用户名: 密码: 验证码:
SnO_2基铁磁性半导体的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化物磁性半导体由于其在自旋电子学方面的潜在应用而成为凝聚态物理的研究热点。对于SnO_2基磁性半导体,不仅过渡金属掺杂的SnO_2,而且没有掺杂的SnO_2都被报道有室温铁磁性。本论文采用基于密度泛函理论的第一性原理的计算软件WIEN2k计算研究了SnO_2基磁性半导体铁磁性的机制。重点研究了氧空位缺陷对铁磁性的作用。对Co掺杂的SnO_2,氧空位不仅能大大增加Co的局域磁矩,并且能导致远距离的Co之间产生长程铁磁耦合作用,计算的自旋分布和电子结构与Coey提出的自选劈裂杂质带模型相符的很好。对Ni掺杂的SnO_2,氧空位使Ni产生磁矩,但并没有使远距离的Ni之间产生长程铁磁耦合作用。对没有掺杂的SnO_2,体SnO_2中形成能较低的缺陷中只有带一个正电荷的氧空位具有磁矩,但它们磁矩的耦合是反铁磁耦合。对于SnO_2 (110)面,正分比和还原表面中的单个氧空位也不能产生磁矩,但我们发现还原表面中包含两个及两个以上面氧空位的复合缺陷可以产生磁矩,而在体SnO_2中的复合氧空位不能产生磁矩。因此我们认为没有任何掺杂的SnO_2薄膜和纳米颗粒的磁性来源于表面的复合氧空位。
Spintronics aims to combine both spin and charge degrees of electrons as the carrier of information. The development of spintronics significantly enriches the condensed matter physics. The material with good prospects to realize the spintronics practice is ferromagnetic semiconductors. So far, research on diluted magnetic semiconductor is one of the hot topics in the world from the view of both basic research and device application. Searching for the semiconductor with high Curie temperature is one of the important points. Oxide semiconductors with wide gap are the host compounds which can realize the high Curie temperature ferromagnetism. SnO_2 is an important oxide semiconductor with a wide band gap. Its excellent optical transparency, metal-like conductivity, and high chemical stability make it a highly multifunctional material with widespread applicabilities. High temperature ferromagnetism was reported in transition metal doped SnO_2 and undoped SnO_2. It was found that the ferromagnetic properties, such as Curie temperature and magnetic moment, are sensitive to the sample preparation methods and conditions. Theoretically, several computational investigations have been reported on the magnetic properties of SnO_2 base semiconductor. However, a consensus on the origin of thhe ferromagnetism in SnO_2 has not yet been reached. Due to the complexity of diluted magnetic semiconductors and limitations of models based on the mean-field theory and obtained by performing first-principles calculations.
     In this dissertation we study the electronic structure and magnetic properties based on SnO_2 host by using first-principles density functional method to get the origin of ferromagnetism. We discussed the effect of dopants, defects and low dimension on the magnetism. All the results of this dissertation have been calculated by the WIEN2k, which is based on full-potential and linearized augmented plane wave basis set. The results are as follows:
     The effects of Co dopants and oxygen vacancies on the electronic structure and magnetic properties of the Co-doped SnO_2 are studied with GGA and GGA+U. The Co atoms favorably substitute on neighboring sites of the metal sublattice. Without oxygen vacancies, the Co atoms are at low spin state, which independent on concentration and distribution of Co atoms, and only the magnetic coupling between nearest-neighbor Co atoms is ferromagnetic. Oxygen vacancies tend to locate near the Co atoms. Their presence strongly increases the local magnetic moments of Co atoms, which depend sensitively on the concentration and distribution of Co atoms. Moreover, oxygen vacancies can induce the long-range ferromagnetic coupling between well-separated Co atoms through the spin-split impurity band exchange mechanism. The addition of effective U Co transforms the ground state of Co-doped SnO_2 to insulating from half-metallic and the coupling between nearest neighbor Co spins to weak antimagnetic from strong ferromagnetic. GGA+ U Co calculations show that the pure substitutional Co defects in SnO_2 can not induce the room-temperature ferromagnetism. Oxygen vacancies tend to locate near Co atoms. Their presence increases the magnetic moment of Co and induces the FM coupling between two Co spins with large Co-Co distance. According to our calculated results oxygen vacancies enhancing the room temperature ferromagnetism observed experimentally can be deduced from three aspects: enlarge the spin-split of Co-3d states; induce a spin-split impurity band, which hybridizes with the Co-3d states at EF; induce charge transfer from impurity states to Co-3d states. By more charge transfer and larger spin split of Co-3d and impurity states, the addition of U Co enhances the ferromagnetic stability of the system with oxygen vacancies and leads the high Curie temperature. These theoretical results testify to the conclusions of the spin-split impurity band model. By applying a Coulomb U O on O 2s orbital, the band gap is corrected for all calculations to study the impact of band-gap underestimation on the ferromagnetic mechanism. The conclusions derived from GGA + UCo calculations are not changed by the correction of band gap.
