用户名: 密码: 验证码:
板坯连铸二次冷却过程仿真及工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸过程的二冷控制是稳定和提高铸坯质量的关键环节。准确把握连铸坯传热/凝固进程,实时、合理调控连铸坯二冷工艺,是高效连铸技术对于过程控制的基本要求,围绕铸坯二次冷却的数值计算、工艺优化、过程检测等理论与技术方法进行研究,具有重要的理论意义和应用价值。
     首先,以板坯连铸为研究对象,依据铸坯传热与凝固基础理论,建立板坯连铸传热/凝固数值计算模型,开发出基于OpenGL的二冷数值仿真可视化系统。通过对不同生产工艺下铸坯凝固进程的模拟仿真,直观清晰呈现铸坯冷却历程,细致了解和掌握铸坯传热与凝固状态。仿真可视化系统的开发和应用为二冷水量的设计与优化提供可靠手段。
     其次,针对国内某钢厂宽厚板坯连铸机辊列结构布置特点,依据钢种目标温度和冶金准则设计二次冷却工艺,并应用开发的连铸坯二冷数值仿真可视化系统,对铸坯的凝固进程进行仿真分析,验证二冷工艺制度的合理性。探讨了铸坯凝固进程对各工艺参数的响应特性,比照和考察三类典型钢种的凝固和传热行为。
     再次,鉴于边界条件对铸坯凝固传热计算的重要性,依据反问题优化理论,建立了基于实测反问题的连铸二冷换热系数计算模型。提出根据铸坯表面温度现场实测数据,采用非线性估算法反算二冷各区换热系数的模型和方法,并通过铸坯表面温度检测和射钉实验验证模型的准确性。
     然后,以统筹和兼顾冶金准则、二冷水量、铸坯表面温度等为目标,提出了一种基于变异算子改进粒子群算法的二冷工艺制度优化方法。设计了考虑包括目标温度、温度限制、温升/温降速率、鼓肚限制和冷却水量等冶金准则的价值函数,以合金中碳钢宽厚板坯为对象,采用PSO、CFPSO、MOPSO三种算法,对优化后的二冷水量、铸坯表面温度与算法效率进行分析和讨论。
     最后,针对铸坯凝固进程在线检测方法进行探索,提出了“振动法”检测连铸坯凝固分数的新方法。基本原理是在铸坯表面施加一定频率和幅度的周期受迫振动,借助振动在液相、固相传递过程中不同的阻尼衰减,根据激振力和受迫振动位移等信号反馈的规律性差异,探测铸坯凝固进程,达到精确预报铸坯液固相分数的目的。在理论解析的基础上,建立凝固分数在线检测数学模型,设计和搭建物理模拟实验系统,同时采用液-固耦合受迫振动有限元计算模型对受迫振动的动态响应进行仿真,并提出检测方法的现场应用建议。研究结果为铸坯凝固进程在线检测方法开发提供理论基础。
Secondary cooling control technology is the key factor for stabilizing and enhancing slab quality in continuous casting process. Accurate description of heat transfer/solidification process and real-time and reasonable control of secondary cooling are the basic requirements for high efficient continuous casting. Therefore, the researches aiming at more accurate understanding the process such as methodologies of numerical calculation about slab secondary cooling, technology optimization and process detection have momentous theoretical significances and practical values.
     Firstly, taking continuous casting slab as research object, the paper establishes slab heat transfer/solidification calculation model and develops the secondary cooling numerical simulation and visualization system for continuous casting slab using OpenGL based on the characters of slab heat transfer and solidification. By simulating the slab solidification process under different technological parameters, the slab cooling process is presented directly and clearly to gain detailed information on slab heat transfer/solidification state. The development and application of numerical simulation system provide reliable approach for control and optimization of secondary cooling water volume.
     Secondly, according to the target temperature of steel and metallurgy criterion, the secondary cooling technology is designed based on roller configuration and distribution of the heavy plate caster in a domestic steel plant. On the ground of the development of secondary cooling numerical simulation and visualization system, the simulation analysis of slab solidification process is conducted, and the rationality of technology system is validated. The response characteristics of solidification process influenced by technological parameters are discussed, and the solidification and heat transfer behaviors of three typical steel grades is compared and investigated.
     Thirdly, considering the importance of boundary conditions for slab solidification and heat transfer calculation, and basing on the inverse problem optimization theory, the secondary cooling heat transfer coefficients calculation model by means of inverse problem with temperature measurement is developed. According to the measured data of slab surface temperature, nonlinear estimation method is utilized to inverse calculate the heat transfer coefficients of secondary cooling zones, and slab surface temperature detection and pin-shooting experiment are applied to verify the accuracy of the developed model.
