用户名: 密码: 验证码:
替代制冷工质在强化管外的冷凝与沸腾传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据蒙特利尔协议,传统的制冷工质R22由于对大气臭氧层具有破坏作用而将禁用。目前,R134a、R410a和R407c作为其替代工质已在制冷空调行业广泛应用。除环保问题外,节能也是制冷空调行业亟待解决的重要问题。冷凝器和蒸发器是制冷空调机组重要的换热设备,其传热性能的高低直接影响到整个机组的效率和能耗水平。节能、节材的重大需求不断推进强化传热技术的发展,并促进了高效冷凝器和蒸发器的开发和应用。
     过去的几十年,德国、美国及日本公司开发出的不同类型强化传热管已在制冷空调行业广泛应用。其中,代表性的管外冷凝强化管是Turbo C管和管外沸腾强化管Turbo B管。本实验室自主开发出了强化管外冷凝传热的花瓣型翅片管(petal-shaped finned tube,简称PF管)及螺旋槽花瓣型翅片管(helical groove petal-shaped finned Tube简称HGPF管),以及不锈钢微翅片管(micro-fin tube,简称MF管)和强化管外沸腾传热的机械加工表面多孔管(mechanically fabricated porous surface tube,简称MFPS管)。本文对制冷工质R22及其替代工质R134a、R410a和R407c在自主研发强化管外的冷凝与沸腾传热进行了实验和理论研究,主要工作包括:
     (1)在饱和温度为39°C时,研究了单组分制冷工质R22和R134a及近共沸混合组分制冷工质R410a在单根光滑管、PF管和HGPF管外的冷凝传热性能。实验制冷工质在PF管和HGPF管外的冷凝传热系数都随壁面过冷度的增大而减小。HGPF管为双面强化传热管,既能强化管外制冷工质的冷凝传热系数,又能强化管内水的对流传热系数,且强化冷凝传热性能优于目前文献报道的Turbo C管。在实验范围内,对于R22、R134a和R410a,HGPF管的总传热系数分别是光管管的5.52~6.04倍、5.25~6.21倍和5.15~5.89倍。通过引入表面张力作用系数,建立了HGPF管的冷凝传热系数关系式,该关系式能较好地计算管外冷凝传热系数值。
     (2)在饱和温度为39°C时,研究了单组分制冷工质R22和R134a及近共沸混合组分制冷工质R410a在三根HGPF管外的冷凝传热性能。对于实验制冷工质,无论是每排管外冷凝传热系数,还是三排管的平均冷凝传热系数,都随壁面过冷度的增大而减小。在相同壁面过冷度条件下,R410a在三排管外的平均冷凝传热系数最大,R134a的平均冷凝传热系数最小。HGPF管存在明显的管束效应影响,基于Nusselt的管束效应公式,建立了HGPF管的管束效应的计算关系式。在相同壁面过冷度条件下制冷工质蒸汽饱和温度为35°C时的管束平均冷凝传热系数高于39°C时的平均冷凝传热系数。
     (3)在蒸汽温度为39°C时,研究了非共沸混合制冷工质R407C在PF管外(包括单管、三排管束以及螺旋隔板冷凝器)的冷凝传热性能。随着壁面过冷度的增加,管外冷凝传热系数也增加,这与单组分及近共沸混合组分制冷工质的冷凝传热现象相反,其原因是非共沸混合制冷工质冷凝过程中存在传质阻力的影响。单管冷凝传热研究表明,PF管的强化因子为4.6~5.35。对于R407C的冷凝,PF管也存在明显的管束效应。在相同热流密度下,螺旋隔板PF管冷凝器的冷凝传热系数是低肋管(Low finned tube,简称LF管)冷凝器的1.56倍左右。建立了螺旋隔板PF管冷凝器和LF管冷凝器的冷凝传热系数关系式,该关系式与实验结果吻合良好。
     (4)针对制冷设备在海水等特殊冷却介质中的应用,开发出不锈钢MF管。在饱和温度为39°C时,研究了单组分及近共沸混合组分制冷工质R22、R134a和R410a在单根MF管外的冷凝传热性能。随着壁面过冷度的增加,冷凝传热系数逐渐减小。制冷工质R134a、R22和R410a在MF管的强化因子分别为2.23~2.81、2.4~3.55和2.65~3.55,强化冷凝传热性能大大小于PF管。
     (5)在饱和(蒸汽)温度为39°C时,研究了制冷工质R22及其替代工质R134a、R410a和R407c在MFPS管束池沸腾传热性能。随着热流密度的增加,制冷工质的沸腾传热系数也增大。在三排管束中,对于制冷工质R22、R134a和R410a,第二排管的沸腾传热最高、其次是第一排管,第三排管最小。对于制冷工质R407c,第二排管的沸腾传热最高、其次是第三排管,第一排管最小。在管束蒸发器中,在相同的热流密度下,R410a沸腾换热传热系数分别是R22和407C的1.25~1.81和6.33~7.02倍。对于R22和R410a,沸腾传热热阻与总热阻的比值分别低于21%和15%,这表明水侧热阻是控制热阻。但对于R407C,沸腾传热热阻与总热阻的比值在55%左右,制冷工质侧热阻比水侧略高。建立了沸腾传热系数与热流密度的关系式,该公式的计算值与实验值吻合良好。在此工作基础上,还完成了双面强化螺旋槽MFPS管满液式蒸发器的性能测试。
According to the Montreal protocol, the traditional refrigerant R22will be definitelyprohibited due to the harm to the Ozone layer. At present, R134a, R410a and R407c arewidely used as substitute refrigerants in the refrigeration and air-conditioning industry.Besides environmental protection problem, energy saving is an important issue that must besolved, too. Condenser and evaporator are the crucial heat exchanger equipments in therefrigeration unit, their heat transfer performances will directly affect the refrigeration unitefficiency and energy consumption. The significant demand for energy and material savingwill continue to promote the development of heat transfer enhancement technique and theapplication of high efficient condenser and evaporator.