     For Ni doped SnO_2, Ni itself can not induce magnetism without oxygen vacancies. This is consistent with the experimental results that the ferromagnetism of Ni doped SnO_2 films disappeared after annealed in oxygen rich atmosphere. Oxygen vacancies tend to locate near Ni atoms. Their presence increases the magnetic moment of Ni to 1.4μB/Ni from 0. The oxygen atoms located inside the octahedron of Ni are spin polarized more or less, but the farther Sn and oxygen are not polarized. For that the locate magnetic moments can hardly long-range couple. Calculated results also show that there is nearly no coupling between the farthest Ni ions. The coupling is stronger for Ni ions with nearer distance, but the couple is antiferromagnetic. The addition of U Nimake the couples between Ni transition towards ferromagnetism. The intensity of ferromagnetic coupling between two farthest Ni ions becomes double. However the band-gap correction makes the couples towards antiferromagnetism. From the calculated results we expect the couple between Ni ions flip with the different distance between them. Sure the couple between two Ni ions can be ferromagnetic at some distances.
     The effect of tin interstitial Sni and oxygen vacancy VO on the electronic structure and magnetic properties of undoped SnO_2 is investigated by means of density functional calculations. Only single positively charged O vacancies VO1+ can induce local moments in bulk SnO_2. Self-consistent band gap correction, which is achieved by adding a Coulomb U on O-2s orbital, leads the spin-up gap level of Vo1+ to be fully filled from the partially occupation calculated by GGA. Consequently, the coupling between two Vo1+ becomes antiferromagnetic from ferromagnetic. So a self-consistent band gap correction is essential for the correct description of magnetism in wide-gap SnO_2. These results indicate that O vacancy in bulk SnO_2 can not induce ferromagnetism, while the atoms or defects located at the surface or substrate interface should play a key role in turning the ferromagnetism observed in undoped SnO_2.
     The effect of surface atom, defect and defect complex in the most (110) surface of SnO_2 on the electronic structure and magnetic properties of (110) surface is investigated. The results show the surface terminated with 1-fold coordinated O is magnetic, the main contributor is the 1-fold coordinated O while the 2-fold coordinated O is non spin polarized. Though it is inspiring to find the magnetic atom, but it is inconsistent with the experimental phenomenon. Experiment reported that ferromagnetism appears under O poor atmosphere in undoped SnO_2, however, the 1-fold coordinated O atoms may exist only under O rich atmosphere. So 1-fold coordinated O is not the origin of magnetism observe in undoped SnO_2. Single bridging or in-plane oxygen vacancy in stoichiometric and reduced (110) surface of SnO_2, just as the single oxygen vacancy in bulk SnO_2, can not induce magnetic moment. Moreover, we studied the effect of O vacancy complex on the magnetic properties and found that the in-plane O vacancy complex at reduced (110) surface can induce magnetic moment while the complex can not induce magnetism in bulk SnO_2. So we conclude that the ferromagnetism in undoped SnO_2 origins from the O vacancy complex at surfaces.
     In conclude, except the dopants, the oxygen vacancy plays an important role in the ferromagnetism of Co and Ni doped SnO_2. For undoped SnO_2, both defects and low-dimension play the key role in the ferromagnetism.
引文
[1]Nawroeki M, Planel R, Fishman G, et al. Exchange-Induced Spin-Flip Raman Scattering in a Semimagnetic Semiconductor [J]. Phys. Rev. Lett., 1981, 46:735-738.
    [2]Dietl T and Spatek J, Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron in dilute magnetic semiconductors [J]. Phys. Rev. B, 1983, 28:1548-1563.
    [3]OhnoH, Munekata H, Penney T, et al. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors [J]. Phys. Rev. Lett., 1992, 68:2664-2667.