     Further, by aiming at overall consideration of metallurgy criterion, secondary cooling water volume and slab surface temperature, the paper proposed a secondary cooling technology optimization method based on modified Particle Swarm Optimization (PSO) algorithm by introducing the mutation operator. In the algorithm, the cost function is designed by co-considering the metallurgy criterions of target temperature, temperature restrictions, temperature increasing/decreasing rate, bulging control and water volume. Selecting the heavy plate of alloy medium carbon steel as research object, three approaches including PSO, CFPSO and MOPSO algorithm are used to analyze and discuss the optimized secondary cooling water volume, slab surface temperature and algorithm efficiency.
     Finally, the paper researches the online detection method of slab solidification process, and a new method named vibration method for detecting slab solid fraction and solidification process is presented. Its principle is by imposing a periodical forced vibration with certain frequency and amplitude on slab surface, the solidification process could be detected real-timely according to the discrepancy patterns of the feedback signals of exciting force and forced vibration displacement due to the different damping attenuation of vibration in liquid and solid phase transfer process. Therefore, the purpose of accurate prediction of slab liquid-solid fraction and the final solidifying end position could be accomplished accordingly. On the ground of theoretical derivation, the paper establishes the model for online detecting solid fraction. The physical simulating experiments, finite element calculation model of liquid-solid coupling forced vibration are developed in order to simulate and verify the results of dynamic response. And the suggestion for applying the method to a plant is proposed. The results of this research provide theoretical foundation for the detection method of online direct measurement of slab solidification process.
引文
[1]干勇.连续铸钢前沿技术的工程化[J].中国工程科学,2002,9(4):12-18.
    [2]路文刚.连铸二冷区动态控制模型的研究[D].唐山:河北理工大学,2007.
    [3]关杰,谢东钢,杨拉道等.精细化是连铸技术装备的发展方向[J].重型机械,2010,(S1):10-20.
    [4]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994:235-236.
    [5]WAYER A, FRICK J. Secondary cooling concepts to increase the efficiency and flexibility of slab casters [J]. Metallurgical Plant and Technology International, 2013,36(1):36-41.
    [6]NORMANTON A S, BARBER B, BELL A, et al. Developments in online surface and internal quality forecasting of continuously cast semis [J]. Ironmaking and Steelmaking, 2004,31(5):376-382.
    [7]SONG X P, CHENG S S, CHENG Z J. Mathematical modelling of billet casting with secondary cooling zone electromagnetic stirrer, Ironmaking and Steelmaking,2013, 40(3):189-198.
    [8]PRITZ P, LOTHAR P. Secondary cooling systems for slab caster:From air mist to dry casting [J]. Iron and Steel Engineer,1987,64(1):51-55.
    [9]MINCHACA J I, CASTILLEJOS A H, ACOSTA F A. Size and velocity characteristics of droplets generated by thin steel slab continuous casting secondary cooling air-mist nozzles [J]. Metallurgical and Materials Transactions B,2011,42(3): 500-515.
    [10]TUTAROVA V D, SAFONOV D S, SHAPOVALOV A N. Density distribution of the spray from flat spray nozzles in the secondary-cooling zone of a continuous caster [J]. Metallurgist,2012,56(5-6):438-442.
    [11]KUKLEV A V, TINYAKOV V V, LONGINOV A M, et al. Modernization of the secondary cool ing system of a continuous slab caster at ural steel [J]. Metallurgist,2011, 55(1-2):93-96.
    [12]WUNNENBERG K, FLENDER R. Investigation of internal crack formation in continuous casting using a hot model [J]. Ironmaking and steelmaking,1985,12(1):22-29.
    [13]BANKS K M, TULING A, MINTZ B. Influence of thermal history on hot ductility of steel and its relationship to the problem of cracking in continuous casting [J]. Materials Science and Technology,2012,28(5):536-542.
    [14]YASNIY 0, MARUSCHAK P, LAPUSTA Y. Probabilistic modeling of surface crack growth in a roll of continuous casting machine [J]. International Journal of Fracture, 2011,172(1):113-120.
    [15]蔡开科.连铸二冷区凝固传热及冷却控制[J].河南冶金,2003,11(1):3-7.
    [16]BAROZZI S, FONTANA P, PRAGLIOLA P. Computer control and optimization of secondary cooling during continuous casting [J]. Iron and Steel Engineer,1986,63(11): 21-26.
