用户名: 密码: 验证码:
SiC陶瓷与Ti-6Al-4V合金超声波辅助钎焊的润湿结合机制及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC陶瓷和Ti-6Al-4V合金已成为结构材料中重要组成部分。大尺寸复杂陶瓷构件制备困难,同时为满足某些特殊需求或充分发挥材料的性能需要将异种材料组合使用,为此陶瓷/陶瓷、陶瓷/合金等同种材料或异种材料的连接技术显得尤为重要。本文采用超声波辅助钎焊的工艺方法,并采用铝基合金为主要钎料,在大气低温环境下实现了SiC/SiC、SiC/Ti-6Al-4V等接头的钎焊连接。主要研究了铺展润湿行为、氧化膜破碎行为、界面溶蚀行为、界面结构特征及超声波钎焊工艺等。
     研究发现超声波激励下液态钎料在固态母材表面的铺展行为存在共性特征。近铺展边缘液态钎料内部的空化效应使得该区域的钎料雾化形成大量的纳米液滴,纳米颗粒的尺寸小于150nm。纳米液滴附着到铺展外延区域的固体表面并发生表面氧化,其分布宽度大约为150μm。同时该区域液态钎料表面的氧化膜破碎发生液态钎料的局部微区铺展,该铺展行为在纳米颗粒所覆盖的固体表面进行。纳米液滴表面的氧化膜使其不能立刻湮灭于钎料内部而呈现出逐步被吞没的现象,并在铺展前沿形成液态钎料/纳米颗粒/固体母材的结构特征。该铺展行为在微观上表现出:铺展于纳米颗粒所覆盖的固体表面,铺展的不同步性,铺展前沿的结合不完整性和逐步性。
     通过研究超声波作用液态Al-12Si与固体Ti-6Al-4V的相互作用行为发现固液界面处存在着声致溶蚀行为。该溶蚀行为由尺寸小于25μm的独立的溶蚀坑所构成,溶蚀坑呈近半球形,边缘处存在着斜坡。溶蚀坑的上部被氧化膜所覆盖,并在中心部位存在着一个微小缺口,溶蚀坑底部和侧壁界面处形成Ti_9Al_(23)化合物,斜坡处界面形成Ti_7Al_5Si_(12)化合物。随超声波时间延长或振幅增加,溶蚀坑的密度增加,对溶蚀坑的尺寸影响很小。当振幅增加到6.5μm时,界面处出现由高密度溶蚀坑组成的大面积不规则溶蚀区域。溶蚀坑的形成是由于近界面液态钎料内部空化气泡崩溃时所产生一系列复杂效应造成的。氧化膜的缺口是微射流冲击造成的,它是液态钎料与Ti-6Al-4V相互作用的唯一通道。在高温和声流搅拌作用下,Ti-6Al-4V基体通过氧化膜缺口向液态Al-12Si中过量地快速溶解,最后在溶蚀界面处形成Ti_9Al_(23)化合物。斜坡的形成是空化气泡崩溃作用消失后高温停留阶段的潜流行为造成的,溶解缓慢且界面生成Ti_7Al_5Si_(12)化合物。超声波振幅增大时所出现的大面积不规则溶蚀区域是由于近界面空化气泡簇崩溃所造成的。
     针对Al-12Si/Ti-6Al-4V系统在超声波作用后进行保温处理发现,液态Al-12Si沿氧化膜与Ti-6Al-4V界面处对Ti-6Al-4V进行缓慢溶解,氧化膜脱离基体悬浮于液态钎料内部。在超声波4s保温5min就能够使得氧化膜完全脱离基体,同时平直界面处生成Ti_7Al_5Si_(12)化合物,溶蚀坑内部化合物结构变化不大,只是在Ti_9Al_(23)/Ti-6Al-4V界面处生成一层Ti_7Al_5Si_(12)化合物。延长保温时间至8min,界面处近Al-12Si侧生成Ti_9Al_(23)化合物,且最终稳定界面结构为Al-12Si/Ti_9Al_(23)/Ti_7Al_5Si_(12)/Ti-6Al-4V。二次超声波作用能够破碎悬浮于液态钎料内部的氧化膜,但是界面处化合物结构未发生明显变化。Ti-6Al-4V的接头强度可达107.4MPa。
     超声波钎焊连接SiC陶瓷时,以纯Al作为填充金属,接头强度可达~65MPa左右,开裂于接头金属内部,但界面连续的Al4C3化合物是接头的潜在威胁。采用Al-12Si钎料时界面平直,不存在化合物,且超声波作用时间对接头强度影响不大,可达95MPa左右。接头开裂接头金属内部和近界面SiC陶瓷内部,未发现界面开裂现象。界面呈现三种结构特征:Al-12Si/SiC、Al-12Si/SiO_2非晶层/SiC、Al-12Si/纳米颗粒/SiO_2非晶层/SiC。非晶层SiO_2是SiC陶瓷经加热后所形成表层氧化膜,其在超声波空蚀效应下可发生分解而去除,而当SiO_2层较厚时,溶蚀处形成了铝硅酸盐Al_2SiO_5化合物。纳米颗粒来自于液态钎料钻缝铺展时所形成,其与超声波诱导铺展时所形成纳米颗粒一致。
     在超声波作用下,锌基钎料能够与SiC陶瓷形成良好的润湿结合。采用Zn-8.5Al-1Mg钎料时发现随超声波时间延长接头强度增加,最高可达149MPa左右。超声波作用时间较短时,界面发生开裂,延长超声波时间发现SiC陶瓷内部、界面及近界面金属内部均存在开裂行为。液态钎料中空化气泡的崩溃能够使得SiC表面的SiO_2非晶层被微量溶蚀。随超声波时间的延长,溶蚀程度加剧,从而提高了界面的结合强度。采用三层结构的填充材料实现了具有低膨胀系数的高度复合化SiC陶瓷接头。
     采用Al-12Si钎料钎焊连接SiC和Ti-6Al-4V时,由于接头残余应力较大发生SiC陶瓷内部开裂。通过将Sn、Zn、Mg等元素加入Al-12Si钎料中制备了Al-15.5Sn-9.5Si-4.5Zn-0.5Mg钎料,能够使得钎料的凝固温度降低至186℃,主要是因为Sn与Al的固溶度非常小。采用该钎料超声波钎焊连接SiC和Ti-6Al-4V,两侧界面均能够实现良好结合,并且未发生SiC陶瓷开裂现象。在186-561℃冷却温度区间内,钎料处于半固态,具有很好的变形能力,接头两侧金属可以自由收缩,因此可缓解接头的残余应力,并通过数值模拟可以发现采用该钎料时能够显著降低接头残余应力。接头强度可达77.8MPa左右,断裂于近SiC侧接头金属内部和Sn相/SiC陶瓷的界面。
     以Al-12Si钎料作为填充合金,超声波钎焊连接Ti-6Al-4V与1060Al时发现,氧化膜与Ti-6Al-4V界面为接头薄弱环节,接头强度大约为34.7MPa。悬浮于接头金属内部的氧化膜以及界面化合物均对接头强度影响不大,大约为68MPa。
SiC ceramic and Ti-6Al-4V alloy have become the important candidates of thestructural materials. However, the poor machining ability for preparing large-size orcomplex ceramic components and the application of the combination of dissimilarmaterials for meeting some special requirements or exerting the good performanceof materials, these problems can be solved by the technologys of joining ceramic tothemselves or alloys. In this study, the joints of SiC/SiC, SiC/Ti-6Al-4V wereachieved by use of ultrasonic-assisted brazing technology in air at a lowertemperature, and aluminium based alloys were used as the main brazing alloys. Thespreading and wetting behaviors, breakage behavior of oxide film, interfacialerosion behaviors, interfcial microstructure and ultrasonic-assisted brazingtechnology were investigated.
