用户名: 密码: 验证码:
镧铁基室温磁致冷材料凝固行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NaZn13型La-Fe基磁致冷材料由于其具有良好的磁热效应,是潜在的室温磁制冷材料,愈来愈引起人们的广泛关注。通常情况下,合金铸锭在惰性(Ar)气氛中经过长时间的高温退火(1273K/15天)才能获得NaZn13型化合物;而用快速淬火加短时间高温退火(1273K/20分)的方法可以获得含量较高的NaZn13型化合物。但高温退火过程是不利于商业应用的,为此探索控制La-Fe基合金的凝固行为更具实际意义。由于La-Fe基合金凝固过程中相的形成机制尚不清楚,为此本文通过实验和理论计算系统研究了La-Fe基合金的凝固行为和相选择机理。
     本文首先对La-Fe基合金在电弧熔炼条件下的凝固行为进行研究。结果表明:LaFe13-xSix合金的凝固组织中主要形成α-(Fe,Si)相、LaFeSi相和La(Fe,Si)13相,当Si含量x>1.5时,出现La(Fe,Si)13包晶相,Si含量增加有利于促进La(Fe,Si)13相的形成。LaFe13-x-ySixCoy合金的凝固组织中主要形成α-(Fe,Si,Co)相、La(Fe,Co)Si相和La(Fe,Si,Co)13相,当x=1.5,y=0.2-0.6时,出现La(Fe,Si,Co)13相,Co含量增加有利于促进La(Fe,Si,Co)13相的形成。
     通过对La-Fe基合金在感应熔炼条件下的凝固组织和相组成的研究,探索合金在近平衡凝固条件下的凝固行为。结果表明:在冷速较低,过冷度较小的情况下,合金铸锭中很难形成1:13相。LaFe13-xSix合金凝固时析出相的顺序为:当Si含量0.5≤x≤1.5时,首先析出高温初生相α-(Fe,Si),接着发生共晶反应生成LaFeSi相;当Si含量x≥2.0时,析出α-(Fe,Si)相后析出LaFe2Si2相,剩余液相生成LaFeSi相;当Si含量x=3.0时,析出α-(Fe,Si)相后析出LaFe2Si2相加Fe3Si相;在Si含量较低(x≤1.5)和较高(x≥2.0)时,α-(Fe,Si)相和LaFe2Si2相分别是主要相;LaFe13-x-ySixCoy合金凝固时析出相的顺序:首先析出高温初生相α-(Fe,Si,Co),接着发生共晶反应生成La(Fe,Co)Si相;采用红外测温仪测定了LaFe13-xSix合金和LaFe13-x-ySixCoy合金的液相线温度,随Si含量的增加液相线温度降低;LaFe13-xSix合金中主要相的凝固温度:TN(1:2:2).
     采用悬浮淬火的方法和无容器电磁悬浮熔炼的方法研究了La-Fe基合金在增加冷却速率和过冷度条件下的凝固组织特征和相组成,探索快速凝固条件下合金的凝固行为。结果表明:LaFe13-xSix合金在急冷快淬时,当x=1.5时,在样品的接触面出现了La(Fe,Si)13相,当x=2.5时,在接触面La(Fe,Si)13相作为初生相析出;LaFe13-x-ySixCoy的凝固行为与x和y又很大关系,当x=0.5-1.0,y=0-0.4时,合金的显微组织由α-(Fe,Si,Co)相和La(Fe,Co)Si相组成;当x=1.0,y=0.6时,出现La(Fe,Co,Si)13相;冷却速率增加有利于La(Fe,Co,Si)13相的形成。LaFe13-xSix合金在电磁悬浮深过冷时,当x=1.5时,过冷度ΔT≥40K,在样品被直接吹气冷却的表层出现了La(Fe,Si)13相;当x≥2.5时,过冷度La(Fe,Si)13相作为初生相析出;LaFe10.9Si1.5Co0.6的凝固行为与过冷度很大关系,当过冷度△T≤10K,合金显微组织由α-(Fe,Si,Co)相和La(Fe,Co)Si相组成,当过冷度ΔT≥40K时,合金显微组织由α-(Fe,Si,Co)相、La(Fe,Si,Co)13相和La(Fe,Co)Si相组成,La(Fe,Si,Co)13相含量随过冷度的增加而增加。
     应用经典形核理论和瞬态形核理论模型对合金凝固过程中的形核率和晶核孕育时间进行了计算,该计算结果很好的对相选择机理进行解释,在过冷度达到临界过冷度之前,α-(Fe,Si)相的形核率大于La(Fe,Si)13相的形核率,在凝固过程中优先析出;当过冷度超过临界过冷度之后,La(Fe,Si)13相的形核率大于α-(Fe,Si)相,作为亚稳的初生相优先析出,α-(Fe,Si)相的形成将被抑制。根据瞬态形核理论:当熔体过冷度较低时,t1:13>tα-Fe,即1:13相的形核孕育时间大于α-Fe相的形核孕育时间,α-Fe相作为初生相首先从过冷熔体中析出;而当熔体过冷度较高时,tα-Fe>t1:13,此时1:13相的形核孕育时间小于α-Fe相的形核孕育时间,1:13相将作为初生相首先从过冷熔体中析出。
La(Fe,Si)13 pseudobinary compounds with the NaZn13 structure are enjoying more and more interest in recent years due to the large magnetocaloric effect. In common ways, the NaZn13 structure alloys are produced by arc-melting and followed by a long time (1273 K/15 days) annealing in the Ar atmosphere. Rapid quenching and subsequent short time annealing (1273 K/20 minutes) is an effective production route for La-Fe based alloys with the NaZn13 structure. From the commercial point of view, however, such