的生态因子[J].环境科学,2001,22(7):51-55.
    [116]Pochana K., Keller J.. Study of factors affecting simultaneous nitrification and denitrification(SND)[J]. Wat. Sci. Technol.,1999,39(6):61-68.
    [117]Holman J. B., Wareham D.G.. COD, ammonia and dissolved oxygen time profiles in thesimultaneous nitrification/denitrification process[J]. Biochemical Engineering Journal,2005,22(2):125-133.
    [118]Ballinger S. J., Head I. M., Curtis T. P., et al. The effect of C/N ratio on ammonia oxidizingbacteria community structure in a laboratory nitrification_denitrification reactor[J]. Wat. Sci.Technol.,2002,46(1-2):543-550.
    [119]赵一宁,汤兵,张忠华,等.利用悬浮填料附着生物膜同步去除碳氮磷[J].环境工程学报,2012,6(12):4553-4558.
    [120]Helmer C.H., Kunst S.. Simultaneous nitrification/denitrification in an aerobic biofilmsystem[J]. Wat. Sci. Technol.,1998,37(4-5):183-187.
    [121]Hyungseok Yoo, Kyu-Hong Ahn, Hyung Jib Lee. Nitrogen removal from syntheticwastewater by simultaneous nitrification and denitrification (SND) via nitrite in anintermittently-areated reaction[J]. Wat. Res.,1999,33(1):145-154.
    [122]Cecen F., Gonenc I. E.. Nitrogen removal characteristic of nitrification and denitrificationfilter[J]. Wat. Sci. Technol.,1994,29(10-11):409-416.
    [123]李绍峰,崔崇威,黄君礼,等. DO和HRT对MBR同步硝化反硝化影响研究[J].哈尔滨工业大学学报,2007,39(6):887-890.
    [124]周丹丹,马放,董双石,等.溶解氧和有机碳源对同步硝化反硝化的影响[J].环境工程学报,2007,1(4):25-28.
    [125] Hellinga C., Schellen A.A.J.C., Mulder J.W., vanLoosdrecht M.C.M., Heijnen J.J.. TheSharon process: an innovative method for nitrogen removal from ammonium-richwastewater[J]. Wat. Sci.Technol.,1998,37(9):135–142.
    [126] Yoo H., Ahn K., Lee H., Lee K., Kwak Y., Song K.. Nitrogen removal from syntheticwastewater by simultaneous nitrification and denitrification(SND) via nitrite in anintermittently aerated reactor[J]. Wat. Res.,1999,33(1):146-154.
    [127] Ruiz G., Jeison D., Rubilar O., Ciudad G., Chamy R.. Nitrification-denitrification via nitriteaccumulation for nitrogen removal from wastewaters[J]. Bioresour. Technol.,2006,97:330-335.
    [128] Blackburne R., Yuan Z.G., Keller J.. Partial nitrification to nitrite using low dissolvedoxygen concentration as the main selection factor[J]. Biodegradation,2008,19(2):303–312.
    [129] Guo J.H., Peng Y.Z., Wang S.Y., et al. Long-term effect of dissolved oxygen on partialnitrification performance and microbial community structure[J]. Bioresour. Tech.,2009,100(11):2796–2802.
    [130] Vadivelu V.M., Keller J., Yuan Z.G.. Free ammonia and free nitrous acid inhibition on theanabolic and catabolic processes of Nitrosomonas and Nitrobacter[J]. Wat. Sci. Technol.,2007,56(7):89-97.
    [131] Peng Y.Z., Zhang S.J., Zeng W., Zheng S.W., Mino T., Satoh H.. Organic removal bydenitritation and methanogenesis and nitrogen removal by nitritation from land fillleachate[J]. Wat. Res.,2008,42(4-5):883-892.
    [132] Park S., Bae W.. Modeling kinetics of ammonium oxidation and nitrite oxidation undersimultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochem.,2009,44(6):631-640.
    [133] Van Kempen R., Mulder J.W., Uijterlinder C.A.. Overview: full scale experience of thesharon process for treatment of rejection water of digested sludge dewatering[J]. Wat.Sci.Technol.,2001,44(1):145-152.