    [17]VAN D G, BRIMACOMBE J K. Cracks in strand cast billets [J]. Ironmaking and Steelmaking,2(2):125-133.
    [18]BRIMACOMBE J K, WEINBERG F. Continuous casting of steel theoretical and measured liquid pool profiles in the mould region during the continuous casting of steel [J]. Journal of the Iron and Steel Institute of Japan,1973,211(1):24-33.
    [19]LIU Q, Wang L Z, ZHANG L Q, et al. Mathematical model of heat transfer for bloom continuous casting [J]. Journal of University of Science and Technology Beijing, 2008,15(1):17-23.
    [20]蔡开科,党紫九,张艳.连铸钢高温力学性能专辑[J].北京科技大学学报,1993,15(2):3-20.
    [21]SUZUKI H G, NISHIMURA S, NAKAMURA Y. Improvement of hot ductility of continuously cast carbon steels [J]. Transactions ISIJ,1984,24(2):54-59.
    [22]SUZUKI H G, NISHIMURA S, YAMAGUCHI S. Characteristics of hot ductility in steels subjected to the melting and solidification [J]. Transactions ISIJ,1982,22(1): 48-56.
    [23]LAITINEN E, NEITAANMAKI P. On numerical simulation of the continuous casting process [J]. Journal of Engineering Mathematics,1988,22(4):335-354.
    [24]韩传基,蔡开科,赵家贵等.板坯连铸二冷区凝固传热过程与控制[J].北京科技大学学报,1999,21(6):523-525.
    [25]刘文红,谢植,纪振平等.连铸二冷配水先进控制策略的研究及应用[J].钢铁研究学报,2007,19(9):59-62.
    [26]陈登福,李宏亮,牛宏波等.方坯连铸二次冷却配水新模型[J].重庆大学学报(自然科学版),2007,30(6):61-64.
    [27]窦志超,张晓峰,尹佳等.基于有效拉速和有效过热度的连铸二冷控制模型[J].北京科技大学学报,2011,33(11):1349-1353.
    [28]徐荣军,陈念贻,刘洪霖.基于模式识别和人工神经网络建立的板坯连铸二冷水模型[J].钢铁,2001,36(2):26-28.
    [29]SANTOS C A, SPIM J A, IERARDI M C F, et al. The use of artificial intelligence technique for the optimisation of process parameters used in the continuous casting of steel [J]. Applied Mathematical Modelling,2002,26(11):1077-1092.
    [30]孙韶元,李世平,王俊然等.连铸二冷控制的智能化方法[J].北京科技大学学报,1997,19(4):188-191.
    [31]陈志凌,张国贤,韩传基.连铸二次冷却智能优化控制的研究[J].钢铁,2006,41(9):40-43.
    [32]DUSSUD M, GALICHET S, FOULLOY L P. Application of fuzzy logic control for continuous casting mold level control [J]. Control Systems Technology, IEEE Transactions on,1998,6(2):246-256.
    [33]TIRIAN G 0, PINCA C B, CRISTEA D, et al. Applications of fuzzy logic in continuous casting [J]. WSEAS Transactions on Systems and Control,2010,5(3):133-142.
    [34]CAMISANI-CALZOLARI F R, CRAIG I K, PISTORIUS P C. Quality prediction in continuous casting of stainless steel slabs [J]. Journal of the South African Institute of Mining and Metallurgy,2003,103(10):651-665.
    [35]刘文红,王彪,马交成等.基于模糊自适应PID的连铸二冷控制系统设计与仿真[J].东北大学学报(自然科学版),2007,28(12):1693-1696.
    [36]KAISA M. Using interactive multiobjective optimization in continuous casting of steel [J]. Materials and Manufacturing Processes,2007,22(5):585-593.
    [37]郑忠,占贤辉,罗小刚.基于遗传算法的板坏连铸二冷配水优化方法[J].重庆大学学报(自然科学版),2009,31(12):1365-1370.
    [38]SANTOS C A, SPIM J A, GARCIA A. Mathematical modeling and optimization strategies (genetic algorithm and knowledge base) applied to the continuous casting of steel [J]. Engineering Applications of Artificial Intelligence,2003,16(5):511-527.
    [39]CHAKRABORTI N, GUPTA R S P, TIWARIT K, et al. Optimization of continuous casting process using genetic algorithms studies of spray and radiation cooling regions [J]. Ironmaking and Steelmaking,2003,30(4):273-278.
    [40]JI Z P, WANG B, XIE Z, et al. Ant colony optimization based heat transfer coefficient identification for secondary cooling zone of continuous caster [C]. Proceedings of the IEEE International Conference on Integration Technology, Shenzhen, China,2007:558-562.