a time-consuming process is unfavorable. In a word, it is of great technical interest to control the solidification behavior of La-Fe based alloys. However, the mechanism of the formation phases is not clear in La-Fe based alloys. Hence, the present work is designed to investigate the solidification behavior and the mechanism of phase election in La-Fe based compounds through experiments and theoretical calculation.
     First in the paper, solidification behavior of La-Fe based alloys was investigated using arc-melting. The results show that the microstructure of the LaFe13-xSix alloys is made of a-(Fe,Si) phase, the LaFeSi phase and La(Fe,Si)13 phase. With x>1.5, the La(Fe,Si)13 phase occur in the microstructure. It help to fomation La(Fe,Si)13 phase with the x value increasing. The microstructure of the LaFe13-x-ySixCOy alloys is made of a-(Fe,Si,Co) phase, the La(Fe,Co)Si phase and La(Fe,Si,Co)13 phase. With x=1.5 and y=0.2-0.6, the La(Fe,Si,Co)13 phase occur in the microstructure. It help to fomation La(Fe,Si,Co)13 phase with the y value increasing.
     Phase formation and structure in induction melted La-Fe based alloys has been investigated in order to research on solidification behavior of alloys under near equilibrium solidification condition. The results show that the 1:13 phase is difficult to formation under the small cooling rate or low undercooling. The phase relations of LaFei3-xSix alloys are displayed as follow. The primaryα-(Fe,Si) phase first is formed form liquid phase at high temperature, then the LaFeSi eutectic phase is crystallized at low temperature with values (x=0.5-1.5). The primary a-(Fe,Si) phase first separate out from the liquid then the LaFe2Si2 phase and the LaFeSi phase with values (x=2.0-2.5). At x=3.0, first the a-(Fe,Si) phase is formed then the lamellar eutectic phase is occurred which are LaFe2Si2 phase plus Fe3Si phase. The a-(Fe,Si) phase and the LaFe2Si2 phase is mainly phase in the microstructure of alloy with low and high Si contents, respectively. The phase relations of LaFe13-x-ySixCoy alloys are displayed as follow. The primary a-(Fe,Si,Co) phase first is formed form liquid phase at high temperature, then the La(Fe,Co)Si eutectic phase is crystallized at low temperature with values (x=0.5-1.5). The liquid temperature of LaFe13-xSix and LaFe13-x-.SixCoy alloys was measuremented by using infrared radiation thermometers. The results show that the liquid temperature of La-Fe based alloys decrease with Si content increasing; and TN(1:1:1)< TN(1:13)< TN(1:2:2) in LaFe13-xSix alloys.