    [4]Ohno H, Shen A, Matsukura F, et al. Semiclassical quantization of interacting anyons in a strong magnetic field [J]. Phys. Rev. Lett., 1996, 69:363-366.
    [5]Jungwirth T, Wang K Y, Masek J, et al. Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors [J]. Phys. Rev. B, 2005, 72:165204(13).
    [6]Dietl T, Ohno H, Matsukura F, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors [J]. Scienee, 2000, 287:1019-1022.
    [7]Schmidt G, Ferrand D, Molenkamp L W, et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor [J]. Phys. Rev. B, 2000, 62:R4790-R4793.
    [8]Jonker B T, Park Y D, Bennett B R, et al. Robust electrical spin injection into a semiconductor heterostructure, Phys. Rev. B, 2000, 62:8180-8183.
    [9]Matsumoto Y, Murakami M, Shono T, et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide [J]. Science, 2001, 291:854-856.
    [10]Quilty J W, Shibata A, Son J Y, et al. Signature of Carrier-Induced Ferromagnetism in Ti1-xCoxO2- : Exchange Interaction between High-Spin Co2+ and the Ti 3dConduction Band [J]. Phys. Rev. Lett., 2006, 96:027202(4).
    [11]Griffin K A, Pakhomov A B, Wang C M, et al. Intrinsic Ferromagnetism in Insulating Cobalt Doped Anatase TiO2 [J]. Phys. Rev. Lett., 2005, 94:157204(4).
    [12]Ueda K, Tabata H, Kawai T, et al. Magnetic and electric properties of transition-metal-doped ZnO films [J]. Appl. Phys. Lett., 2001, 79:988-990.
    [13]Sato K, Katayama-Yoshida H, Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors [J]. Jpn. J. Appl. Phys., 2000, 39:L555-L558.
    [14]Sato K, Katayama-Yoshida H, Materials Design of Transparent and Half-Metallic Ferromagnets in V- or Cr-Doped ZnS, ZnSe and ZnTe without P- or N-type Doping Treatment [J]. Jpn. J. Appl. Phys., 2001, 40: L651-L653.
    [15]Wakano T , Fujimura N , Morinaga Y, et al. Magnetic and magneto-transport properties of ZnO:Ni films [J]. Physica E, 2001, 10:260-264.
    [16]Kimura H, Fukumura T, Kawasaki M, et al. Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO_2 [J]. Appl. Phys. Lett., 2002, 80: 94-96.
    [17]Ogale S B, Choudhary R J, Buban J P, et al. High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO_2-δ[J]. Phys. Rev. Lett., 2003, 91:077205(4).
    [18] Hong N H, Sakai J, Ferromagnetic V-doped SnO_2 thin films [J]. Physica B, 2005, 358:265-268.
    [19] Zhang J, Skomski R, Yue L P, Lu Y F, et al. Structure and magnetism of V-doped SnO_2 thin films: effect of the substrate [J]. J. Phys.: Condens. Matter, 2007, 19:256204(6).
    [20] Fitzgerald C B, Venkatesan M, Dorneles L S, Magnetism in dilute magnetic oxide thin films based on SnO_2 [J]. Phys. Rev. B, 2006, 74:115307(10).
    [21] Hong N H, Sakai J, Prellier W, et al. Transparent Cr-doped SnO_2 thin films: ferromagnetism beyond room temperature with a giant magnetic moment [J]. J.Phys.: Condens. Matter, 2005, 17:1697-1702.
    [22] Wang W D, Wang Z J, Hong Y J, et al. Structure and magnetic properties of Cr/Fe-doped SnO_2 thin films [J]. J. Appl. Phys., 2006, 99:08M115(3).
    [23] Fitzgerald C B, Venkatesan M, Douvalis A P, et al. SnO_2 doped with Mn, Fe or Co: Room temperature dilute magnetic semiconductors [J]. J. Appl. Phys., 2004 95:7390-7392.
    [24] Gopinadhan K, Kashyap S C, Pandya D K and Chaudhary S, High temperature ferromagnetism in Mn-doped SnO_2 nanocrystalline thin films [J]. J. Appl. Phys., 2007 102:113513(8).
    [25] Schoenes J, Pelzer U, Menzel D, et al. Ferromagnetism in Fe and Co-implanted SnO_2 films [J]. Phys. Stat. Sol. (c), 2006, 3:4115-4118.