     The spreading behaviors of liquid brazing alloy on the surface of solid basedmaterials under the excitation of ultrasonic vibration were studied. The brazingalloys and based materials showed little effects on the characteristics ofultrasonic-induced spreading, and this spreading behavior had some commonfeatures. In front of the spreading edge, a layer consisted of high densitynanoparticles formed on the surface of based materials, and this spreading behavioroccurred on the solid surface covered by the nanoparticles. The dimension ofnanoparticle was smaller that150nm, and the width of their distribution area wasabout150μm. The ultrasonic-induced apreading behavior also showed some otherspecial characteristics on the microscopic scale: dyssynchrony of spreadingforefront, partial bonding of the interface at the spreading frontier area,nanoparticles engulfed by the liquid brazing alloy gradually, et al. The nanoparticleswere from the liquid brazing alloy. The cavtition bubbles in the inner of liquidbrazing alloy adjacent the spreading edge collapse suddenly, which induced theliquid brazing alloy atomized and appeard many nanoscale droplets. Thesenanoscale droplets were bonded with the solid surface, and their outer surface wereoxidated when contacting with air. At the same time, the collapse of the cavitationbubbles could broken the surface oxide film that enwrapping the liquid brazing alloyat this corresponding areas, so the liquid brazing alloy would spread forward at themicroscale area. An interface structure of liquid brazing alloy/nanoparticles/solidbased materials was formed at the spreading frontier regions, and the surface oxidefilm of nanoparticle delayed the engulfed process of nanoparticles by the liquidbrazing alloy.
     Under the function of ultrasonic, erosion behaviors were found at the interfacebetween liquid Al-12Si and Ti-6Al-4V alloy. The erosion behaviors consisted ofmany isolated erosion pits, and the erosion pits presented a hemispherical shapewith a more gradual slope at the edge. These small erosion pits had non-uniformdimensions, and the maximum diameter was~25μm. The erosion pits was coveredby an incomplete oxide film and there was a tiny notch present in the middle of thisoxide film. Two kinds of IMC form at the pit interface, and they show differentcharacteristics depending on their positions. Ti_9Al_(23)compounds formed at the walland bottom of the pit and Ti_7Al_5Si_(12)compounds formed at the pit edge. The totalnumber and density of the pits increases with prolonging ultrasonic time orincreasing ultrasonic amplitude, but there is no significant change in the range of pitdiameters. However, when the amplitude reached to6.5μm, some large erosion areawith irregular shape appeared on the Ti-6Al-4V surface, which consisted ofhigh-density erosion pits. The formation of erosion pit could be ascribed to thecavitation phenomonen occurred at or near the liquid/solid interface, and manycomplex effects were generated at the small zones during the bubble implosion,including micro-jets, hot spots, high pressure, and acoustic streaming. The impact ofmicro-jets resulted in breakage of the oxide film on the Ti-6Al-4V surface. Theresultant circular notches served as micro-channels for direct interaction betweenliquid Al-Si and solid Ti-6Al-4V. After the micro-channels opened up, localized hotspots and acoustic streaming caused the solid Ti-6Al-4V substrate to excessivelydissolve into the liquid Al-Si alloy at the notch zones, and granular Ti_9Al_(23)particlesformed at the wall and bottom of pits during this extended dissolution process.When the bubble implosion energy dissipated, a slow further dissolution developedalong the interface between the oxide film and Ti-6Al-4V substrate, resulting in agently-sloped region at the pit edges and laminar Ti_7Al_5Si_(12)phases formed at the pitedges. The large irregular erosion areas were induced by the implosion of cavitationbubble clusters.