     Solidification behavior of La-Fe based alloys was investigated under rapid solidification condition by using rapid quenching and levitating. Phase formation and structure of La-Fe based alloys has been investigated with the undercooling and the cooling rate increasing, respectively. The results show that under higher cooling rate, composition with x=1.5, the La(Fe,Si)13 phase is crystallization in localized thin area near contact surface of ribbon sample. When x=2.5, the La(Fe,Si)13 phase is directly crystallization without via peritectic reaction at contact surface of ribbon sample of LaFe13-xSix alloys. It implies that the solidification route change and La(Fe,Si)13 phase priority the primary a-(Fe,Si) phase in competition during rapid quenching. The solidification behavior of LaFe13-x-ySixCoy alloys depend on Si and Co contents x and y. The microstructure of compositions with x=0.5-1.0 and y=0-0.4 is made ofα-(Fe,Si,Co) phase and La(Fe,Co)Si. The microstructure of compositions with x=1.0 and y=0.6 occur La(Fe,Co,Si)13 phase. Under large undercooling, composition with x=1.5 and△T≥40K, the La(Fe,Si)13 phase is crystallization in localized thin area bottom of the sample LaFe13-xSix alloys. When x≥2.5 and△T≥55K, the La(Fe,Si)13 phase is directly crystallization without via peritectic reaction. It implies that the solidification route change and La(Fe,Si)13 phase priority the primaryα-(Fe,Si) phase in competition during levitating. The solidification behavior of LaFe10.9Co0.6,Sii.5 alloys depend on undercooling. When△T≤10K, the microstructure of the sample is made of a-(Fe,Si,Co) dendrites and in interdendritic La(Fe,Co)Si phase.α-(Fe,Si,Co) phase is primary phase. When△T≥40K, the microstructure of the sample is made ofα-(Fe,Si,Co) dendrites and in interdendritic La(Fe,Si,Co)B13B phase and La(Fe,Co)Si phase. The La(Fe,Si,Co)B13B phase increase with undercooling increasing. The solidification behaviors and microstructure of LaFe13-xSix alloys strong depend on Si contents, cooling rate and undercooling.
     The phase selection mechanisms were discussed using classical nucleation theory and transient nucleation theory. According to the calculation results of competitive nucleation, the a-(Fe,Si) phase has higher nucleation rate than La(Fe,Si)13 phase above a critical undercooling, and the primary phase isα-(Fe,Si) phase. The primary a-Fe is replaced by La(Fe,Si)13 below a critical undercooling. Based on transient nucleation theory, the calculation results of incubation time of a-(Fe,Si) phase and La(Fe,Si)13 phase in rapidly solidified alloys, it indicates that the incubation periods of a-(Fe,Si) phase are less than that of La(Fe,Si)13 phase under small undercooling. So a-(Fe,Si) phase is formed from the liquid phase at first. Under large undercooling, the incubation time of La(Fe,Si)13 phase are less than that of a-(Fe,Si) phase, and La(Fe,Si)13 phase is formed from the liquid phase at first.
引文
1. Pecharsky V K, Gschneidner Jr K A. Giant magneto caloric effect in Gd5(Si2Ge2) [J], Physical Review Letters,1997,78(23):4494-4497.
    2. Pecharsky V K, Gschneidner K A Jr. Effect of alloying on the magneto caloric effect of Gd5(Si2Ge2) [J], Journal of Magnetism and Magnetic Materials,1997,167:L179-L184.
    3. Tan L, Kreyssig A, Nandi S, Jia S, Lee Y B, Lang J C, Islam Z, Lograsso T A, Schlagel D L, Pecharsky V K, Gschneidner Jr K A, Canfield P C, Harmon B N, McQueeney R J, Goldman A I. Spin-flop transition in GdsGe4 observed by x-ray resonant magnetic scattering and first-principles calculations of magnetic anisotropy[J], Physical Review B, 2008,77:1-8.
    4. Hu Fengxia, Shen Baogen, Sun Jirong, Wang Guangjun. Very lager magnetic entropy change near temperature in LaFe11.2Co0.7Si1.1 [J], Applied Physics Letters,2002,80(5): 826-828.
    5. Hu Fengxia, Shen Baogen, Sun Jirong, Cheng Zhaohua. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 [J], Applied Physics Letters,2001,78 (23):3675-3677.
    6. Tegus O, Bruck E, Buschow K H J, Boer F R de. Transition metal based magnetic refrigerants for room temperature applications [J], Nature,2002,415:150-151.
    7. Wada H, Tanabe Y. Giant magnetocaloric effect of MnAs1-xSbx [J], Applied Physics Letter, 2001,79, (20):3302-3304.
    8. Lozano J A, Kostow M P, Bruck E, Lima J C de, Prata A T, Wendhausen P A P. Porous manganese-based magnetocaloric material for magnetic refrigeration at room temperature [J], Journal of Magnetism and Magnetic Materials,2008,320:e189-e192.