    [26]Adhikari R, Das A K, Karmakar D, et al. Structure and magnetism of Fe-doped SnO_2 nanoparticles [J]. Phys. Rev. B., 2008, 78:024404(9).
    [27]Coey J M D, Douvalis A P, Fitzgerald C Band Venkatesan M, Ferromagnetism in Fe-doped SnO_2 thin films [J]. Appl. Phys. Lett., 2004, 84:1332-1334.
    [28]Punnoosea A and Hays J, Possible metamagnetic origin of ferromagnetism in transition-metal-doped SnO_2 [J]. J. Appl. Phys., 2005, 97:10D321(3).
    [29]Punnoose A, Hays J, Thurber A, Engelhard M H, Kukkadapu R K, Wang C, Shutthanandan V and Thevuthasan S. Development of high-temperature ferromagnetism in SnO_2 and paramagnetism in SnO by Fe doping [J]. Phys. Rev. B, 2005, 72:054402(14).
    [30] Punnoose A, Reddy K M, Hays J, Thurber A, Engelhard M H, Magnetic gas sensing using a dilute magnetic semiconductor [J]. Appl. Phys. Lett., 2006, 89:112509(3).
    [31] Hong N H, Ruyter A, Prellier W, Sakai J and Huong N T, Magnetism in Ni-doped SnO_2 thin films [J]. J. Phys.: Condens. Matter, 2005, 17:6533-6538.
    [32]Hong N H, Sakai J, Huong N T, Poirot N and Ruyter A, Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films [J]. Phys. Rev. B, 2005, 72:045336(5).
    [33] Archer P I, Gamelin D R, Controlled grain-boundary defect formation and its role inthe high-Tc ferromagnetism of Ni2+:SnO_2 [J]. J. Appl. Phys., 2006, 99:08M107(3).
    [34] Archer P I, Radovanovic P V, Heald S M, et al. Low-Temperature Activation and Deactivation of High-Curie-Temperature Ferromagnetism in a New Diluted Magnetic Semiconductor: Ni2+-Doped SnO_2 [J]. J. AM. CHEM. SOC., 2005, 127:14479-14487.
    [35]Lussier A, Dvorak J, Idzerda Y U, Ogale S B, Shinde S R, Choudary R J and Venkatesan T, Comparative x-ray absorption spectroscopy study of Co-doped SnO_2 and TiO2 [J]. J. Appl. Phys., 2004, 95:7190-7191.
    [36]Gopinadhan K, Pandya D K, Kashyap S C and Chaudhary S, Cobalt-substituted SnO_2 thin films: A transparent ferromagnetic semiconductor [J]. J. Appl. Phys., 2006, 99:126106(3).
    [37]Punnoose A, Hays J, Gopal V and Shutthanandan V, Room-temperature ferromagnetism in chemically synthesized Sn1?xCoxO2 powders [J]. Appl. Phys. Lett., 2004, 85:1559-1561.
    [38]Hays J, Punnoose A, Baldner R, Engelhard M H, Peloquin J and Reddy K M, Relationship between the structural and magnetic properties of Co-doped SnO_2 nanoparticles [J]. Phys. Rev. B, 2005, 72:075203(7).
    [39]Batzill M, Burst J M and Diebold U, Pure and cobalt-doped SnO_2(101) films grown by molecular beam epitaxy on Al2O3 [J]. Thin Solid Films, 2005, 484:132-139.
    [40] Liu X F, Sun Y and Yu R H, Role of oxygen vacancies in tuning magnetic properties of Co-doped SnO_2 insulating films [J]. J. Appl. Phys., 2007, 101:123907(6).
    [41]Srinivas K, Vithal M, Sreedhar B, Manivel Raja M, et al. Structural, Optical, and Magnetic Properties of Nanocrystalline Co Doped SnO_2 Based Diluted Magnetic Semiconductors [J]. J. Phys. Chem. C, 2009, 113:3543-3552.
    [42]Punnoose A, Engelhard M H, Hays J, Dopant distribution, oxygen stoichiometry and magnetism of nanoscale Sn0.99Co0.01O2 [J]. Solid State Commun., 2006, 139:434-438.
    [43]Misra S K, Andronenko S I, Reddy K M, Hays J and Punnoose A, Magnetic resonance studies of Co2+ ions in nanoparticles of SnO_2 processed at different temperatures [J]. J. Appl. Phys., 2006, 99:08M106(3).