     For Al-12Si/Ti-6Al-4V systerm, a thermostatic treatment process wasperformed after the function of ultrasonic. Ti-6Al-4V alloy dissolved into liquidAl-12Si brazing alloy along the interface between oxide film and Ti-6Al-4V matrix,and the oxide film detached with Ti-6Al-4V and floated in the liquid alloysimultaneously. Holding time for5min after a ultrasonic time of4s could make theoxide film detached the Ti-6Al-4V matrix completely, and Ti_7Al_5Si_(12)compoundsformed at the staight interface. The structure of compounds at the erosion pitsshowed no significant variation, just a layer of Ti_7Al_5Si_(12)compounds formed at theoriginal Ti_9Al_(23)/Ti-6Al-4V interface. Ti_9Al_(23)phases began to form at the inteface and adgacent into the liquid Al-12Si brazing alloy when prolonging the holding timeto8min. For Al-12Si/Ti-6Al-4V interface at620℃, the final steady interfacestructrue was Al-12Si/Ti_9Al_(23)/Ti_7Al_5Si_(12)/Ti-6Al-4V. Second ultrasonic afterthermostatic treatment could break the floating oxide film, but had no effects on thesrtucture of the interfacial compounds.
     When ultrasonic-assisted brazing SiC ceramics by filling with pure Al, thestrength of joint could reach to~65MPa and the fracture pathes were in the jointalloy. However, the intermetallic compounds Al4C3at the interface were potentialthreaten. When using the Al-12Si alloy, the interface was straight and no compoundswere found. Ultrasonic time had little effects on the joint strength, which couldreach to95MPa. The fracture paths of joint were in the inner of the joint alloy orthe SiC ceramic adjacent into the interface. The interface of joints showed threekinds of structural characteristics in TEM: Al-12Si/SiC, Al-12Si/SiO_2amorphouslayer/SiC, and Al-12Si/nanoparticle/SiC. The amorphous layer SiO_2was just theoxide film formed on the SiC surface during heating in air, which was decomposedunder the effect of ultrasonic cavitation erosion. Abnormal Al_2SiO_5compoundscould form at the erosion site when the SiO_2layer was much thicker. Thenanoparticles formed in front of the liquid brazing alloy during theultrasonic-assisted filling clearance process, which were consistent with thenanopaticles found during ultrasonic-assisted spreading process.
     Ultrasonic-assisted brazed joining SiC ceramic was performed by filling withZn-8.5Al-1Mg brazing alloy. The joint strength increased when prolonging theultrasonic time, and the maximum could reach to~149MPa. When the ultrasonictime was shorter, the fracture paths mainly occurred at the interface. Afterprolonging the ultrasonic time, the fracture paths existed at the interface and in theinner of SiC and joint alloy both adjacent the interface. The collapse of cavitationbubble could also make the SiO_2amorphous layer of SiC surface eroded by theliquid brazing alloy slowly. When prolonging the ultrasonic time, the erosionamount of SiO_2increased, and the joint strength was promoted. A sandwichstructural filler was used joining SiC ceramic and a SiC ceramic joint with lowcoefficient of thermal expansion was obtained.
     When SiC ceramic and Ti-6Al-4V alloy were ultrasonic-assisted brazed byfilling with Al-12Si alloy, cracks induced by residual stress could be observed in theinner of SiC ceramic. Newly developed Al-15.5Sn-9.5Si-4.5Zn-0.5Mg brazingalloys were prepared by the addition of element Sn, Zn, Mg, which had a lowsolidus temperature of~183℃, but its liquidus temperatures was also higher to~561℃. An integrated joint was obtained when using the novel filler metals, compared with the inner fractured joint obtained by filling with the common AlSialloy. The novel filler metal was in a semi-solid state at the temperature of183-561℃and showed low deformation resistance, so the shrinkages of the SiCceramic and Ti-6Al-4V alloy had more freedom and a small effect on each otherbefore the solidification of the liquid Sn-rich phases. The results of finite elementcalculation showed the thermal residual stress in the joint was significantlydecreased by use of the novel filler metals. The average shear strength of the jointswas~77.8MPa, the fracture paths occurred in the inner of joint alloy adjacent to theSiC side and at the interfaces between Sn phases and SiC ceramic.
     Ultrasonic-assisted brazing of Ti-6Al-4V alloy and Al1060alloy was carriedout by filling with Al-12Si alloy. The oxide film on the Ti-6Al-4V surface beforedetachment with the Ti-6Al-4V showed significantly effects on the joint strenth, andthe joint strength was only~34.7MPa. The oxide film floating in the liquid alloyand the interfacial compounds showed no effects no the joint strength, and the jointstrength could reach to~68MPa.
引文
[1]江东亮,李龙士,欧阳世翕等.中国材料工程大典第8卷无机非金属材料书册[上][M].北京:化学工业出版社,2006:178–188.
    [2]张玉军,张伟儒.结构陶瓷材料及其应用[M].北京:化学工业出版社,2005:26–75.
    [3] R. A. Paquin. Materials for mirror systems: an overview[J]. SPIE,1995,2543:2–11.
    [4] J. C. Han, Y. M. Zhang, X. D. He. Optical large scale lightweight SiCmirrors[J]. J. Astronaut.,2001,22(6):124–132.
    [5]杨利伟,鲍赫.空间光学遥感器SiC反射镜连接技术综述[J].光机电信息,2010,12(27):56–61.
    [6] R. Volkmer, F. Kneer, T. Berkefeld. The new1.5m solar telescope GREGOR:first light and start of commissioning[J]. Proc. SPIE,2006,6267:62670W-1–.62670W-9.
    [7]杨秉新.空间相机用碳化硅(SiC)反射镜的研究[J].航天返回与遥感,2003,24(1):15–18.
    [8]许志武.铝基复合材料超声辅助钎焊的润湿及钎缝复合化机理[D].哈尔滨工业大学博士论文,2008:73–98.
    [9]李远星.2024Al超声波辅助软钎焊工艺及连接界面接合机制[D].哈尔滨工业大学博士论文,2012:57–109.
    [10]张洋.超声波作用下SiC与Zn–Al连接界面行为及焊缝强化机理[D].哈尔滨工业大学博士论文,2009:33–90.
    [11] C. Iwamoto, S. Tanaka. Atomic morphology and chemical reactions of thereactive wetting front[J]. Acta Mater.,2002,50(4):749–755.
    [12] C. Iwamoto, S. Tanaka. Reactive wetting of Ag–Cu–Ti on SiC in HRTEM[J].Acta mater,1998,46(7):2381–2386.