    [41]ZHANG X J. Secondary cooling parameters optimization in continuous casting process based on ant colony system algorithm [C]. Third International Conference on Intelligent Networks and Intelligent Systems, Shenyang, China,2010:434-437.
    [42]孟红记,郑鹏,武荣阳等.基于改进PSO算法的连铸二冷过程优化仿真[J].系统仿真学报,2006,18(4):866-869.
    [43]陈伟,张玉柱,王宝祥等.连铸二冷参数的优化和控制研究[J].钢铁,2007,42(3):25-29.
    [44]TADAYOSHI T, KEN-ICHI 0, NORIYUKI K. Simulation for progress of solid-liquid coexisting zone in continuous casting of carbon steels [J]. Tetsu-to-Hagane,1990, 76(5):728-734.
    [45]HEINZ H, MANFRED T, MICHAEL S, et al. Advanced equipment for high-performance caster [J]. MPT International,2003,26(3):74-79.
    [46]樊俊飞,吕朝阳.连铸坯凝固终点测定[J].宝钢技术,1997,(3):18-22.
    [47]栗伟,朱国森,王万军等.连铸坯液相穴长度的测定研究[J].北京科技大学学报,2003,25(4):315-318.
    [48]森田明弘,戴杰.连铸板坯鼓肚的测定和分析[J].重型机械,1980,12:55-60.
    [49]程常桂,茅洪祥,胡琳.轻压下技术在连铸中的应用[J].炼钢,1998,14(5):42-45.
    [50]KAWAWA T, SATO H, MIYAHARA S, et al. Determination of solidifying shell thickness of continuous cast slab by rivet pin shooting [J]. Testsu-to-Hagane,1974(60): 206-216.
    [51]张旭升,关勇,贾洪明.应用射钉法测量板坯凝固坯壳的厚度[J].鞍钢技术,2005(6):36-42.
    [52]陈永,吴国荣,孙彦辉.大方坯连铸二冷区凝固坯壳厚度测试研究[J].钢铁钒钛,2009,30(1):60-63.
    [53]赵树斌,岳尔斌,王志道等.板坯连铸机凝固层厚度的研究[J].宽厚板,2001,7(3):10-15.
    [54]HILLS A W D. Simplified theoretical treatment for the transfer of heat in continuous casting machine moulds [J]. Journal of the Iron and Steel Institute, 1965,203(1):18-26.
    [55]MIZIKAR E A. Mathematical heat transfer model for solidification of continuously cast steel slabs [J]. Metallurgical and Petroleum Engineers-Transactions,1967, 239(11):1747-1753.
    [56]HILLS A W D. A generalized integral-profile method for the analysis of unidirectional heat flow during solidification [J]. Trans. TMSAIME,1969,245(12): 1471-1479.
    [57]MENG Y, THOMAS B G. Heat-transfer and solidification model of continuous slab casting:CON1D [J]. Metallurgical and Materials Transactions B,2003,34B(5): 685-704.
    [58]BRIMACOMBE J K. Design of continuous casting machines based on a heat-flow analysis: state-of-the art review [J]. Canadian Metallurgical Quarterly,1976,15(2):1-13.
    [59]RADOVIC Z, LALOVIC M. Numerical simulation of steel ingot solidification process [J]. Journal of Materials Processing Technology,2005,160(2):156-159.
    [60]NATARAJAN T T, NAGY E. Finite element analysis of electromagnetic and fluid flow phenomena in rotary electromagnetic stirring of steel [J]. Applied Mathematical Modelling,2004,28(1):47-61.
    [61]GANAOUI M E, LAMAZOUADE A, BONTOUX P, et al. Computational solution for fluid flow under solid/liquid phase change conditions [J]. Computers and Fluids,2002,31(4): 539-556.
    [62]ROBERT C, ANDRZEJ J, NOWAKA L, et al. Application of BEM and sensitivity analysis to the solution of the governing diffusion-convection equation for a continuous casting process [J]. Engineering Analysis with Boundary Elements,2004,28(4): 389-403.
    [63]MORWALD K, DITTENBERGER K, IVES K D. Dynacs? cooling system-features and operational results [J]. Ironmaking and Steelmaking,1998,25(4):323-327.
    [64]PETER J, REINHOLD L, NORBERT H, et al. The next level of quality in continuous casting automation [C].4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking. Dusseldorf, Germany,2011:361-367.
    [65]宋东飞.LPC模型在动态轻压下控制中的应用[J].冶金自动化,2005,29(3):57-59.