     Past several decades, many enhanced heat transfer tubes were developed and used in therefrigeration and air-conditioning industry by some companies in Germany, American andJapan. Turbo C and B tubes were representative condensation and boiling enhanced tubes forheat transfer outside tubes, respectively. Novel condensation heat transfer enhancement tubessuch as petal-shaped finned tube (PF tube), helical groove petal-shaped finned Tube (HGPFtube) and stainless steel micro-fin tube (MF tube) and mechanically fabricated porous surfacetube (MFPS tube) for boiling heat transfer enhancement were autonomously developed by ourgroup. In present work, the experimental and theoretical researches on condensation andboiling heat transfer for refrigerant R22and its substitute refrigerants R134a, R410a andR407c outside novel enhanced tubes were conducted. The main works are summarized asfollowing:
     (1)At saturation temperature of39°C, the condensation heat transfer performance forsingle component refrigerants R22and R134a and azeotropic refrigerant mixture R410a wereconducted outside single smooth, PF and HGPF tubes. The condensation heat transfercoefficients(HTCs) decrease with increasing wall subcooling. HGPF tube is an inside andoutside enhanced tube, it can enhance both condensation heat transfer outside tube andconvective heat transfer for water flowing inside tube,and the condensation heat transferperformance is superior to Turbo C tube reported in the literature. The overall HTCs of R22,R134a and R410a are5.52~6.04,5.25~6.21and5.15~5.89times HGPF tube outside as largeas those of smooth tube, respectively. By inputting the surface tension coefficient, thecorrelation of condensation HTC HGPF tube was built, it could calculate condensation HTC well.
     (2)At saturation temperature of39°C, the condensation heat transfer performance forsingle component refrigerants R22and R134a and azeotropic refrigerant mixture R410a wereconducted outside smooth, PF and HGPF tubes. Both condensation HTC on each row andaverage tube bundle decreased with increasing wall subcooling. At the same wall subcooling,the average condensation HTC was the biggest for R410a, and R134a was the smallest. Thetube row effect was obvious for HGPF tube. Based on Nusselt model, the correlation of tuberow effect was produced. At the same wall subcooling, the average condensation HTC atsaturation temperature of35°C was higher than that of39°C.
     (3)At saturation temperature of39°C,the condensation heat transfer performances onnonazeotropic refrigerant mixture R407c were studied outside single PF tube, three row PFtubes and helical baffle condenser. With increasing the wall subcoolinbg, the condensationHTC increased, this phenomenon was adverse with R134a and R410a, the reason is that themass transfer in vapour phase affected the condensation heat transfer process. The resultshowed that the enhancement factor for single PF tube is4.6~5.35. The tube row effect wasobvious for the PF tube, too. At the same flux, the condensation HTCs of helically baffledcondenser with PF tubes were about1.56times as large as that of helically baffled condenserwith low finned tubes (LF tubes) at the same heat flux. Correlations have been suggested forboth the shell-side condensation HTCs for the two condensers with different tube types andgive very good agreement with experimental results.
     (4)Aimed at the application of sea water as the coolant in refrigeration unit, the novelstainless steel MF tube was developed. At saturation temperature of39°C,the condensationheat transfer performance of R22、R134a and R410a were researched. The condensation HTCdecreased with increasing wall subcooling. The enhancement factors of R134a、R22andR410a were2.23~2.81、2.4~3.55and2.65~3.55, respectively. They were lower than those PFtube.
     (5)At saturation or vaour temperature of39°C,the pool boiling HTCs of R22, R410aand R407c were studied on MFPS tube bundle. It is found that the pool boiling HTC increaseswith increasing the heat flux. In three tube rows, the boiling HTC on the second row was thehighest for R22、R134a and R410a, and it was the lowest for the third row. But for R407c, theboiling HTC on the first row was the lowest. For the evaporator with the MFPS tube bundle,it was found that boiling HTCs for R410a are1.25–1.81times and6.33–7.02times higherthan that for R22and R407c, respectively. The experimental correlations for the pool boiling HTCs of R22, R407c, and R410a on the present enhanced tubes bundle were developed. Thethermal resistance analysis reveals that the thermal resistance of the water side was acontrolling factor for the evaporator for R22and R410a. However, for R407c, the thermalresistance of the refrigerant side was slightly higher than that of the water side. The heattransfer performance of the flooded evaporator with helical groove MFPS tubes was tested.