    [13] M. Nomura, T. Ichimori, C. Iwamoto. Structure of wetting front in theAg–Cu–Ti/SiC reactive system[J]. J. Mater. Sci.,2000,35(16):3953–3958.
    [14] Y. Liu, Z. R. Huang, X. J. Liu. Joining of sintered silicon carbide using ternaryAg–Cu–Ti active brazing alloy[J]. Ceram. Int.,2009,35(8):3479–3484.
    [15] J. Lopez–Cuevas, H. Joines, H. V. Atkinson. The effect of surfacepreoxidation of sintered silicon carbide on its wettability by silver–copperbased brazing alloys in vacuo[J]. Mater. Sci. Eng. A,1999,266(1–2):161–166.
    [16] J. K. Boadi, T. Yano, T. Iseki. Brazing of pressureless-sintered SiC usingAg–Cu–Ti alloy[J]. J. Mater. Sci.,1987,22(7):2431–2434.
    [17] T. Yano, H. Suematsu, T. Iseki. High–resolution eletron microscopy of aSiC/SiC joint brazed by a Ag–Cu–Ti alloy[J]. J. Mater. Sci.,1988,23(9):3362–3366.
    [18] Y. H. Chai, W. P. Weng, T. H. Chuang. Relationship between wettability andinterfacial reaction for Sn10Ag4Ti on Al2O3and SiC substrates[J]. Ceram. Int.,1998,24(4):273–279.
    [19] J. K. Li, L. Liu, Y. T. Wu, et al. Microstructure of high temperature Ti-basedbrazing alloys and wettability on SiC ceramic[J]. Mater. Des.,2009,30(2):275–279.
    [20] Y. W. Mao, D. Mombello, C. Baroni. Wettability of Ni–Cr filler on SiCceramic and interfacial reactions for the SiC/Ni-51Cr system[J]. ScriptaMater.,2011,64(2):1087–1090.
    [21] P. Xiao, B. Derby. Wetting of silicon carbide by chromium containingalloys[J]. Acta Mater.,1998,46(10):3491–3499.
    [22] H. P. Xiong, X. H. Li, W. Mao, et al. Wetting behavior of Co based activebrazing alloys on SiC and the interfacial reactions[J]. Mater. Lett.,2003,57(22-23):3417–3421.
    [23] H. P. Xiong, X. H. Li, W. Mao, et al. Wettability of Co–V, and PdNi–Cr–Vsystems alloys on SiC ceramic and interfacial reactions[J]. Scripta Mater.,2007,56(2):173–176.
    [24] Z. Yuan, W. L. Huang K. Mukai. Wettability and reactivity of molten siliconwith various substrates[J]. Appl. Phys. A,2004,78(4):617–622.
    [25] J. G. Li, H. Hausner. Wettability of silicon carbide by gold, germanium andsilicon[J]. J. Mater. Sci. Lett.,1991,10(21):1275–1276.
    [26] W. P. Minnear. Interfacial energies in the Si/SiC system and the Si+Creaction[J]. Commun. Am. Ceram. Soc.,1982,65(1):10–11.
    [27] N. Eustathopoulos, M. G. Nicholas, B. Drevet. Wettability at hightemperatures[M]. Pergamon,1999:261–282.
    [28] S. Kalogeropoulou, C. Rado, N. Eustathopoulos. Mechanisms of reactivewetting: the wetting to non–wetting case[J]. Scripta Mater.,1999,41(7):723–728.
    [29] C. Rado, S. Kalogeropoulou, N. Eustathopoulos. Bonding and wetting innon-reactive metal/SiC systems: weal or strong interfaces?[J]. Mater. Sci. Eng.A,2000,276(1–2):195–202.
    [30] C. Rado, B. Drevet, N. Eustathopoulos. The role of compound formation inreactive wetting: the Cu/SiC system[J]. Acta Mater,2000,48:4483–4491.
    [31] C. Rado, N. Eustathopoulos. The role of surface chemistry on spreadingkinetics of molten silicides on silicon carbide[J]. Interface Sci.,2004,12(1):85–92.
    [32] Z. M. Wang, P. Wynblatt. Study of a reaction at the solid Cu/α–SiC interace[J].J. Mater. Sci.,1998,33(5):1177–1181.
    [33] C. Rado, S. Kalogeropoulou, N. Eustathopoulos. Wetting and bonding of Ni-Sialloys on silicon carbide[J]. Acta Mater.,1999,47(2):461–473.
    [34] O. Mailliart, F. Hodaj, V. Chaumat, et al. Influence of oxyen partitial pressureon the wetting of SiC by a Co–Si alloy[J]. Mater. Sci. Eng. A,2008,495(1–2):174–180.
    [35] S. Kalogeropoulou, L. Baud, N. Eustathopoulos. Relationship betweenwettability and reactivity in Fe/SiC system[J]. Acta Mater.,1995,43(3):907–912.
    [36] V. Laurent, C. Rado, N. Eustathopoulos. Wetting kinetics and bonding of Aland Al alloy on α–SiC[J]. Mater. Sci. Eng. A,1996,205(1–2):1–8.
    [37] R. F. Porter, P. Schissel, M. G. Inghram. A mass spectrometric study ofgaseous species in the Al/Al2O3system[J]. J. Chem. Phys.,1955,23(2):339–342.
    [38] A. C. Ferro, B. Derby. Wetting behaviour in the Al–Si/SiC system: interfacereactions and solubility effects[J]. Acta Mater.,1995,43(8):3061–3073.
    [39] V. Laurent, D. Chatain, C. Chatillon, N. Eustathopoulos. Wettability ofmonocrystalline alumina by aluminium between its melting point and1273K[J]. Acta Mater,1988,7(36):1797–1803.
    [40] V. Laurent, D.Chatain, N. Eustathopoulos. Wettability of SiC by aluminiumand Al-Si alloys[J]. J. Mater. Sci.,1987,22(1):244–250.