    [66]PARFENOV E P, SMIRNOV A A, KOSHKIN A V, et al. Dynamic secondary cooling system for a continuous caster [J]. Metallurgist,1999,43(11):510-513.
    [67]FRANZ R, KURT D, KLEMENS H, et al. Dynacs 3D-The new dimension in secondary cooling for slab casters [C].4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking. Dusseldorf, Germany,2011:402-407.
    [68]HAUSER K, DITTENBERGER T, HAHN S, et al. Dynamic 3D heat transfer simulation of continuous casting [J]. International Journal of Cast Metals Research,2009,22(1): 115-118.
    [69]ANDREAS F, CHRISTOPH S. Trends in Continuous Casting of Steel-Yesterday, Today and Tomorrow [C].4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking. Dusseldorf, Germany,2011:7-15.
    [70]蔡开科,刘风荣.连铸坯凝固冷却过程的控制[J].金属学报,1984,20(3):146-154.
    [71]金俊泽,郑贤淑,郭可讱等.连铸钢坏凝固进程的数值模拟[J].钢铁,1985,20(5):19-27.
    [72]冯亮花,朱苗勇,刘坤.连铸板坏凝固末端位置的研究[J].钢铁,2009,44(5):23-26.
    [73]谢海唯,朱苗勇,宋景欣等.连铸方坯凝固末端轻压下区间的预报研究[J].材料与冶金学报,2003,2(3):185-188.
    [74]罗森,朱苗勇,张书岩等.方坏连铸凝固末端位置研究[J].炼钢,2008,24(3):37-39.
    [75]陈素琼,张家泉,崔立新等.板坏凝固未端轻压下实时控制的热-力学分析[J].钢铁研究学报,2003,15(2):9-13.
    [76]张健,陈登福,王水根等.连铸坯表面温度和凝固终点动态控制研究[C].第十六届全国炼钢学术会议,北京,中国,2011:394-399.
    [77]姚山,温斌,李廷举等.连铸坯凝固末端位置控制研究[J].大连理工大学学报,2002,42(5):546-549.
    [78]赵莉萍,麻永林,王宝峰等.不锈钢板坯连铸温度场及凝固末端位置的研究[J].包头钢铁学院学报,2002,21(1):16-18.
    [79]SRORY S R, MAHAPATRA R B, WOODBERRY P A, et al. Liquid core detection through segment load measurements [C]. Steelmaking Conference Proceedings, Dallas, USA, 1993:405-413.
    [80]TANIZAWA Y, KUMAKURA S, OKA M, et al. Development of thin slab casting technology with liquid core hard reduction [J]. Iron and Steelmaker,1999,26(9):73-75.
    [81]SCHADE J, IVES K D, BROWN W A. Operating experiences with a liquid core detection system at Armco Steel's Ashland slab caster [C]. Steelmaking Conference Proceedings, Chicago, USA,1994:279-290.
    [82]赵志毅,康永林,刘德民等.连铸板坯凝固末端在线监测系统[J].北京科技大学学报,2003,25(5):458-461.
    [83]李贵阳,彭兆丰,张晓力等.基于压力反馈检测铸坯凝固液芯末端的动态轻压下方法:中国,201010241895[P].2010,08,02.
    [84]冯科.板坯连铸机轻压下扇形段的设计特点[J].炼钢,2006,22(2):53-56.
    [85]SCHUBERT I. New sensor improves productivity and quality [J]. Stahl Und Eisen, 2005,125(2):58-61.
    [86]干勇,倪满森,余志祥.现代连续铸钢实用手册[M].北京:冶金工业出版社,2010:52-53.
    [87]孙兴洪.连铸坯凝固终点在线检测及控制技术[J].宝钢情报,1992,(1):28-34.
    [88]KIM I S A, SON J S A, KIM H J, et al. A study on electromagnetic transducers for the continuous casting process [J]. Journal of Achievements in Materials and Manufacturing Engineering,2006,17(1-2):357-360.
    [89]KIM I S A, SON J S A, KIM H J, et al. Quality control for the continuous casting process using electromagnetic transducers [J]. Journal of Achievements in Materials and Manufacturing Engineering,2008,31(2):683-689.
    [90]徐荣军.连铸二冷水热传输及人工智能优化模型与控制[D].上海:中国科学院上海冶金研究所,2000.
    [91]LOUHENKILPI S, LAITINEN E, NIEMINEN R. Real-time simulation of heat transfer in continuous casting [J]. Metallurgical Transactions B,1993,24B(4):685-693.