引文
[1]王志勇,刘泽华.基于建筑环境的空调系统设计及节能分析[J].建筑热能通风空调,2004:54-57
    [2]史琳,朱明善,环保制冷剂研究的现状和趋势[M].第二版.制冷空调新技术进展:上海交通大学出版社,2003
    [3] Mollna M, Rowland F. Stratos pherie sink for chlorofluoromethane: chlorine atomcatalyzed destruction of ozone.[J]. Nature,1974,249:810-812
    [4] Hwang P. An experimental evaluation of flammable and non-flammable high pressureHFC replacements for R22[C]. Proceedings of a1995International RefrigerationConference,1995,Purdue.
    [5] Murphey F. Comparison of R-407C and R410A with R22in a10.5kW(3.0TR)residential central air-conditioner[C]. International CFC and Halon AlternativesConference&Exhibition,1995
    [6] Feldman S. Energy consumption and TEWI conparison of R410A and R22in aresidential heat pump[C]. Proceedings of a International CFC and Halon AlternativeConference,1995,Washington DC.
    [7] Linton J. Conparison of R-407C and R410A with R22in a10.5kW(3.0TR) residentialcentral air-conditioner[C]. Proceedings of a International Refrigeration Conference,1996,Purdue.
    [8] Jung D, Song Y, Park B. Performance des meA langes de frigorigeA nesutiliseA s pourremplacer le HCFC22[J]. International Journal of Refrigeration,2000:466-474
    [9]陈斌,陈光明. R407C, R410A系统热力性能综述[J].制冷,2003,22:24-30
    [10] Zhang Z, Yu Z, Fang X. An experimental heat transfer study for helically flowing outsidepetal-shaped finned tubes with different geometrical parameters[J]. Applied ThermalEngineering,2007,27:268-272
    [11]张正国,王世平,耿建军,邓颂九.非共沸混合工质在水平管束上的冷凝传热及强化[J].化工学报,1996,47:642-644
    [12] Park KJ, Jung D. Optimum fin density of low fin tubes for the condensers of buildingchillers with HCFC123[J]. Energy Conversion and Management,2008,49:2090-2094
    [13] Jung D, Kim CB, Hwang SM, Kim KK. Condensation heat transfer coefficients of R22,R407C, and R410A on a horizontal plain, low fin, and turbo-C tubes[J]. InternationalJournal of Refrigeration,2003,26:485-491
    [14] Jung D, Chae S, Bae D, Yoo G. Condensation heat transfer coefficients of binary HFCmixtures on low fin and Turbo-C tubes[J]. International Journal of Refrigeration,2005,28:212-217
    [15] Jung D. Condensation heat transfer coefficients of binary HFC mixtures on Low fin andTurbo-C tubes[J]. International Journal of Refrigeration,2005,28:212-217
    [16] Jung D. Condensation heat transfer coeffcients of R22, R407C, and R410A on ahorizontal plain, low fin, and turbo-C tubes[J]. International Journal of Refrigeration,2003,26:485-491
    [17]张正国,王世平,林培森.非共沸混合工质在花瓣状翅片管管束上的冷凝强化及传热[J].高校化学工程学报,1998,12:186-188
    [18]张正国,林培森,王世平.花瓣形翅片管的开发及其纵向冲刷冷凝强化传热的研究[J].石油化工设备,1996,25:3-6
    [19]紫铜管[OL]. Available from: http://baike.baidu.com/view/2903393.htm.,2012
    [20] Cheng WY, Wang CC, Hu YZR, Huang LW. Film condensation of HCFC-22onhorizontal enhanced tubes[J]. International Communications in Heat and Mass Transfer,1996,23:79-90
    [21]彭海涛,李芳明,李斌. R22饱和蒸气在水平双侧强化管外冷凝换热的实验研究[J].西安交通大学学报,1997,31:51-56
    [22]周光辉,张定才. R134a在水平强化管外凝结换热的实验研究[J].制冷学报,2006,27:1865-1868
    [23] Kim MH, Shin JS. Condensation heat transfer of R22and R410A in horizontal smoothand microfin tubes[J]. International journal of refrigeration,2005,28:949-957
    [24] Yun R, Heo J, Kim Y. Film condensation heat transfer characteristics of R134a onhorizontal stainless steel integral-fin tubes at low heat transfer rate[J]. InternationalJournal of Refrigeration,2009,32:865-873
    [25] Belghazi M, Bontemps A, Marvillet C. Condensation heat transfer on enhanced surfacetubes: Experimental results and predictive theory[J]. Journal of HeatTransfer-Transactions of the Asme,2002,124:754-761