    [41] A. C. Ferro, B. Derby. Development of a micro–droplet technique forwettability studies: application to the Al–Si/SiC system[J]. Scripta Mater.,1995,33(5):837–842.
    [42] V. Laurent, D. Chatain, N. Eustathopoulos. Wettability of SiO2and oxidizedSiC by aluminium[J]. Mater. Sci. Eng. A,1991,35(30):89–94.
    [43] J. C. Viala, F. Bosselet, V. Laurent, et al. Mechanism and kinetics of thechemical interaction between liquid aluminium and silicon–carbide singlecrystals[J]. J. Mater. Sci.,1993,28(19):5301–5312.
    [44] J. K. Park, J. P. Lucas. Moisture effect on SiCp/6061Al MMC–dissolution ofinterfacial Al4C3[J]. Scripta Mater.,1997,37(4):511–516.
    [45] M. Rodriguez-Reyes, M. I. Pech–Canul, J. C. Rendon-Angeles, et al. Limitingthe development of Al4C3to prevent degradation of Al/SiCpcompositesprocessed by pressureless infiltration[J]. Compos. Sci. Tech.,2006,66(7–8):1056–1062.
    [46] J–C. Lee, J–Y. Byun, S–B. Park, et al. Prediction of Si contents to suppress theformation of Al4C3in the SiCp/Al composite[J]. Acta Mater.,1998,46(5):1771–1780.
    [47] C. A. Leon, R. A. L. Drew. The influence of nickel coating on the wettabilityof aluminum on ceramics[J]. Compos. Part A,2002,33(10):1429–1432.
    [48] C. A. Leon, G. Mendoza-Suarez, R. A. L. Drew. Wettability and spreadingkinetics of molten aluminum on copper–coated ceramics[J]. J. Mater. Sci.,2006,41(16):5081–5087.
    [49] J–C. Lee, J–P. Ahn, J–H. Shim, et al. Control of the interface in SiC/Alcomposites[J]. Scripta Mater.,1999,41(8):895–900.
    [50] Z. P. Luo. A TEM study of the microstructure of SiCp/Al composite preparedby pressureless infiltration method[J]. Scripta Mater.,2001,45(10):1183–1189.
    [51] Z. P. Luo. Crystallography of SiC/MgAl2O4/Al interfaces in a pre–oxidizedSiC reinforced SiC/Al composite[J]. Acta Mater.,2006,54(1):47–58.
    [52] T. Iseki, T. Kameda, T. Maruyama. Interfacial reactions between SiC andaluminium during joining[J]. J. Mater. Sci.,1984,19(5):1692–1698.
    [53]金朝阳,陈铮,顾晓波等.用铝基钎料钎焊SiC陶瓷及其在SiC陶瓷表面浸润性的研究[J].轻合金加工技术,2004,32(3):12–16.
    [54] O. Botstein, A. Schwarzman, A. Rabinkin. Induction brazing of Ti-6Al-4Valloy with amorphous25Ti–25Zr–50Cu brazing filler metal[J]. Mater. Sci.Eng. A,1996,206(1):14–23.
    [55] O. Botstein, A. Rabinkin. Brazing of titanium-based alloys with amorphous25wt.%Ti–25wt.%Zr–50wt.%Cu filler metal[J]. Mater. Sci. Eng. A,1994,188(1–2):305–315.
    [56] C. T. Chang, Y. C. Du, R. K. Shiue, et al. Infrared brazing of high-strengthtitanium alloys by Ti–15Cu–15Ni and Ti–15Cu–25Ni filler foils[J]. Mater. Sci.Eng. A,2006,420(1–2):155–164.
    [57] C. T. Chang, R. K. Shiue, C. S. Chang. Microstructural evolution of infraredbrazed Ti–15–3alloy using Ti–15Cu–15Ni and Ti–15Cu–25Ni fillers[J].Scripta Mater.,2006,54(5):853–858.
    [58] A. Hirose, M. Nojiri, H. Ito, K. F. Kobayashi. Brazing of Ti alloys withTi–Zr–Cu amorphous filler metal[J]. Int. J. Mater. Prod. Technol.,1998,13(1–2):13–27.
    [59] H. Y. Chan, D. W. Liaw, R. K. Shiue. Microstructural evolution of brazingTi–6Al–4V and TZM using silver–based braze alloy[J]. Mater. Lett.,2004,58(7–8):1141–1146.
    [60] R. K. Shiue, S. K. Wu, C. H. Chan. The interfacial reactions of infraredbrazing Cu and Ti with two silver–based braze alloys[J]. J. Alloys Compd.,2004,372(1–2):148–157.
    [61] C. C. Liu, C. L. Ou, R. K. Shiue. The microstructural observation andwettability study of brazing Ti-6Al-4V and304stainless steel using threebraze alloys[J]. J. Mater. Sci.,2002,37(11):2225–2235.
    [62] P. Prakash, T. Mohandas, P. D. Raju. Microstructural characterization of SiCceramic and SiC–metal active metal brazed joints[J]. Scripta Mater.,2005,52(11):1169–1173.
    [63] O. Smorygo, J. S. Kim, M. D. Kim, et al. Evolution of the interlayermicrostructure and the fracture modes of the zirconia/Cu–Ag–Ti filler/Tiactive brazing joints[J]. Mater. Lett.,2007,61(2):613–616.
    [64] J. G. Lee, Y. H. Choi, J. K. Lee, et al. Low-temperature brazing of titanium bythe application of a Zr–Ti–Ni–Cu–Be bulk metallic glass (BMG) alloy as afiller[J]. Intermet.,2010,18(1):70–73.
    [65] M. K. Lee, J. G. Lee. Mechanical and corrosion properties of Ti–6Al–4V alloyjoints brazed with a low-melting-point62.7Zr–11.0Ti–13.2Cu–9.8Ni–3.3Beamorphous filler metal[J]. Mater. Charact.,2013,81:19–27.