    [92]TOLEDO G A, LAINEZ J, CIRION J C. Model optimization of continuous casting steel secondary cooling [J]. Material Science and Engineering A,1993,173A(1-2): 287-291.
    [93]EL-BEALY M. Monotonic and fluctuated cooling approaches in secondary cooling zones during continuous casting [J]. Canadian Metallurgical Quarterly,1997, 36(1):49-56.
    [94]HARDIN R A, LIU K, KAPOOR A, et al. Transient simulation and dynamic spray cooling control model for continuous steel casting [J]. Metallurgical and Materials Transactions B,2003,34B(3):297-306.
    [95]EL-BEALY M, LESKINEN N, FREDIKSON H. Simulation of cooling conditions in secondary cooling zones in continuous casting process [J]. Ironmaking and steelmaking.1995, 22(3):246-255.
    [96]SAVAGE J, PRITCHARD W H. Problem of rupture of the billet in the continuous casting of steel [J]. Journal of the Iron and Steel Institute,1954,178(11):269-277.
    [97]NOZAKI T, MATSUNO J, MURATA K, et al. Secondary cooling pattern for preventing surface cracks of continuous casting slab [J]. Transaction ISIJ,1978,18(6): 330-338.
    [98]CHOUDHARY S K, MAZUMDAR D, GHOSH A. Mathematical modelling of heat transfer phenomena in continuous casting of steel [J]. ISIJ International,1993,33(7): 764-774.
    [99]MOON C H, HWANG S M. Analysis of flow, heat transfer, solidification, and inclusion removal in continuous slab caster by finite element method [J]. Ironmaking and Steelmaking,2003,30(1):48-56.
    [100]THOMAS B G, SAMARASEKERA I V, BRIMACOMBE J K. Comparison of numerical modeling techniques for complex, two-dimensional, transient heat-conduction problems [J]. Metallurgical Transactions B,1984,15B(3):307-318.
    [101]EL-WAZRI A M, HASSANI F, YUE S, et al. The effect of thermal history on the hot ductility of microalloyed steels [J]. ISIJ International,1999,39(3):253-262.
    [102]张克强,吴国庆,吴建忠等.含铌钢板坏连铸二冷目标温度及配水[J].连铸,2002,(6):1-3.
    [103]郭亮亮.板坏连铸动态二冷与轻压下建模及控制的研究[D].大连:大连理工大学,2009.
    [104]PETRUS B, ZHENG K, ZHOU X, et al. Real-time, model-based spray-cool ing control system for steel continuous casting [J]. Metallurgical and Materials Transactions B,2011,42(1):87-103.
    [105]GUO L L, TIAN Y, YAO M, et al. Temperature distribution and dynamic control of secondary cooling in slab continuous casting [J]. International Journal of Minerals, Metallurgy and Materials,2009,16(6):626-631.
    [106]THOMAS B G, BENTSMAN J, ZHENG K, et al. Online dynamic control of cooling in continuous casting of thin steel slabs [C]. Materials Processing and Manufacturing, St. Louis, Missouri, USA,2006:24-27.
    [107]HARDIN R A, LIU K, BECKERMANN C. Development of a model for transient simulation and control of a continuous steel slab caster [J]. Materials Processing in the Computer Age,2000,3:61-74.
    [108]PENG Z, HU W H, BAO Y P, et al. Research and application of dynamic secondary cooling control system for a continuous steel billet caster [J]. Advanced Materials Research,2012,572:404-409.
    [109]LOUHENKILPI S, MAKINEN M, VAPALAHTI S, et al.3D steady state and transient simulation tools for heat transfer and solidification in continuous casting [J]. Materials Science and Engineering A,2005,413:135-138.
    [110]熊盛武,李元香.演化参数反演方法[J].武汉大学学报(理学版),2001,41(1):37-41.
    [111]Beck J V. Criteria for comparison of methods of solution of the inverse heat conduction problem [J]. Nuclear Engineering and Design,1979,53(1):11-22.
    [112]HO K, PEHLKE R D. Mechanisms of heat transfer at a metal-mold interface [J]. Afs Trans,1984,92:587-598.
    [113]郝守卫,柳百成,张卓其等.凝固过程中热传导的反问题[J].清华大学学报(自然科学版),1989,29(2):36-43.
    [114]NORGAARD M, POULSEN N K, RAVN 0. New developments in state estimation for nonlinear systems [J]. Automatica,2000,36(11):1627-1638.
    [115]孙文瑜,徐成贤,朱德通.最优化方法[M].北京:高等教育出版社,2004:1-5.