    [26] Honda H, Takata N, Takamatsu H, Kim JS, Usami K. Effect of fin geometry oncondensation of R407C in a staggered bundle of horizontal finned tubes[J]. Journal ofHeat Transfer-Transactions of the Asme,2003,125:653-660
    [27] Park KJ, Jung D. Condensation heat transfer coefficients of HCFC22, R410A, R407Cand HFC134a at various temperatures on a plain horizontal tube[J]. Journal ofMechanical Science and Technology,2007,21:804-813
    [28]刘文毅,李妩,陶文铨.替代工质R123水平强化单管外凝结换热实验研究[J].现代电力,2005,22:52-55
    [29]成昌锐,王秋旺. R40C在水平单管外凝结换热的实验研究[J].工程热物理学报,2001,22(增刊):50-52
    [30]张正国,文磊,高学农,丁静. R407C水冷冷凝器传热强化的实验研究[J].工程热物理学报,2002,23:482-484
    [31]周兴球.互溶性多组份混合物冷凝及其强化研究[D].广州:华南理工大学,1994
    [32] Rewert LE, Huber JB, Pate MB. A eeffct of R-123condenste inundation and vapourenhanced tube geometries[C]. AHSRAE Transaction102Part2,1996
    [33] Rewert LE, Huber JB, Pate MB. A eeffct of R-134a inundation on enhanced tubegeometries[C]. AHSRAE Transaction102Part2,1996
    [34] Park KJ, Jung D. External condensation heat transfer coefficients of R22alternativerefrigerants on enhanced tubes at three saturation temperatures[J]. Proceedings of theInstitution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2008,222:987-994
    [35]武永强,罗忠. R410A和R22在水平强化管内的蒸发和冷凝性能[J].工程热物理学报,2006,27:292-294
    [36] Wang HS, Honda H. Condensation of refrigerants in horizontal microfintubes-comparison of prediction methods for heat transfer[J]. Int. J. of Refrig.,2003,26:452-460
    [37]张兵,揭基华. R22饱和蒸汽在C-S水平管外凝结换热的实验研究[J].制冷与空调,2006,6:75-77
    [38]陈建红,欧阳新萍,熊高鹏,姜涛,薛娜.几种管外凝结强化管的传热试验及分析[J].制冷与空调,2008,8:71-74,43
    [39]洪思雯,欧阳新萍,贾传林,陈建红.一种冷凝强化换热管传热性能的试验研究[J].制冷学报,2009,30:30-34
    [40] Park KJ, Jung D. Optimum fin density of low fin tubes for a condensers of buildingchillers with HCFC123[J]. Energy Conversion and Management,2008,49:2090-2094
    [41]不锈钢管[OL]. Available from: http://baike.baidu.com/view/959229.htm.,2010
    [42]钛管[OL]. Available from: http://baike.baidu.com/view/2950285.htm.,2012
    [43]白铜管[OL]. Available from: http://baike.baidu.com/view/5032554.htm.,2012
    [44] Zhang H, Li J, Wang B. Experimental investigation on condensation heat transfer of R22and R410a in microtubes[J]. Chinese Journal of Mechanical Engineering,2008,44:70-74
    [45]江海,曾东平,邓东海,梁平,龙新峰,庄礼贤,陈广怀.钢螺旋槽管冷凝换热的研究与应用[J].广东电力,2000:1-5
    [46] Rin Y, Jaehyeok H, Yongchan K. Film condensation heat transfer characteristics ofR134a on horizontal stainless steel integral-fin tubes at low heat transfer rate[J].International Journal of Refrigeration,2009,32:865-873
    [47] Fernández Seara J, Uhía FJ, Diz R. Experimental analysis of ammonia condensation onsmooth and integral-fin titanium tubes[J]. International Journal of Refrigeration,2009,32:1140-1148
    [48] Fernández Seara J, Uhía FJ, Diz R, Dopazo A. Condensation of R-134a on horizontalintegral-fin titanium tubes[J]. Applied Thermal Engineering,2010,30:295-301
    [49] Fernández Seara J, Uhía FJ, Diz R, Dopazo JA. Vapour condensation of R22retrofitsubstitutes R417A, R422A and R422D on CuNi turbo C tubes[J]. International Journal ofRefrigeration,2010,33:148-157
    [50] Zhang DC, Ji WT, Tao WQ. Condensation heat transfer of HFC134a on horizontal lowthermal conductivity tubes[J]. International Communications in Heat and Mass Transfer,2007,34:917-923
    [51] Al Dadah R, TG K. Passive enhancement of condensation heat transfer[J]. AppliedThermal Engineering,1998,18:895-909
    [52] Webb RL, Murawski C. Row effect for R-11condensation on enhanced tubes[J]. Journalof Heat Transfer (Transactions of the ASME (American Society of MechanicalEngineers), Series C);(United States),1990,112:768-776
    [53] Honda H, Uchima B, Nozu S, Torigoe E, Imai S. Film condensation of R-113onstaggered bundles of horizontal finned tubes[J]. Journal of Heat Transfer (Transactions ofthe ASME (American Society of Mechanical Engineers), Series C);(United States),1992,114:598-599