    [66] T. Takemoto, H. Nakamura, I. Okamoto. Vacuum brazing of titanium withaluminum filler metals[J]. J. Japan Inst. Light Metal.,1986,36(10):627–632.
    [67] T. Takemoto, H. Nakamura, I. Okamoto. Aluminum brazing filler metals formaking aluminum to titanium joints in a vacuum[J]. Trans. Japan. Weld. Res,Inst.,1990,19(1):39–44.
    [68] T. Takemoto, I. Okamoto. Intermetallic compounds formed during brazing oftitanium with aluminium filler metals[J]. J. Mater. Sci.,1988,23(4):1301–1308.
    [69] W. H. Sohn, H. H. Bong, S. H. Hong. Microstructure and bonding mechanismof Al/Ti bonded joint using Al–10Si–1Mg filler metal[J]. Mater. Sci. Eng. A,2003,355(1–2):231–240.
    [70] T. W. Lee, I. K. Kim, C. H. Lee. Growth behavior of intermetallic compoundlayer in sandwich–type Ti/Al diffusion couples inserted with Al–Si–Mg alloyfoil[J]. J. Mater. Sci. Lett.,1999,18(19):1599–1602.
    [71] A. AlHazaa, T. I. Khan, I. Haq. Transient liquid phase (TLP) bonding ofAl7075to Ti-6Al-4V alloy[J]. Mater. Charact.,2010,61(3):312–317.
    [72] A. N. Alhazaa, T. I. Khan. Diffusion bonding of Al7075to Ti–6Al–4V usingCu coatings and Sn–3.6Ag–1Cu interlayers[J]. J. Alloys Compd.,2010,494(1–2):351–358.
    [73] M. S. Kenevisi, S. M. Mousavi Khoie. An investigation on microstructure andmechanical properties of Al7075to Ti–6Al–4V transient liquid phase (TLP)bonded joint[J]. Mater. Des.,2012,38:19–25.
    [74] M. S. Kenevisi, S. M. Mousavi Khoie. A study on the effect of bonding timeon the properties of Al7075to Ti–6Al–4V diffusion bonded joint[J]. Mater.Lett.,2012,76(1):144–146.
    [75]冯若,李化茂.声化学及其应用[M].安徽:安徽科技出版社,1999:67–90.
    [76] T. Frech. Ultrasonic die attachment at EWI[J/OL]. Insights,2007,20.3.6:4–6.
    [77] M. Naka, K. Hafe. Applying of ultrasonic waves on brazing of alumina tocopper using Zn–Al filler alloy[J]. J. Mater. Sci.,2003,38(16):3491–3494.
    [78] M. Naka, M. Maeda. Application of ultrasound on joining of ceramics tometals[J]. Eng. Fract. Mech.,1991,40(4–5):951–956.
    [79] K. M. Hafez, M. Naka. Effect of ultrasonic wave on the morphology offracture surface of alumina/copper brazing[J]. Novel Mater. Process.,2005:451–453.
    [80] K. Graff. Macrosonics in industry: ultrasonic soldering[J]. Ultrason.,1977,15(2):75–81.
    [81] R. W. Gunkel. Solder aluminum joints ultrasonically[J]. Weld. Des. Fabr.,1979,52(9):90–92.
    [82]李明雨.钎料液滴激光强迫超声振动及对钎料润湿的影响[D].哈尔滨工业大学博士学位论文,2001:1–8.
    [83] B. Wielage, I. Hoyer, S. Weis. Soldering aluminum matrix composites[J].Weld. J.,2007,86(3):67–70.
    [84] T. Nagaoka, Y. Morisada, M. Fukusumi, et al. Joint strength of aluminumultrasonic soldered under liqidus temperature of Sn–Zn hypereutectic solder[J].J. Mater. Process. Tech.,2009,209(11):5054–5059.
    [85] T. Nagaoka, Y. Morisada, M. Fukusumi, et al. Ultrasonic-assisted soldering of5056aluminum alloy using quasi–melting Zn–Sn alloy[J]. Metall. Mater.Trans. B,2010,41(4):864–871.
    [86] T. Watanabe, H. Adachi, A. Yangisawa. Brazing of A5056aluminum alloywith the aid of ultrasonic vibration using Ag filler metal[J]. Weld. Int.,2010,24(3):176–181.
    [87] A. Elrefaey, L. Wojarski, J. Pfeiffer, et al. Preliminary investigation onultrasonic-assisted brazing of titanium and titanium/stainless steel joints[J].Weld. J.,2013,92:148-s–153-s.
    [88] Z. W. Xu, J. C. Yan, B. Y. Zhang, et al. Behaviors of Oxide Film at theUltrasonic Aided Interaction Interface of Zn–Al Alloy and Al2O3P/6061AlComposites in Air[J]. Mater. Sci. Eng. A,2006,415(1–2):80–86.
    [89]赵维巍.超声波钎焊物理机制及应用工艺研究[D].哈尔滨工业大学博士论文,2008:37–57.
    [90] W. W. Zhao, J. C. Yan, W. Yang, et al. Capillary filling process duringultrasonically brazing of aluminium matrix composites[J]. Sci. Tech. Weld.Join.,2008,13(1):66–69.
    [91] Y. Zhang, J. C. Yan, Q. Wu. Ultrasonic brazing of high fraction volume of SiCparticulate reinforced aluminium matrix composites[J]. Mater. Sci. Tech.,2009,25(3):379–382.
    [92] S. P. Gupta. Intermetallic compounds in diffusion couples of Ti with an Al-Sieutectic alloy[J]. Mater. Charact.,2003,49(4):321–330.
    [93] K. S. Suslick, Y. Didenko, M. M. Fang, et al. Acoustic cavitation and itschemical consequences[J]. Philos. Trans. R. Soc. A,1999,357(1751):335–353.
    [94] E. B. Flint, K. S. Suslick. The temperature of cavitation[J]. Sci.,1991,253(5026):1397–1399.
    [95] K. S. Suslick, G. J. Price. Applications of ultrasound to materials chemistry[J].Annu. Re. Mater. Sci.,1999,29(1):295–326.