    9. Zhong W, Chen W, Au C T, Du Y W. Dependence of the magnetocaloric effect on oxygen stoichiometry in polycrystalline La2/3Ba1/3Mn03 [J], Journal of Magnetism and Magnetic Materials,2003,261:238-243.
    10. Das Soma, Dey T K. Above room temperature magnetocaloric properties compounds of La0.7Ba0.3-zNazMnO3 [J], Materials Chemistry and Physics,2008,108:220-226.
    11. Li Haibo, Feng Ming, Li Na, Zhang Xiaofen, Zheng Weitao. Magnetocaloric properties in the Eu-doped La0.65Sr0.35MnO3 systems [J], Materials Chemistry and Physics,2008,107: 377-380.
    12. Pekala M, Drozd V. Magnetocaloric effect in La0.8Sr0.23MnO3 manganite [J], Journal of Alloys and Compounds,2008,456:30-33.
    13.彭振生.高温磁制冷工质材料的研究进展[J],淮南师范学院学报,2004,6(3):8-13.
    14.陈鹏,王敦辉,都有为.磁制冷工质材料的研究进展[J],物理学进展,1999,19(4):371-385.
    15.刘爱红.熵与绝热去磁制冷的物理原理[J],物理与工程,2001,11(2):35-37.
    16.肖素芬,陈云贵,吴金平,杨涛,涂铭旌.La-Fe-M(M=Al,Si)化合物磁热性能研究进展[J],中国稀土学报,2003,21(6):621-625.
    17. Palstra T T M, Nieuwenhuys G J, Mydosh J A, Mydish J A. Mictomagnetic, ferromagnetic, and antiferro magnetic transitions in La(Fex,Al1-x)13 intermetallic compounds[J], Physical Review B,1985,31 (7):4622-4632.
    18. Liang Jingkui, Rao Guanghui, Tang Weihua, etal. Phase relations of R-T-M ternary system, crystal structure and magnetic properties of R(T,M)13 compounds (R=Light rare earth; T=Co, Fe; M=Al, Si) (Ⅰ) [J], Progress in natural science,1996,6 (6):641-650.
    19. Liang Jingkui, Rao Guanghui, Tang Weihua, etal. Phase relations of R-T-M ternary system, crystal structure and magnetic properties of R(T,M)13 compounds (R=Light rare earth; T=Co, Fe; M=Al, Si)(Ⅱ) [J], Progress in natural science,1997,7(1):1-13.
    20. Raghavan V. Fe-La-Si (Iron-Lanthanum-Silicon) [J], Journal of Phase Equilibria,2001, 22(2):158-159.
    21. Raghavan V. Al-Fe-La (Aluminum-Iron-Lanthanum) [J], Journal of Phase Equilibria, 2001,22(5):566-567.
    22. Palstra T T M, Mydosh J A, Nieuwenhuys G J, Kraan A M van der, Buschow K H J. Study of the critical behaviour of the magnetization and electrical resistivity in cubic La(Fe,Si)13 compounds [J], Journal of Magnetism and Magnetic Materials,1983,36(3): 290-296.
    23.肖素芬,陈云贵,涂铭旌.热处理时间对La(Fe0.92Co0.08)11.9Si1.1化合物组织的影响[J],磁性材料及器件,2004,35(2):25-27.
    24.肖素芬,陈云贵,涂铭旌.热处理对La-Fe-Si合金组织结构的影响[J],理化检验-物理分册,2004,4(4):168-175.
    25. Yan A, Muller K H, Gutfleisch O. Structure and magnetic entropy change of melt-spun LaFe11.57Si1.43 ribbons [J], Journal of Applied Physics,2005,97, (036102):1-3.
    26. Gutfleisch O, Yan A, Muller K H. Large magneto caloric effect in melt-spun LaFe13-xSix[J], Journal of Applied Physics,2005,97, (10M305):1-3.
    27. Liu X D, Liu X B, Altounian Z, et al. Microstructure of (Fe0.88Co0.12)82La7Si11 prepared by arc-melting/melt spinning and subsequent annealing [J], Applied Physics A,2006,82: 339-343.
    28. Liu X B, Liu X D, Altounian Z, et al. Phase formation and structure in rapidly quenched La(Fe0.88Co0.12)13Six alloys[J], Journal of Alloys and Compounds,2005,397:120-125.
    29.徐超.NaZn13型La1-zCez(Fe1-yCoy)13-xSix化合物中的晶体结构、磁性和磁热效应[D),内蒙古大学硕士论文,2006.