    [54] Honda H, Uchima B, Nozu S, Nakata H, Torigoe E. Film condensation of R-113onin-line bundles of horizontal finned tubes[J]. Journal of Heat Transfer (Transactions ofthe ASME (American Society of Mechanical Engineers), Series C);(United States),1991,113:569-579
    [55] Cheng W, Wang C. Condensation of R-134a on enhanced tubes[J]. ASHRAETransactions,1994,100:809-817
    [56] Huber JB, Rewerts LE, Pate MB. Shell-side condensation heat transfer of R-134a-partIII: comparison with R-12[J]. ASHRAE Transactions,1994,676:697-708
    [57] Huber JB, Rewerts LE, Pate MB. Shell-side condensation heat transfer of R-134a-partII: enhanced tube performance[J]. ASHRAE Transactions,1994,56:242-68
    [58] Huber JB, Rewerts LE, Pate MB. Shell-side condensation heat transfer of R-134a-part I:finned-tube performance[J]. ASHRAE Transactions,1994,56:236-245
    [59] Honda H, Takamatsu H, Takata N. Experimental measurements for condensation ofdownward-flowing R123/R134a in a staggered bundle of horizontal low-finned tubeswith four fin geometries[J]. International Journal of Refrigeration,1999,22:615-624
    [60] Eckels S. Effects of inundation and miscible oil upon condensation heat transferperformance of R-134a[J]. ASHRAE report,2002,984
    [61] Honda H, Takata N, Takamatsu H, Kim J, Usami K. Condensation of downward-flowingHFC134a in a staggered bundle of horizontal finned tubes: effect of fin geometry[J].International Journal of Refrigeration,2002,25:3-10
    [62] Randall DL, Eckels SJ. Effect of inundation upon condensation heat transferperformance of R-134a: PartⅡ-Results[J]. International Journal of HVAC&RResearch,2005,11:543-562
    [63] Randall DL, Eckels SJ. Effect of iinundation upon condensation heat transferperformance of R-134a: Part I-Facility overview and data analysis[J]. InternationalJournal of HVAC&R Research,2005,11:527~554
    [64] Gstoehl D, Thome J. Film Condensation of R-134a on Tube Arrays With Plain andEnhanced Surfaces: Part I—Experimental Heat Transfer Coefficients[J]. Journal of HeatTransfer,2006,128:21-29
    [65] Gstoehl D, Thome J. Film Condensation of R-134a on Tube Arrays With Plain andEnhanced Surfaces: Part II—Empirical Prediction of Inundation Effects[J]. Journal ofHeat Transfer,2006,128:33-42
    [66] Christians M, Habert M, Thome JR. Film Condensation of R-134a and R-236fa, Part2:Experimental Results and Predictive Correlation for Bundle Condensation on EnhancedTubes[J]. Heat Transfer Engineering,2010,31:809-820
    [67] Hassan A. Effect of tube arrangement and condensate flow rate on the pressure loss forcross flow of steam in small tube bundle[J]. Energy Conversion and Management,2010,51:703-709
    [68]马志先,张吉礼,孙德兴. HFC245fa水平光管与强化管管束外冷凝换热[J].化工学报,2010,51:1097-1106
    [69]马志先,张吉礼,孙德兴. V型导液槽对HFC245fa水平管束外冷凝换热影响[J].化工学报,2011,52:32-40
    [70] Ji WT, Zhao CY, Zhang DC, He YL, Tao WQ. Influence of condensate inundation onheat transfer of R134a condensing on three dimensional enhanced tubes and integral-fintubes with high fin density[J]. Applied Thermal Engineering,2012,38:151-159
    [71]陈海波.非共沸混合工质的冷凝强化传热研究[J].化工进展,2001,12:8-11
    [72] Lee JH, Bae SW. Experimental and numerical research on condenser performance forR-22and R-407Crefrigerants[J]. International Journal of Refrigeration,2002,25:372-382
    [73] Sajjan D, Karlsson T. Reasons for drop in shell-and-tube condenser performance Whenreplacing R22with zeotropic mixtures.Part1.Analysis of experimental findings[J].International Journal of Refrigeration,2004,24:552-560