    [96] K. S. Suslick, D. A. Hammerton, R. E. Cline. Sonochemical hot spot[J]. J. Am.Chem. Soc.,1986,108(18):5641–5642.
    [97] K. S. Suslick. The chemical effects of ultrasound[J]. Sci. Am.,1989,260(2):80–86.
    [98] J. R. Blake, G. S. Keen, R. P. Tong, et al. Acoustic cavitation: the fluiddynamics of non–spherical bubbles[J]. Phil. Trans. R. Soc. Lond. A,1999,357(1751):251–267.
    [99] H. S. Chen, J. Li, D. R.Chen, et al. Damages on steel surface at the incubationstage of the vibration cavitation erosion in water[J]. Wear,2008,265(5–6):692–698.
    [100] A. Karimi, J. I. Martin. Cavitation erosion of materials[J]. Int. Met. Re.,1986,31(1):1–26.
    [101] M. Dular, A. Osterman. Pit Clustering in cavitation erosion[J]. Wear,2008,265(5–6):811–820.
    [102] M. Virot, T. Chave, S.I. Nikitenko, et al. Acoustic cavitation at the water–glassinterface[J]. J. Phys. Chem. C,2010,114(30):13083–13091.
    [103] S. Hattori, F. Inoue, K. Watashi, et al. Effect of liquid properties on cavitationerosion in liquid metals[J]. Wear,2008,265(11–12):1649–1654.
    [104] J. J. Lu, K-H. Z. Gahr, J. Schneider. Microstructural effects on the resistanceto cavitation erosion of ZrO2ceramics in water[J]. Wear,2008,265(11–12):1680–1686.
    [105] D. G. Shchukin, E. Skorb, V. Belova, et al. Ultrasonic cavitatiion at solidsurfaces[J]. Adv, Mater,2011,23(17):1922–1934.
    [106] D. Niebuhr. Cavitation erosion behavior of ceramics in aqueous solutions[J].Wear,2007,263(1–6):295–300.
    [107] E. A. Brujan. Cavitation in non-newtonian fluids[D]. Verlag Berlin Heidelberg.Romania,2011,155–174.
    [108] G. I. Eskin. Cavitation mechanism of ultrasonic melt degassing[J]. Ultrason.Sonochem,1995,2(2): S137–S141.
    [109] F. Burdin, N. A. Tsochatzidis, P. Guiraud, et al. Characterisation of theacoustic cavitation cloud by two laser techniques[J]. Ultrason. Sonochem,1999,6(1–2):43–51.
    [110] W. S. Chen, T. J. Matula, L. A. Crum. The disappearance of ultrasoundcontrast bubbles: observations of bubble dissolution and cavitationnucleation[J]. Ultrasound Med. Biol.,2002,28(6):793–803.
    [111] N. A. Tsochatzidis, P. Guiraud, A. M. Wilhelm, et al. Determination ofvelocity, size and concentration of ultrasonic cavitation bubbles by thephase-Doppler technique[J]. Chem. Eng. Sci.,2001,56(5):1831–1840.
    [112] J. Lee, M. Ashokkumar, S. Kentish, et al. Determination of the sizedistribution of sonoluminescence bubbles in a pulsed acoustic field[J]. J. Am.Chem. Soc.,2005,127(48):16810–16811.
    [113] A. Brotchie, F. Grieser, M. Ashokkumar. Effect of power and frequency onbubble-size distributions in acoustic cavitation[J]. Phys. Rev. Lett,2009,102(8):0843021–0843024.
    [114] H. B. Hu, X. G. Jian, T. T. Meek, et al. Degassing of molten aluminum A356alloy using ultrasonic vibration[J]. Mater. Lett.,2004,58(29):3669–3673.
    [115] E. Samiei, M. Shams, R. Ebrahimi. A novel numerical scheme for theinvestigation of surface tension effects on growth and collapse stages ofcavitation bubbles[J]. Eur. J. Mech. B/Fluids,2011,30(1):41–50.
    [116] N. M. Keita, S. Steinemann. Compressibility and structure factors at zerowavevector of liquid aluminium–silicon alloys[J]. J. Phys. C: Solid StatePhys.,1978,11(23):4635–4641.
    [117] M. Dular, B. Bachert, B. Stoffel, et al. Relationship between cavitationstructures and cavitation damage[J]. Wear,2004,257(11):1176–1184.
    [118] J. Goicoechea, C. Garcia-Coordovilla, E. Louis, et al. Surface tension ofbinary and ternary aluminium alloys of the systems Al–Si–Mg andAl–Zn–Mg[J]. J. Mater. Sci.,1992,27(19):5247–5252.
    [119] T. Dinsdale, P. N. Quested. The viscosity of aluminium and its alloys–a reviewof data and models[J]. J. Mater. Sci.,2004,39(24):7221–7228.
    [120] T. J. Mason, J. P. Lorimer. Applied sonochemistry: uses of power ultrasonic inchemistry and processing[M]. Wiley–VCH Verlag GmbH, Weinhein,2002,25–74.
    [121] C. Z. Wu, Y. J. Chen, T. S. Shih. Phase transformation in austempered ductileiron by microjet impact[J]. Mater. Charact.,2002,48(1):43–54.
    [122] V. Belova, D. A. Gorin, D. G. Shchukin, et al. Selective ultrasonic cavitationon patterned hydrophobic surfaces[J]. Angew. Chem. Int. Ed.,2010,49(39):7129–7133.
    [123] B. A. Philipp, W. Lauterborn. Cavitation erosion by single laser-producedbubbles[J]. J. Fluid Mech.,1998,361(1):75–116.
    [124] E. A. Brujan, G. S. Keen, A. Vogel, et al. The final stage of the collapse of acavitation bubble close to rigid boundary[J]. Phys. Fluids,2002,14(1):85–92.
    [125]马大猷.声学手册[M].北京:科学出版社,1983:21–138.