    30.肖素芬,陈云贵,王保木,薛勤秀,杨涛,郝春,付浩,涂铭旌.几种室温磁致冷材料磁热效应的比较[J],中国稀土学报,2003,21(4):371-375.
    31. Asaya FuJita, Shun Fujieda, Kazuaki Fukamichi, etal. Materials transactions, giant magnetic entropy change in hydrogenated La(Fe0.88Si0.12)13Hy compounds [J], Japan Institute of Metals,2002,43 (5):1202,1345.
    32. Liu X B, Altounian Z, Ryan D H. Magnetocaloric effect in La(Feo.88Al0.12)13Cx interstitial compounds[J], Journal of Physics D:Applied Physics,2004,37:2469-2474.
    33. Liu Xu Bo, Ryan D H, Altounian Z. The order of magnetic phase transition in La(Fe1-xCox)11.4Si1.6 compounds [J], Journal of Magnetism and Magnetic Materials,2004, 270:305-311.
    34. Liu Xu Bo, Altounian Z. Effect of Co content on magnetic entropy change and structure of La(Fe1-xCox)11.4Si1.6 [J], Journal of Magnetism and Magnetic Materials,2003,264: 209-213.
    35. ChenYuanfu, Wang Fang, Shen Baogen, Wang Guangjun, Sun Jirong. Magnetism and magnetic entropy change of LaFe11.6Si1.4Cx(x=0-0.6) interstitial compounds [J], Journal of Applied Physics,2003,93:1323-1325.
    36. Asaya FuJita, Shun Fujieda, Kazuaki Fukamichi, etal. Materials transactions, giant magnetic entropy change in hydrogenated La(Fe0.88Si0.12)13Hy compounds [J], Japan Institute of Metals,2002,43 (5):1202,1345.
    37. Chen Yuanfu, Wang Fang, Shen Bogen, Hu Fengxia, Cheng Zhaohua, Wang Guangjun, Sun Jirong. Large magnetic entropy change near room temperature in the LaF11.5Si1.5H1.3 interstitial compound [J], Chinese Physics,2002,11(7):741-744.
    38. Hu Fengxia, Shen, Baogen, Sun Jirong, Chen Zhaohuag. Large magnetic entropy change in La(Fe,Co)11.83Al1.17 [J], Physical Review B,2001,64:1-4.
    39. Hu Fengxia, Shen Baogen, Sun Jirong, Chen Zhaohuag. Magnetic entropy change in La(Fe0.98Co0.02)11.7Al1.3 [J], Journal of Physics:Condensed Matter,2000,12:L691.
    40. Hu Fengxia, Wang Guangjun, Wang Jing, Sun Zhigang, Dong Cheng, Chen Hong, Zhang Xixiang, Sun Jirong, Cheng Zhaohua, Shen Baogen. Magnetic entropy change and magnetoresistance compound in the LaFe11.375Al1.625 [J], Journal of Applied Physics,2002, 91(10):7836-7838.
    41. Hu F X, Wang Guangjun, Qian X L, Sun J R, Wang G J, Zhang X X, Sun Jirong, Cheng Z H, Shen B G. Magnetic entropy change and its temperature variation in compounds La(F1-xCox)11.2Si1.8 [J], Journal of Applied Physics,2002,92(7):3620-3623.
    42. Chen Yuanfu, Wang Fang, Shen Bogen, Hu Fengxia, Cheng Zhaohua, Wang Guangjun, Sun Jirong. Large magnetic entropy change near room temperature in the LaF11.5Si1.5H1.3 interstitial compound [J], Chinese Physics,2002,11(7):741-744.
    43. Chen Yanfu, Wang Fang, Shen Baogen, Hu Fengxia, Sun Jirong. Magnetic properties and magnetic entropy change of LaFe11.5Si1.5Hy interstitial compounds [J], Journal of Physics: Condensed Matter,2003,15:L164-L167.
    44. Chen Yuanfu, Wang Fang, Shen Baogen, Sun Jirong, Wang Guangjun, Hu Fengxia, Cheng Zhaohua, Zhu Tao. Effects of carbon on magnetic properties and magnetic entropy change compound of the LaFe11.5Si1.5 [J], Journal of Applied Physics,2003,93(10): 6981-6983.
    45.陈远富,王芳,王光军,孙继荣,沈保根.LaFe11.6Si1.4C0.5间隙化合物的磁性、磁相变和磁熵变[J],中国稀土学报,2003,21(4):478-480.