    [74] Belghazi M, Bontemps A, Marvillet C. Filmwise condensation of a pure fluid and abinary mixture in a bundle of enhanced surface tubes[J]. International Journal of ThermalSciences,2002,41:631-638
    [75] Belghazi M, Bontemps A, C.Marvillet. Condensation heat hransfer on enhanced surfacetubes: experimental results and predictive aory[J]. Journal of Heat Transfer,2002,124:754-761
    [76] Honda H, Takata N, H. T, Kim JS, Usami KG. Effect of fin geometry on condensation ofR407C in a staggered bundle of horizontal finned tubes[J].2003,125:8
    [77] Honda H, Takata N, Takamatsu H. Condensation of downward-flowing HFC-134a in astaggered bundle of horizontal finned tubes: eeffct of fin geometry[J]. InternationalJournal of Rerfigeration,2002,25:3-10
    [78] Nusselt W. Die Oberfl chenkondensation des Wasserdampfes Z[J]. Z. Ver. Dt. Ing,1916,60:541
    [79]赵镇南,传热学[M].高等教育出版社,2008:301-316
    [80] Rohsenow W. Heat transfer and temperature distribution in laminar film condensation[J].Trans. Asme,1956,25:1645-1648
    [81] Sparrow E, Gregg J. A boundary layer treatment of laminar film condensation[J]. HeatTransfer,1959,81:13-18
    [82] Kern DQ. Mathematical development of tube loading in horizontal condensers[J]. AIChEJournal,1958,4:157-160
    [83] Marto P. An evaluation of film condensation on horizontal integral-fin tubes[J]. Journalof Heat Transfer,1988,110:1287
    [84] Katz D, Geist J. Condensation on six finned tubes in a vertical row[J]. Trans. Asme,1948,70:907-914
    [85] Beatty KO, Katz DL. Condensation of vapours on outside of finned tubes[J]. ChemicalEngineering Progress,1948,44:55-70
    [86] Karkhu VA, Borovkov VP. Film condensation of vapour at finely-finned horizontaltubes[J]. Heat Transfer-Soviet Research,1971:183-191
    [87] Sardesai RG, Owen RG, Smith RA. Gravity controlled condensation and horizontallow-fin tube[J]. Condensers: theory and practice. Symposium,1983,75:415-428
    [88] Rose JW. An approximate equation for a vapour-side heat transfer coefficient forcondensation on low-finned tubes[J]. International Journal of Heat and Mass Transfer,1994,37:865-875
    [89] Briggs A, Rose JW. Effect of fin efficiency on a model for condensation heat transfer ona horizontal integral-fin tube[J]. International Journal of Heat and Mass Transfer,1994,37:457-463.
    [90] Kumar R, Varma HK, Agrawal KN, Mohanty B. A comprehensive study of modifiedwilson plot technique to determine the heat transfer coefficient during condensation ofsteam and R-134a over single horizontal plain and finned tubes[J]. Heat TransferEngineering,2001,22:3-12
    [91]黄万鹏,马虎根,罗行,白健美.水平冷凝强化管传热性能实验数据处理方法[J].上海理工大学学报,2009,31:336-340
    [92]王学印,王凯,张玲. R134a在水平直齿外翅片管表面冷凝传热实验研究[J].制冷学报,2006,27:1865-1868
    [93] Chamra LM, J.Mago P. Modeling of condensation heat transfer of refrigerant mixture inmicro-fin tubes[J]. International Journal of Heat and Mass Transfer,2006,49:1915-1921
    [94] Karlsson T, Vamling L. Reasons for drop in shell-and-tube condenser performanceWhenreplacing R22withz eotropic mixtures. Part2: investigation of mass transfer resistanceeffects[J]. International Journal of Refrigeration,2004,27:561-566
    [95]王晓璐.螺旋槽管在冷凝器中的应用[J].郑州纺织工学院学报,1995,6:15-20
    [96]顾红芳,孙丹,章燕谋.水平螺旋管外V型槽强化冷凝换热的理论研究[J].西安交通大学学报,1997,33:57-61
    [97]陈民,陶文铨.非共沸混合工质膜状凝结小温差工况的研究[J].西安交通大学学报,1994,26:74-79
    [98] Jakob M, Linke W. Der W rmeübergang von einer waagerechten Platte an siedendesWasser[J]. Forschung im Ingenieurwesen,1933,4:75-81
    [99] Bajorek SM, Lloyd JR, Thome JR, Evaluation of multicomponent pool boiling heattransfer coefficients, Proc.9th Int. Heat Transfer Conf.,1990,39-44
    [100] Thome JR, Enhanced boiling heat transfer[M]. New York: Hemisphere.1990.