    [126] O. Rudenko, A. Sukhorukov. Nonstationary eckart streaming and pumping ofliquid in an ultrasonic field[J]. Acoust. Phy.,1998,44(5):565–570.
    [127] J. Campbell. Effect of vibration during solidification[J]. Int. Met. Rev.,1981,26(2):71–108.
    [128] M. Yan, Z. Fan. Review durability of materials in molten aluminum alloys[J].J. Mater. Sci.,2001,36(2):285–295.
    [129] J. Gr bner, D. Mirkovi, R. Schmid–Fetzer. Thermodynamic aspects of grainrefinement of Al-Si alloys using Ti and B[J]. Mater. Sci. Eng. A,2005,395(1–2):10–21.
    [130] S. H. Chen, L. Q. Li, Y. B. Chen, et al. Si diffusion behavior during laserwelding-brazing of Al alloy and Ti alloy with Al-12Si filler wire[J]. Trans.Nonferrous Met. Soc. China,2010,20(1):64–70.
    [131]陈树海. Ti/Al异种合金激光熔钎焊工艺与连接机理[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:86–102.
    [132] Y. Chen, S. Chen, L. Li. Influence of interfacial reaction layer morphologieson crack initiation and propagation in Ti/Al joint by laser welding–brazing[J].Mater. Des.,2010,31(1):227–233.
    [133] S. H. Chen,L. Q. Li, Y. B. Chen, et al. Joining mechanism of Ti/Al dissimilaralloys during laser welding-brazing process[J]. J. Alloys Compd.,2011,509(3):891–898.
    [134] S. Y. Chang, L. C. Tsao, Y. H. Li, et al. Brazing of6061aluminumalloy/Ti-6Al-4V using Al–Si–Cu–Ge filler metals[J]. J. Mater. Process. Tech.,2012,212(1):8–14.
    [135] Y. Iwai, S. Li. Cavitation erosion in waters having different surface tensions[J].Wear,2003,254(1–2):1–9.
    [136]马志鹏.钛合金与铝基复合材料连接界面化合物形成机制及超声钎焊工艺研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2011:80–100.
    [137]启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社,1998:25–29.
    [138] M. A. Trunov, S. M. Umbrajkar, M. Schoenitz, et al. Oxidation and melting ofaluminum nanopowders[J]. J. Phys. Chem. B,2006,110(26):13094–13099.
    [139] A. Rai, K. Park, L. Zhou, et al. Understanding the mechanism of aluminiumnanoparticle oxidation[J]. Combust. Theory Model.,2006,10(5):843–859.
    [140] A. J. Yule, Y. Al-Suleimani. On droplet formation from capillary waves on avibrating surface[J]. Proc. R. Soc. Lond. A,2000,456(1997):1069–1085.
    [141] R. J. Lang. Ultrasonic atomization of liquids[J]. J. Acoust. Soc. Am.,1962,34(1):6–8.
    [142] K. A. Ramisetty, A. B. Pandit, P. R. Gogate. Investigations into ultrasoundinduced atomization[J]. Ultrason. Sonochem.,2013,20(1):254–264.
    [143] J. E. Morris. Nanopackaging: nanotechnologies and electronics packaging[J].Springer,109–120.
    [144]李春喜,王子镐.超声技术在纳米材料制备中的应用[J].化学通报,2001,64(5):268–272.
    [145] B. Li, Y. Xie, J. Huang, et al. Sonochemical synthesis of silver, copper andlead selenides[J]. Ultrason. Sonochem.,1999,6(4):217–220.
    [146] A. Urena, E. E. Martinez, P. Rodrigo, et al. Oxidation treatments for SiCparticles used as reinforcement in aluminium matrix composites[J]. Compos.Sci. Tech.,2004,64(12):1843–1854.
    [147] P. J. Jorgensen, M. E. Wadsworth, I. B. Cutler. Oxidation of silicon carbide[J].J. Am. Ceram. Soc.,1959,42(12):613–616.
    [148] H. H. Mao, M. Selleby, B. Sundman. Thermodynamic assessment of theCaO–Al2O3–SiO2system[J]. J. Am. Ceram. Soc.,2006,89(1):298–308.
    [149] J. H. Wang. Mechanical alloying of amorphous Al–SiO2powders[J]. J. AlloysCompd.,2008,456(1–2):139–142.
    [150] P. Shen, H. Fujii, T. Matsumoto, et al. Reactive wetting of SiO2substrates bymolten Al[J]. Matall. Mater. Tran. A,2004,35(2):583–588.
    [151] B. K. Rao, P. Jena. Molecular view of the interfacial adhesion inaluminum–silicon carbide metal-matrix composites[J]. Appl. Phys. Lett.,1990,57(22):2308–2310.
    [152] W. Cui, C. W. Wang, J. C. Yan, et al. Wetting and reaction promoted byultrasound between sapphire and liquid Al–12Si alloy[J]. Ultrason. Sonochem.,2013,20(1):196–201.
    [153] J. Xiong, J. Huang, Z. Wang, et al. Joining of Cf/SiC composite to Ti alloyusing composite filler materials[J]. Mater. Sci. Tech.,2009,25(8):1046–1050.
    [154] K. S. Cruz, J. E. Spinelli, I. L. Ferreira, et al. Microstructural development inAl–Sn alloys directionally solidified under transient heat flow conditions[J].Mater. Chem. Phy.,2008,109(1):87–98.
    [155] T. H. Chuang, M. S. Yen, L. C. Tsao, et al. Development of alow–melting–point filler metal for brazing aluminium alloys[J]. Metall. Mater.Trans. A,2000,31(9):2239–2245.
    [156]高岩,曾建民,郑志刚,司家勇.汽车用铝锡铜轴瓦合金热膨胀性能研究[J].汽车工艺与材料,2005,(4):9–14.
    [157] L. E. Murr. Interfacial phenomena in metal and alloys[M]. Addisson–Wesley,London,1975.
    [158] D. Turnbull. Formation of crystal nuclei in liquid metals[J]. J. Appl. Phys.,1950,21(10):1022–1028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700