    46. Chen Yuanfu, Wang Fang, Shen Baogen, Wang Guangjun, Sun Jirong. Magnetism and magnetic entropy change of LaFe11.6Si1.4Cx (x=0-0.6) interstitial compounds [J], Journal of Applied Physics,2003,93, (2):1323-1325.
    47. Chen Jin, Zhang Hongwei, Zhang Ligang, Dong Qiaoyan, Wang Ruwu. Magnetic entropy change and magnetic phase transition of LaFe11.4Al1.6Cx (x=0-0.8) compounds [J], Chinese Physics,2006,15(4):0845-0849.
    48.宫继成,黄焦宏,郭锋,松林,金培育,闫宏伟.LaFe11.2Co0.7Si1.1Bx合金在室温区的大磁热效应[J],2007,8(4):34-37.
    49.李福安,松林,包黎红,哈斯朝鲁,特古斯,黄焦宏.LaFe11.9-xCoxSi1.1B0.2(x=0.7,0.8,0.9)合金的磁热效应[J],金属学报,2008,44,(3):371-374.
    50.吕伟鹏,谢鲲,杨森,宋晓平.熔体快淬La1-xNdxFe11.5Si1.5(x=0,0.3,0.5)化合物磁热性能和磁熵变[J],稀有金属材料与工程,2006,35(1):82-84.
    51. Zhu Yaomin, Xie Kun, Song Xiaoping, Sun Zhanbo, Lv Weipeng. Magnetic phase transition and magnetic entropy change in melt-spun La1-xNdxFe11.5Si1.5 ribbons [J], Journal of Alloys and Compounds,2005,392:20-23.
    52. Shen Jun, Li Yangxian, Zhang Jian, Gao Bo, Hu Fengxia, Zhang Hongwei, ChenYunzhong, Rong Chuanbing, Sun Jirong. Large magnetic entropy change and low hysteresis loss compounds in the Nd-and Co-doped La(Fe,Si)13 [J], Journal of Applied Physics,2008,103, (07B317):1-3.
    53. Wang G F, Song L, Li F A, Ou Z Q, Tegus O, Bruck E, Buschow K H J. Magneto caloric effect in the La0.8Ce0.2Fe11.4-xCoxSi1.6compounds[J], Journal of Magnetism and Magnetic Materials,2008.
    54. Fujieda S, Fujita A, Fukamichi K. Reduction of hysteresis loss in itinerant-electro nmetamagnetic transition by partial substitution of Pr for La in La(FexSi1-x)13 [J], Journal of Magnetism and Magnetic Materials,2007,310:1004-1005.
    55. Fujieda S, Fujita A, Fukamichi K. Enhancement of magnetocaloric effects in La1-zPrz(Fe0.88Si0.12)13 and their hydrides [J], Journal of Applied Physics,2007,102:1-5.
    56.李晓伟.La1-xPrxFe13-ySiy化合物的晶体结构、磁性和磁热效应(D),内蒙古大学硕士论文,2007.
    57. Passamani E C, Takeuchi A Y, Alves A L, Demuner A S, Favre-Nicolin E, Larica C, Proveti J R, Gomes A M. Magnetocaloric properties of (La,RE)Fe11.4Si1.6 compounds (RE=Y,Gd) [J], Journal of Applied Physics,2007,102:1-4.
    58.陈静.碳原子及稀土位替代NaZn13型LaFe13-xAlx化合物结构与磁性的影响[D),武汉科技大学,2006,硕士论文.
    59.潘金生,宫建民,田民波.材料科学基础[M],北京:清华大学出版社,2003,370-373.
    60.崔忠忻.金属学与热处理[M],北京:机械工业出版社,1997,96-100.
    61.王猛,林鑫,苏云鹏,沈淑娟,黄卫东.包晶凝固研究进展[J],材料科学与工程,2002,20,(1):111-114.
    62.马伟增,郑红星,李建国.过冷包晶合金的相选择分析[J],材料导报,2003,17(6):18-20.
    63.孙建俊,田学雷,王旭波,田卫星,郑洪亮,边秀房.二元包晶合金研究进展[J],2004,53,(10):765-769.
    64. Kerr H W, Kurz W. Solidification of peritectic alloys [J], International Materials Reviews, 1996,41(4):129.
    65.李双明,吕海燕,李晓历,刘林,傅恒志.包晶合金的定向凝固与生长,稀有金属材料与工程,2005,34(2):234-238.