    [101] Trewin R. Enhanced boiling heat transfer in horizontal tube bundles[R]. Heat TransferLaboratory Report,1992
    [102] Gorgy E, Eckels S. Local heat transfer coefficient for pool boiling of R-134a and R-123on smooth and enhanced tubes[J]. International Journal of Heat and Mass Transfer,2012,55:3021-3028
    [103] Zhu Y, Hu H, Ding G, Peng H, Huang X, Zhuang D, Yu J. Influence of oil on nucleatepool boiling heat transfer of refrigerant on metal foam covers[J]. International Journalof Refrigeration,2011,34:509-517
    [104] Peng H, Ding G, Hu H, Jiang W, Zhuang D, Wang K. Nucleate pool boiling heattransfer characteristics of refrigerant/oil mixture with diamond nanoparticles[J].International Journal of Refrigeration,2010,33:347-358
    [105] Ji WT, Qu ZG, Li ZY, Guo JF, Zhang DC, Tao WQ. Pool boiling heat transfer of R134aon single horizontal tube surfaces sintered with open-celled copper foam[J].International Journal of Thermal Sciences,2011,50:2248-2255
    [106] Gorenflo D, Baumh gger E, Windmann T, Herres G. Nucleate pool boiling, film boilingand single-phase free convection at pressures up to the critical state. Part I: Integral heattransfer for horizontal copper cylinders[J]. International Journal of Refrigeration,2010,33:1229-1250
    [107] Gorenflo D, Chandra U, Kotthoff S, Luke A. Influence of thermophysical properties onpool boiling heat transfer of refrigerants[J]. International Journal of Refrigeration,2004,27:492-502
    [108] Gorenflo D. State of the art in pool boiling heat transfer of new refrigerants[J].International Journal of Refrigeration,2001,24:6-14
    [109] Yang SW, Jeong J, Kang YT. Experimental correlation of pool boiling heat transfer forHFC134a on enhanced tubes: Turbo-E[J]. International Journal of Refrigeration,2008,31:130-137
    [110] Chen Y, Groll M, Mertz R, Kulenovic R. Pool boiling heat transfer of propane,isobutane and their mixtures on enhanced tubes with reentrant channels[J]. InternationalJournal of Heat and Mass Transfer,2005,48:2310-2322
    [111]吴汝胜,岑汉钊,钱颂文,周兴求.太阳棒针翅管的传热模型及数值解[J].石油化工设备,1997,26:3-7
    [112]刘启斌,何雅玲,张定才,陶文铨. R123在水平双侧强化管外池沸腾换热[J].化工学报,2006,57:251-257
    [113]刘启斌,何雅玲,张定才,陶文铨. R22在水平双侧强化管外池沸腾换热[J].化学工程,2006,36:12-16
    [114] Hsieh S-S, Weng C-J. Nucleate pool boiling from coated surfaces in saturated R-134aand R-407c[J]. International Journal of Heat and Mass Transfer,1997,40:519-532
    [115] Tatara RA, Payvar P. Pool boiling of pure R134a from a single Turbo-BII-HP tube[J].International Journal of Heat and Mass Transfer,2000,43:2233-2236
    [116] Jung DS, An KY, Park J. Nucleate boiling heat transfer coefficients of HCFC22,HFC134a, HFC125, and HFC32on various enhanced tubes[J]. International Journal ofRefrigeration-Revue Internationale Du Froid,2004,27:202-206
    [117] Chien L-H, Tsai Y-L. An experimental study of pool boiling and falling filmvaporization on horizontal tubes in R-245fa[J]. Applied Thermal Engineering,2011,31:4044-4054
    [118]李芳明,李沛文,李妩,陶文铨.新工质R134a在水平强化管外的池沸腾换热[J].西安交通大学学报,1993,32:60-64
    [119]刘文毅,李妩,陶文栓.替代工质HCFC123管外沸腾换热实验研究[J].华北电力大学学报,2005,32:40-44
    [120]杨光耀,张胜华,李小利,陆林军,郎雪球.水平双侧强化管单管在R134a中的池沸腾传热实验研究[J].制冷学报,2007,28:26-33
    [121]刘贞贞,赵镇南.机械加工表面多孔管外池核沸腾实验研究[J].石油化工设备,2006,35:21-25
    [122] Ribatski G, Thome JR. Nucleate boiling heat transfer of R134a on enhanced tubes[J].Applied Thermal Engineering,2006,26:1018-1031
    [123] Kim NH, Choi KK. Nucleate pool boiling on structured enhanced tubes having poreswith connecting gaps[J]. International Journal of Heat and Mass Transfer,2001,44:17-28
    [124] Jung D, Kim Y, Ko Y, Song K. Nucleate boiling heat transfer coefficients of purehalogenated refrigerants[J]. International Journal of Refrigeration,2003,26:240-248
    [125] Yu CK, Lu DC. Pool boiling heat transfer on horizontal rectangular fin array insaturated FC-72[J]. International Journal of Heat and Mass Transfer,2007,50:3624-3637
    [126] Hohl R, Blum J, Buchholz M, Lüttich T, Auracher H, Marquardt W. Model-basedexperimental analysis of pool boiling heat transfer with controlled wall temperaturetransients[J]. International Journal of Heat and Mass Transfer,2001,44:2225-2238
    [127] Kiyoshi S, Sunao K, Sg H. Dynamic characteristics of the generator for absorptionrefrigerator(1st report, pool Boiling type Generator).[J]. Transactions of the JapanSociety of Mechanical Engineers. B,1999,65:1068-1075
    [128] Nakajima Ki, Akira S. Experimental study on the performance of a flooded typeevaporator[J]. Heat Transfer-Japanese Research,1975,4:49-66
    [129] Webb RL. Donald Q. Kern lecture award paper: odyssey of the enhanced boilingsurface[J]. Transactions of the ASME. Journal of Heat Transfer,2004,126
    [130] Gao X, Yin H, Huang Y, Fang Y, Zhang Z. Nucleate pool-boiling enhancement outside ahorizontal bank of twisted tubes with machined porous surface[J]. Applied ThermalEngineering,2009,29:3212-3217
    [131]朱长新,陈学俊,张鸣远,周芳德,温志敏.强化表面管束池沸腾传热的实验研究[J].西安交通大学学报,1994,28:114-120
    [132] Groll M, Mertz R. Improved evaporation heat transfer surfaces for cost-effectivecompact heat exchangers for the process industries[J]. Applied Thermal Engineering,1997,17:685-703
    [133]杨少华,王世平,高学农. CFCs替代工质R134a在水平管束外池沸腾传热[J].高校化学工程学报,1998,12:226-230
    [134] Memory SB, Sugiyama DC, Marto PJ. Nucleate pool boiling of R-114and R-114-oilmixtures from smooth and enhanced surfaces? I. Single tubes[J]. International Journalof Heat and Mass Transfer,1995,38:1347-1361
    [135] Webb RL, Kim NH, Principl of enhanced heat transfer[M]: Taylor&Francis Group.1994.