    [44]Liu X F and Yu R H, Mediation of room temperature ferromagnetism in Co-doped SnO_2 nanocrystalline films by structural defects [J]. J. Appl. Phys., 2007, 102:083917(5).
    [45]Bouaine A, Brihi N, Schmerber G, Ulhaq-Bouillet C, Colis S and Dinia A, Structural, Optical, and Magnetic Properties of Co-doped SnO_2 Powders Synthesized by the Coprecipitation Technique [J]. J. Phys. Chem. C., 2007, 111:2924-2928.
    [46]Gopinadhan K, Kashyap S C, Pandya D K and Chaudhary S, Evidence of carrier mediated room temperature ferromagnetism in transparent semiconducting Sn1?xCoxO2?δthin films [J]. J. Phys.: Condens. Matter, 2008, 20:125208(6).
    [47]Kravets V G and Poperenko L V, Magnetic ordering effects in the Raman spectra of Sn1?xCoxO2 [J]. J. Appl. Phys., 2008, 103:083904(6).
    [48]Chambers S A, Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics [J]. Surface Science Reports, 2006, 61:345-381.
    [49]Jun He, Shifa Xu, Young K. Yoo, Qizhen Xue, et al. Room temperature ferromagnetic n-type semiconductor in .(In1-xFex)2O3?δ[J]. Appl. Phys. Lett., 2005, 86:052503(3).
    [50]Akai H, Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor (In, Mn)As [J]. Phys. Rev. Lett., 1998, 81:3002-3005.
    [51]Venkatesan M, Fitzgerald C B, Lunney J G. and Coey J M D, Anisotropic Ferromagnetism in Substituted Zinc Oxide [J]. Phys. Rev. Lett., 2004, 93:177206(4).
    [52]Coey J M D, Venkatesan M and Fitzgerald C B, Donor impurity band exchange in dilute ferromagnetic oxides [J], Nat. Mater., 2005, 4:173-179.
    [53]Venkatesan M, Fitzgerald C B, J. M. D. Coey, Unexpected magnetism in a dielectric oxide [J]. Nature, 430:630.
    [54]Hong N H, Poirot N, Sakai J, Evidence for magnetism due to oxygen vacancies in Fe-doped HfO2 thin films [J]. Appl. Phys. Lett., 2006, 89:042503(3).
    [55]Hong N H, Sakai J, Poirot N, et al. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films [J]. Phys. Rev. B, 2006, 73:132404(4).
    [56]Yoon S D, Chen Y, Yang A, Goodrich T L, Zuo X, et al. Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2?δfilms [J]. J. Phys.: Condens. Matter, 2006, 18:L355-L361.
    [57]Sundaresan A, Bhargavi R, Rangarajan N, et al. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides [J]. Phys. Rev. B, 2006, 74:161306(R)(4).
    [58]Hong N H, Sakai J, BrizéV, Observation of ferromagnetism at room temperature in ZnO thin films [J]. J. Phys.: Condens. Matter, 2007 19:036219(6).
    [59]Banerjee S, Mandal M, Gayathri N, Sardar M, Enhancement of ferromagnetism upon thermal annealing in pure ZnO [J]. Appl. Phys. Lett., 2007, 91:182501(3).
    [60]Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, et al. Room temperature ferromagnetism in ZnO films due to defects [J]. Appl. Phys. Lett., 2008, 92:082508(3).
    [61]Hong N H, Poirot N, Sakai J, Ferromagnetism observed in pristine SnO_2 thin films [J]. Phys. Rev. B, 2008, 77:033205(4).
    [62]Abraham D W, Frank M M, Guha S, Absence of magnetism in hafnium oxide films [J]. Appl. Phys. Lett., 2005, 87:252502(3).
    [63]Wang X L, Zeng Z, Zheng X H, Lin H Q, First-principles investigations of Co- and Fe-doped SnO_2 [J]. J. Appl. Phys., 2007 101, 09H104(3).
    [64]Wang X L, Dai Z X, Zeng Z, Search for ferromagnetism in SnO_2 doped with transition metals (V, Mn, Fe, and Co) [J]. J. Phys.: Condens. Matter, 2008, 20, 045214(8).
    [65]Errico L A, Rentería M, Weissmann M, Theoretical study of magnetism in transition-metal-doped TiO2 and TiO2-δ[J]. Phys. Rev. B, 2005, 72:184425(8).