    [116]EBERHART R, KENNEDY J. New optimizer using particle swarm theory [C]. Proceedings of the 16th International Symposium on (1995), Nagoya, Japan,1995:39-43.
    [117]KENNEDY J, EBERHART R. Particle swarm optimization [C]. IEEE International Conference on Neural Networks, Perth, Australia,1995:1942-1948.
    [118]POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization:An overview [J]. Swarm Intelligence,2007,1(1):33-57.
    [119]PATNAIK S S, PANDA A K. Real-time performance analysis and comparison of various control schemes for particle swarm optimization-based shunt active power filters [J]. International Journal of Electrical Power and Energy Systems,2013,52(1): 185-197.
    [120]CIVICIOGLU P, BESDOK E. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms [J]. Artificial Intelligence Review,2013,39(4):315-346.
    [121]KARIM J, DIDIER D, EMMANUEL G, et al. Particle swarm optimization based tuning of a modified smith predictor for mould level control in continuous casting [J]. Journal of Process Control,2011,21(2):263-270.
    [122]RAFI S M, KUMAR A, SINGH G K. An improved particle swarm optimization method for multirate filter bank design [J]. Journal of the Franklin Institute,2013,350(4): 757-769.
    [123]谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134.
    [124]KENNEDY J, EBERHART R C. Discrete binary version of the particle swarm algorithm [C]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Orlando, USA,1997:4104-4108.
    [125]ZHANG F, XUE D. Optimal concurrent design based upon distributed product development life-cycle modeling [J]. Robotics and Computer-Integrated Manufacturing,2001,17(6):469-486.
    [126]JIANG J Q, LIANG Y C, SHI X H, et al. A hybrid algorithm based on PSO and SA and its application for two-dimensional non-guillotine cutting stock problem [C]. Computational Science-ICCS 2004, Krakow, Poland,2004:666-669.
    [127]EBERHART R C, SHI Y. Particle swarm optimization:developments,applications and resources [C]. Proceedings of the IEEE Congress on Evolutionary Computation, New Jersey, USA,2001:81-86.
    [128]CHANG J F, CHU S C, RODDIEK J F, et al. A parallel particle swarm optimization algorithm with communication strategies [J]. Journal of Information Science and Engineering,2005,21(4):809-818.
    [129]KAWATA K, FUKUYAMA Y, TAKAYAMA S, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment [J]. IEEE Transactions on Power Systems,2000,15(4):1232-1239.
    [130]谭皓,沈春林,李锦.混合粒子群算法在高维复杂函数寻优中的应用[J].系统工程与电子技术,2005,27(8):1471-1474.
    [131]LING S H, IU H H C, LEUNG F H F, et al. Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging [J]. IEEE Transactions on Industrial Electronics,2008, 55(9):3447-3460.
    [132]COELHO L D S, HERRERA B M. Fuzzy identification based on a chaotic particle swarm optimization approach applied to a nonlinear yo-yo motion system [J]. IEEE Transactions on Industrial Electronics,2007,54(6):3234-3245.
    [133]RICHARDS M, VENTURA D. Choosing a starting configuration for particle swarm optimization [C]. Proceedings IEEE International Joint Conference on Neural Networks, Budapest, Hungary,2004:2309-2312.
    [134]薛明志,左秀会,钟伟才等.正交微粒群算法[J].系统仿真学报,2005,17(12):2908-2911.
    [135]CAMPANA E F, FASANO G, PINTO A. Dynamic system analysis and initial particles position in particle swarm optimization [C]. Proceedings IEEE Swarm Intelligence Symposium, New York, USA,2006:202-209.
    [136]KENNEDY J. Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance [C]. Proceedings of the IEEE Congress on Evolutionary Computation, Washington, USA,1999:1931-1938.
    [137]SUGANTHAN P N. Particle swarm optimizer with neighbourhood operator [C]. Proceedings of the IEEE Congress on Evolutionary Computation, Washington, USA, 1999:1958-1962.
    [138]VEERAMACHANENI K, PERAM T, MOHAN C, et al. Optimization using particle swarms with near neighbor interactions [C]. Proceedings of Genetic and Evolutionary Computation (GECCO 2003), Chicago, USA,2003:110-121.
    [139]ABRAHAM A, GUO H, LIU H. Swarm intelligence:foundations, perspectives and applications [C]. Swarm Intelligent Systems, Studies in Computational Intelligence, Piscataway, USA,2006:3-25.
    [140]KENNEDY J, MENDES R. Population structure and particle swarm performance [C]. Proceedings of the IEEE Congress on Evolutionary Computation, Washington, USA, 2002:1671-1676.