    66. Brody H D, David S A. Solidification and Casting of Metals[M], London:The Metals Society Press,1979:144.
    67. Loser W, Herlach D M. Theoretical treatment of solidification of undercooled Fe-Cr-Ni melts[J], Metallurgical Transaction,1992,23A: 1585.
    68. Umeda T, Okane T, Kurz W. Phase selection during solidification of peritectic alloys[J], Acta Materialia,1996,44(10):4209-4216.
    69.陈绍楷,周廉,王克光,吴晓祖,张平祥,冯勇.定向凝固法制备YBCO超导体的若干材料学问题[J],稀有金属材料与工程,2002,31(2):129-134.
    70. Liu Yongchang, Yang Gencang, Zhou Yaohe. Phase competition in the undercooled hypoperitectic Ti47Al53 alloy [J], Materials Letters,2002,57:315-324.
    71. Fredriksson, Nylen T. Mechanism of peritectic reactions and transformation [J], Metal. Sci.,1982,16:283.
    72. Li Mingjun, Yang Gencang, Zhou Yaohe. Direct observation of fragments of primary dendrite from undercooled Fe-Co alloys [J], Journal of Crystal Growth,1999, 201:413-417.
    73. Trivedi R, Park J S. Dynamics of microstructure formation in the two-phase region of peritectic systems [J], Journal of Crystal Growth,2002,235:572.
    74. Zeisler K L, Lograsso T A. The occurrence and periodicity of oscillating peritectic microstructures developed during directional solidification[J], Metallurgical and Materials Transactions A,1997,28A:1543-1552.
    75. Tokieda K, Yasuda H, Ohnaka I. Formation of banded structure in Pb-Bi peritectic alloys[J], Materials Science and Engineering A,1999,262A:238-245.
    76. Lee J H, Verhoeven J D. Peritectic formation in the Ni-Al system [J], Journal of Crystal Growth,1994,144(3-4):353-366.
    77. Umeda Takateru, Okane Toshimitsu. Solidification microstructures selection of Fe-Cr-Ni and Fe-Ni alloys[J], Science and Technology of Advanced Materials,2001,2(1):231-240.
    78. Xu W, Feng Y P, Li Y, Zhang G D, Li ZY. Rapid solidification behavior of Zn-rich Zn-Ag peritectic alloys [J], Acta Materialia,2002,50:183-193.
    79. Hillert M. Solidification and Casting of Metals [M], London:The Metals Society Press, 1979:81.
    80.陈光,傅恒志.非平衡凝固新型金属材料[M],北京:科学出版社,2004,95.
    81.胡汉起.金属凝固原理[M],北京:机械工业出版社,2000,255.
    82. Herlach D M, Gao J, Holland-Moritz D, Volkmann T. Nucleation and phase-selection in undercooled melts[J], Materials Science and Engineering A,2004,375-377:9-15.
    83. Gao J, Volkmann T, Strohmenger J, Herlach D M. Phase selection in undercooled Nd-Fe-Co-B alloy droplets[J], Materials Science and Engineering A,2004,375-377: 498-501.
    84. Heinen O, Holland-Moritz D, Herlach D M. Phase selection during solidification of undercooled Ti-Fe, Ti-Fe-O and Ti-Fe-Si-O melts-Influence of oxygen and silicon[J], Materials Science and Engineering A,2007,449-451:662-665.
    85. Perepezko J H. Nucleation controlled phase selection during solidification [J], Materials Science and Engineering A,2005,413-414:389-397.
    86. Liu N, Liu F, Yang G C, Chen Y Z, Yang C L, Zhou Y H. Nucleation and phase selection in undercooled Fe-Co melt[J], Journal of Alloys and Compounds, xxx(2008)xxx-xxx.
    87. Tsakiropoulos P, Shao G. Phase selection in non-equilibrium processed TM-Al intermetallic alloys[J], Materials Science and Engineering A,2004,375-377:201-206.
    88. Loser W, Leonhardt M, Lindenkreuz H G, Arnold B. Phase selection in undercooled binary peritectic alloy melts[J], Materials Science and Engineering A,2004,375-377: 534-539.
    89.马卫红,坚增运,严文马.液态金属的深过冷及其凝固组织[J],西安工业学院学报,2000,20(1):49-55.
    90.孙万里,张忠明,徐春杰,郭学峰.深过冷快速凝固技术的研究进展[J],兵器材料科学与工程,2005,28(1):66-70.