    [66]Gopal P. Spaldin N A, Magnetic interactions in transition-metal-doped ZnO: An ab initio study [J]. Phys. Rev. B, 2006, 74:094418(9).
    [67]Janisch R, Gopal P, Spaldin N A, Transition metal-doped TiO2 and ZnO—present status of the field [J]. J. Phys.: Condens. Matter, 2005, 17:R657-R659.
    [68]Perdew J P, Wang Y, Accurate and simple analytic representation of the electron-gascorrelation energy [J]. Phys. Rev. B, 1992, 45:13244(6).
    [69]Perdew J P, Wang Y, Ernzerhof M, Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett.,1996, 77:3865-3868.
    [70]Du X S, Li Q X, Su H B, Yang J L, Electronic and magnetic properties of V-doped anatase TiO2 from first principles [J]. Phys. Rev. B, 2006, 74:233201(4).
    [71]Hu S J, Yan S C, Zhao M W, Mei L M, First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor [J]. Phys. Rev. B, 2006, 73:245205(7).
    [72]Huang L M, Rosa A L, Ahuja R, Ferromagnetism in Cu-doped ZnO from first-principles theory [J]. Phys. Rev. B, 2006, 74:075206(6).
    [73]Chanier T, Sargolzaei M, Opahle I, et al. LSDA+U versus LSDA: Towards a better description of the magnetic nearest-neighbor exchange coupling in Co- and Mn-doped ZnO [J]. Phys. Rev. B, 2006, 73:134418 (7).
    [74]Lany S, Raebiger H, Zunger A, Magnetic interactions of Cr-Cr and Co-Co impurity pairs in ZnO within a band-gap corrected density functional approach [J]. Phys. Rev. B, 2008, 77:241201(4).
    [75]Raebiger H, Lany S, Zunger A, Control of Ferromagnetism via Electron Doping in In2O3:Cr [J]. Phys. Rev. Lett., 2008, 101:027203(4).
    [76]Walsh A, Silva J L F D, Wei S H, Theoretical Description of Carrier Mediated Magnetism in Cobalt Doped ZnO [J]. Phys. Rev. Lett., 2008, 100:256401(4).
    [77]Michael Snure, Dhananjay Kumar, and Ashutosh Tiwari. Ferromagnetism in Ni-doped ZnO films: Extrinsic or intrinsic? [J]. Applied Physics Letters, 2009, 94: 012510.
    [78]Jun Chen, Guang-Hong Lu, Honghong Cao, et al. Ferromagneti mechanism in Ni-doped anstase TiO2 [J]. Applied Physics Lettes, 2008, 93: 172504.
    [79]Min Sik Park, S. K. Kwon, and B. Min. Electronic strucures of doped anaase TiO2: Ti1-xMxO2(M=Co, Mn, Fe, Ni) [J]. Physical Review B, 2002, 65: 161201.
    [80]Sanchez N, Gallego S, Munoz M C, Magnetic States at the oxygen surfaces of ZnO and Co-doped ZnO [J]. Phys. Rev. Lett., 2005, 101:067206(4).
    [81]Trani F, CausàM, Ninno D, Cantele G and Barone V, Density functional study of oxygen vacancies at the SnO_2 surface and subsurface sites [J]. Phys. Rev. B, 2008, 77:245410(8).
    [82]Blaha P, Schwarz K, Madsen G K H, et al. An augmented plane wave plus local orbitals program for calculating crystal properties [P]. WIEN2k, 2001.
    [83]Wyckoff R W G, Crystal Structures [C], 2nd ed. Interscience, New York, 1963:239.
    [84]Hassan FE H, Alaeddine A, Zoaeter M, et al. J. Mod. Phys. B, 2005, 19: 4081
    [85]Anisimov V I, Gunnarsson O, Density-functional calculation of effective Coulomb interactions in metals [J]. Phys. Rev. B, 1991, 43:7570(5).
    [86]Anisimov V I, Zaanen J, Andersen O K, Band theory and Mott insulator: Hubbard U instead of Stoner I [J]. Phys. Rev. B, 1991, 44:943-954.
    [87]Anisimov V I, Solovyev I V, Korotin M A, et a. Density-functional theory and NiO photoemission spectra [J]. Phys. Rev. B, 1993, 48:16929(6).