    [134] Grunditz C., Gumaelius L., Dalhammar G.. Comparison of inhibition assays using nitrogenremoving bacteria: application to industrial wastewater[J]. Wat. Res.,1998,32(10):2995-3000.
    [135] Peng Y.Z., Yang Q., Liu X.H., Zeng W., Mino T., Satoh H., Nitrogen removal via nitritefrom municipal wastewater at low temperatures using real-time control to optimize nitrifyingcommunities[J]. Environ. Sci. Technol.,2007,41(23):8159-8164.
    [136] Gao D.W., Peng Y.Z., Li B., Liang H.. Short cut nitrification-denitrification by real-timecontrol strategies[J]. Bioresour.Technol.,2009,100(7):2298-2300.
    [137] Zeng W., Zhang Y., Li L., Peng Y.Z., Wang S.Y.. Control and optimization of nitrifyingcommunities for nitritation from domestic wastewater at room temperatures[J]. EnzymeMicrob. Technol.,2009,45(3):226-232.
    [138] Li H., Yang M., Zhang Y., et al.. Nitrification performance and microbial communitydynamics in a submerged membrane bioreactor with complete sludge retention[J]. Journal ofBiotechnology,2006,123(1):60-70.
    [139]曾薇,王向东,张立东,等. MUCT工艺处理实际生活污水实现亚硝酸型硝化[J].化工学报,2012,63(4):1195-1203.
    [140] Balmelle B.. Study of factors controlling nitrite build-up in biological processes of waternitrification[J]. Wat. Sci. Technol.,1992,26(5/6):1017-1025.
    [141] Anthonisen A.C., Loehr R.C., Prakasam T.B.S.. Inhibition of nitrification by ammonia annitrous acid[J]. J. Wat. Pollut. Control Fed.,1976,48(5):835-852.
    [142] Zhou Y., Pijuan M., Yuan Z.. Free nitrous acid inhibition anoxic phosphorus uptake anddenitrification by poly-phosphate accumulating organisms[J]. Biotechnology andBioengineering,2007,98(4):903-912.
    [143] Vadivelu V.M., Kellur J., Yuan Z.G.. Effect of free ammonia and free nitrous acidconcentration the anabolic and catabolic processes of and enriched Nitrosomonas culture[J].Biotechnol. Bioeng.,2006,95(5):830-839.
    [144] Pollice A., Tandoi W., Lestingi C.. Influence of aeration and sludge retention time onammonium oxidation to nitrite and nitrate[J]. Wat. Res.,2002,36:2541-2546.
    [145] Pai T.Y., Tsai Y.P., Chou Y.J., et al. Microbial kinetic analysis of three different types ofEBNR process[J]. Chemosphere,2005,55(1):109-118.
    [146] Mogens H., Mark C.M., George A., Damir B..污水生物处理—原理、设计与模拟[M].施汉昌,胡志荣,周军等,译.北京:中国建筑工业出版社,2011,151-156.
    [147]娄金生,谢水波,何少华.生物脱氮除磷理论与应用[M].北京:国防科技大学出版社,2003.
    [148]王建华,陈永志,彭永臻.低碳氮比实际生活污水A2O-BAF工艺低温脱氮除磷[J].中国环境科学,2010,30(9):1195-1200.
    [149]王亚宜,彭永臻,王淑莹,等.碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律[J].环境科学,2004,25(4):54-58.
    [150] Plosz B. G., Jobbagy A., Grady C. P. Jr. Factors influencing deterioration of denitrificationby oxygen entering an anoxic reactor through the surface. Wat. Res.,2003,37(4):853-863.
    [151]郑义,孟祥荣,武剑,等. A/O生物脱氮回流液中溶解氧影响因素的研究.燃料与化工,2003,34(5):263-265.
    [152]温沁雪,唐致文,陈志强,等. A2/O工艺好氧末段溶解氧变化对脱氮除磷影响.环境工程学报,2011,5(5):1041-1046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700