    [136] Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling[J].International Journal of Heat and Mass Transfer,1980,23:73-87
    [137] Schlunder EU. Heat transfer in nucleate boiling of mixtures[J]. Journal Name: Int.Chem. Eng.;(United States); Journal Volume:23:4,1983: Medium: X; Size: Pages:589-599
    [138] Wijk WRV, Vos AS, Stralen SJDV. Heat transfer to boiling binary liquid mixtures[J].Chemical Engineering Science,1956,5:68-80
    [139]王世平.混合工质沸腾,冷凝传热研究的最新进展(Ⅰ)沸腾传热[J].广州化工,1993
    [140] Nal HC. An analytic study of boiling heat transfer from a fin[J]. International Journal ofHeat and Mass Transfer,1987,30:341-349
    [141] Thome JR, Ribatski G, Enhanced boiling heat transfer,2006
    [142] Fujita Y, Ohta H, Uchida S, Nishikawa K. Nucleate boiling heat transfer and criticalheat flux in narrow space between rectangular surfaces[J]. International Journal of Heatand Mass Transfer,1988,31:229-239
    [143]熊剑.不同制冷工质在螺旋槽花瓣形翅片管管外的的冷凝传热强化研究[D].广州:华南理工大学,2010
    [144]杨世铭,陶文铨,传热学[M], ed.4.北京:高等教育出版社.2006
    [145] Kline SJ, McClintock F. Describing uncertainties in single-sample experiments[J].Mechanical engineering,1953,75:3-8
    [146] Wilson EE. A basis for rational design of heat transfer apparatus[J]. ASME J. HeatTransfer,1915:47-82
    [147]梁晋文,陈林才,何贡.误差理论与数据处理[M]:中国计量出版社,989
    [148]吕崇德.热工参数测量与处理(第二版)[M]:清华大学出版社,2001
    [149]吴道娣.非电量电测技术(第二版)[M].西安交通大学出版社,2001:17-35
    [150] Kumar R, Varma H, Mohanty B, Agrawal K. Prediction of heat transfer coefficientduring condensation of water and R-134a on single horizontal integral-fin tubes[J].International Journal of Refrigeration,2002,25:111-126
    [151] Wanniarachchi A, Marto P, Rose J. Film condensation of steam on horizontal finnedtubes: effect of fin spacing[J]. Journal of Heat Transfer,1986,108:960-968
    [152] Jung D, Kwangyong A, Jinseok P. Nucleate boiling heat transfer coefficients ofHCFC22, HFC134a, HFC125, and HFC32on various enhanced tubes[J]. InternationalJournal of Refrigeration,2004,27:202-206
    [153]王世平,廖西江,邓项九,谭盈科.锯齿形翅片管强化冷凝给热的实验研究及其准则方程[J].工程热物理学报,1984,5:374-377
    [154] Zhang ZG, Li QX, Xu T, Fang XM, Gao XN. Condensation heat transfer characteristicsof zeotropic refrigerant mixture R407C on single, three-row petal-shaped finned tubesand helically baffled condenser[J]. Applied Thermal Engineering,2012,39:63-69
    [155]王秋旺,罗来勤,曾敏,王良,陶文铨,黄彦平.交错螺旋折流板管壳式换热器壳侧传热与阻力性能[J].化工学报,2005.04,56:598-601
    [156] Li QX, Zhang ZG, Gao XN. Experimental study on pool boiling heat transfer for R22,R407c, and R410a on a horizontal tube bundle with enhanced tubes[J]. Heat TransferEngineering,2011,32:943-948
    [157]杨少华,高学农,王世平,R142b在水平管束外池沸腾实验研究,制冷学报[J],1999,3:1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700