    [141]RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
    [142]CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [143]ABIDO A. Optimal power flow using particle swarm optimization [J]. International Journal of Electrical Power and Energy Systems,2002,24(7):563-571.
    [144]DOCTOR S, VENAYAGAMOORTHY G. Improving the performance of particle swarm optimization using adaptive critics designs [C]. Proceedings of the IEEE Swarm Intelligence Symposium, New York, USA,2005:393-396.
    [145]KHAJENEJAD M, AFSHINMANESH F, MARANDI A, et al. Intelligent particle swarm optimization using Q-learning [C]. Proceedings of the IEEE Swarm Intelligence Symposium, New York, USA,2006:7-12.
    [146]JUANG C F. A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent Network Design [J]. IEEE Transactions on Systems, Man and Cybernetics (Part B-Cybernetics),2004,34(2):997-1006.
    [147]WANG X H, LI J J. Hybrid particle swarm optimization with simulated annealing [C]. Proceedings of International Conference on Machine Learning and Cybernetics, Shanghai, China,2004:2402-2405.
    [148]孙艳霞,王增会,陈增强.混沌粒子群优化及其分析[J].系统仿真学报,2008,20(21):5920-5923.
    [149]CLERC M. The swarm and the queen:towards a deterministic and adaptive particle swarm optimization [C]. Proceedings of the Congress on Evolutionary Computation, New Jersey, USA,1999:1951-1957.
    [150]MARCO D, CHRISTIAN B. Ant colony optimization theory:A survey [J]. Theoretical Computer Science,2005,344(2-3):243-278.
    [151]张克强,林宪,高海等.方坯连铸二级配水技术研究[J].钢铁,2006,41(1):39-42.
    [152]朱立光,周建宏,王硕明等.基于目标温度的方坯连铸二冷配水方案优化[J].炼钢,2006,22(2):34-38.
    [153]张凤禄,李劲东.方坯连铸凝固过程冷却的最优化[J].北京科技大学学报,1991,13(4):16-23.
    [154]SAMOILOVICH Y A. Effect of soft reduction on the structure of continuously-cast slabs [J]. Metallurgist,2009,53(1-2):98-104.
    [155]LI X B, DING H, TANG Z Y, et al. Formation of internal cracks during soft reduction in rectangular bloom continuous casting [J]. International Journal of Minerals, Metallurgy and Materials,2012,19(1):21-29.
    [156]PROKHOROV S V, MOSHKUNOV V V, STOLYAROV A M, et al. Improving the technology for the soft reduction of continuous-cast slabs made of tube steel [J]. Metallurgist, 2012,56(1-2):122-125.
    [157]张忠明,刘宏昭,王锦程等.金属材料阻尼性能测试系统[J].西安理工大学学报,2000,16(2):133-137.
    [158]李沛勇,戴圣龙,刘大博等.材料阻尼及阻尼合金的研究现状[J].材料工程,1999,(8):44-49.
    [159]田蔚,李秀臣,刘正堂.金属物理性能[M].北京:航空工业出版社,1994:143-145.
    [160]温金鹏,杨智春,李斌等.材料阻尼测试方法研究[J].振动、测试与诊断,2008,28(3):220-224.
    [161]张忠明,刘宏昭,王锦程等.材料阻尼及阻尼材料的研究进展[J].功能材料,2001,32(3):227-230.
    [162]朱苗勇,萧泽强.钢的精炼过程数学物理模拟[M].北京:冶金工业出版社,1998:123-126.
    [163]BURGHARDT A J C, CARLESS S P, KAMPERMAN A A, et al. The formation of transverse depressions during casting studied by finite-element calculations [C].4th International Conference on Modelling and Simulation of metallurgical Processes in Steelmaking, Dusseldorf, Germany,2011:12-18.
    [164]克拉夫R,彭津J.结构动力学第二版[M].北京:高等教育出版社,2006:30-37.
    [165]刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社,2004:396-401.
    [166]STEFAN W, MAX F P. A Navier-stokes analysis of the stall flutter characteristics of the buffoon cascade [J]. Journal of Turbom Achinery,2000,122(4):769-776.
    [167]KENNEDY J M, BELYTSCHKO T. A sulver of computational methods for fluid-structure analysis of reactor safety [J]. Nuclear Engineering and Design,1982,69:379-398.
    [168]刑景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [169]罗敏.管道内旋转细长梁固液耦合动力学分析[D].大庆:大庆石油学院,2009.
    [170]王华,曹刚.基于ANSYS的含液容器流固耦合模态分析[J].重庆科技学院学报,2006,8(2):67-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700