    [88]Liechtenstein A I, Anisimov V I, Zaanen J, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators [J]. Phys. Rev. B, 1995, 52:R5467(5).
    [89]Huang L M, Rosa A L, Ahuja R, Ferromagnetism in Cu-doped ZnO from first-principles theory [J]. Phys. Rev. B, 2006, 74:075206(6).
    [90]Hu S, Yan S, Zhao M, Mei L, First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor [J]. Phys. Rev. B, 2006, 73:245205(7).
    [91]Gopal P, Spaldin N A, Magnetic interactions in transition-metal-doped ZnO: An ab initio study [J]. Phys. Rev. B, 2006, 74:094418(9).
    [92]Janisch R, Spaldin N A, Understanding ferromagnetism in Co-doped TiO2 anatase from first principles [J]. Phys. Rev. B, 2006, 73:035201(7).
    [93]K?l?? C, Zunger A, Origins of Coexistence of Conductivity and Transparency in SnO_2 [J]. Phys. Rev. Lett., 2002, 88:095501(4).
    [94] Persson C and Mirbt S 2006 Brazilian Journal of Physics 36 286
    [95] Paudel T R and Lambrecht W R L 2008 Phys. Rev. B 77 205202
    [96]Kover L, Moretty G, Kovacs Z, Sanjines R, Csemy I, Margaritondo G, Palinkas J and Adachi H, High resolution photoemission and Auger parameter studies of electronic structure of tin oxides [J]. J. Vac. Sci. Technol. A, 1995, 13:1382-1388.
    [97] McGuinness C, Stagarescu C B, Ryan P J, Downes J E, Fu D and Smith K E, Influence of shallow core-level hybridization on the electronic structure of post-transition-metal oxides studied using soft X-ray emission and absorption [J]. Phys. Rev. B, 2003, 68:165104(10).
    [98]Elfimov I S, Yunoki S and Sawatzky G A, Possiblea Path to a New Class of Ferromagnetic and Half-Metallic Ferromagnetic Materials [J]. Phys. Rev. Lett., 2002, 89:216403(4).
    [99]Pemmaraju C D and Sanvito S, Ferromagnetism Driven by Intrinsic Point Defects in HfO2 [J], Phys. Rev. Lett., 2005, 94:217205(4).
    [100]Wang Q, Sun Q, Chen G, Kawazoe Y and Jena P, Vacancy-induced magnetism in ZnO thin films and nanowires [J]. Phys. Rev. B, 2008, 77:205411(7).
    [101]Rahman G, García-Suárez V M and Hong S C, Vacancy-induced magnetism in SnO_2: A density functional study [J]. Phys. Rev. B, 2008, 78:184404(5).
    [102]Zuo X, Yoon S, Yang A, Vittoria C and Harris V G, Ab initio calculation on ferromagnetic reduced anatase TiO2-δ[J]. J. Appl. Phys., 2008, 103:07B911(3).
    [103]Osorio-Guillén J, Lany S, Barabash S V and Zunger A, Magnetism without Magnetic Ions: Percolation, Exchange, and Formation Energies of Magnetism-Promoting Intrinsic Defects in CaO [J]. Phys. Rev. Lett., 2006, 96:107203(4).
    [104]Singh A K, Janotti A, Scheffler M and Van de Walle C G, Sources of Electrical Conductivity in SnO_2 [J]. Phys. Rev. Lett., 2008, 101:055502(4).
    [105]Mahadevan P, Zunger A and Sarma D D, Unusual Directional Dependence of Exchange Energies in GaAs Diluted with Mn: Is the RKKY Description Relevant [J]. Phys. Rev. Lett,. 2004, 93:177201(4).
    [106]Matthias Batzill, Ulrike Diebold, The surface and materials science of tin oxide [J]. Progress in Surface Science, 2005, 79:47–154.
    [107]Cox D F, Fryberger T B, Semancik S, Surface reconstructions of oxygen deficient SnO_2 (110) [J]. Surf. Sci., 1989, 224:121-142.
    [108]Oviedo J, Gillan M J, The energetics and structure of oxygen vacancies on the SnO_2 (110) surface [J]. Surf. Sci., 2000, 467:35-48.
    [109]Banerjee S, Mandal M, Gayathri N, et al. Enhancement of ferromagnetism upon thermal annealing in pure ZnO [J]. Appl. Phys. Lett., 2007, 91:182501(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700