    91.谢发勤,张军,毛协民等.深过冷熔体激发快速定向凝固[J],材料科学与工艺,996,4(3):102.
    92.程天一,章守华.快速凝固技术与新型合金[M],北京:宇航出版社,1990.
    93.韩秀君,王楠,魏炳波.Pb-Bi亚共晶和包晶合金的快速凝固,金属学报,2000,6,Vol.36(6):573-578.
    94.张蜡宝,代富平,熊予莹,魏炳波.深过冷Ni-15%Sn合金熔体表面张力研究,物理学报,2006,5(1):419-423.
    95. Jian Zengyun, Yang Gencang, Zhou Yaohe. Preparation of silica glass coating and the effect of the coating on undercooling of Al-12.5%Si alloy [J]. Progress in Natural Science, 1997,7(3):354.
    96.魏炳波,王彬,Barth M, Herlachd M.液态金属快速结晶的热力学驱动力[J],金属学报,1994,30(7):289-293.
    97. Xi Zengzhe, Yang Geneang, Zhou Yaohe. Growth morphology of Ni3Si in high undercooled Ni-Si eutectic alloy [J], Proess in Natural Science,1997,7(5):624.
    98.李金富,杨根仓,吕衣礼,周尧和.深过冷合金单向凝固组织的力学性能[J],材料研究学报,1997,11(2):137.
    99.周根树,杨根仓,周尧和.液态金属的自分离净化法[J],材料科学进展,1993,7(2):115.
    100.曹崇德,鲁晓宁,魏炳波.深过冷液态Co85Cu15亚包晶合金的快速凝固[J],金属学报,1998,34(5):489-496.
    101.Li Jinfu, Yang Geneang, Zhou Yaohe. Mode of dendrite growth in undercooled alloy melts [J], Materials Research Bulletin,1998,33(1):141-148.
    102.李金富,杨根仓,周尧和.深过冷Ni-50%Cu合金的晶粒细化[J],金属学报,1998,34(2):113-118.
    103.Gao J, Volkmann T, Herlach D M. Undercooling-dependent solidification behavior of levitated Nd14Fe79B7 alloy droplets [J], Acta Materialia,2002,50:3003-3012.
    1.韩至成.电磁冶金学[M],北京:冶金工业出版社,2001,277-281.
    2. Okress E C, Wroughton D M, Comenetz G. Electromagnetic levitation of solid and molted metals[J], Journal of Applied Physical,1952, (23):545-548.
    3. Herlach D M. Non-equilibrium solidification of undercooled metallic melts [J], Materials Science and Engineering R,1994(12):177-272.
    4. Herlach D M, Cochrane RF, Egry I, etal. Containerless processing in the study of metallic melts and their solidification [J], International Materials Reviews,1993, (38):273-347.
    5. Suzuki M, Piccone T J, Fleminge M C. Solidification of highly undercooled Fe-P alloys[J], Metallurgical Transactions A.1991, (22):2761-2768.
    6.陈光,傅恒志.非平衡凝固新型金属材料[M],北京:科学出版社,2004,74-45.
    7.姜忠良,陈秀云.温度的测量与控制[M],北京:清华大学出版社,2005:117-157.
    8.黄少良.北美标准中测温方法的比较与研究[J],家电科技,2006,1:34-37.
    9.郑子伟.红外测温仪概述[J],计量与测试技术,2006,33(10):22-23.
    10.黄少良.北美标准中测温方法:热电偶与红外测温方法比较[J],电子质量,2005,10:56-58.
    11.聂绍龙.大距离系数红外测温理论及应用研究[D],杭州:浙江大学硕士学位论文,2003.1.
    12.戴敏,张荣克.正确使用红外辐射测温仪[J],石油化工设备技术,2002,23(4):50-52.
    13.刘福杰,王浩静,范立东.红外测温仪原理及其在应用中注意的问题[J],现代仪器,2007,4:50-51.
    14.曾强,舒芳誉,李清华.红外测温仪的工作原理及应用[J],测试技术,2007,1:25-26.
    15. Lozano J A, Kostow M P, Bruck E, Lima J C de, Prata A T, Wendhausen P A P. Porous manganese-based magnetocaloric material for magnetic refrigeration at room temperature [J], Journal of Magnetism and Magnetic Materials,2008,320:e189-e192.
    16.程守珠,江之水.普通物理学[M],北京:高等教育出版社,2000,314-327.
    1. Satoshi Hirosawa, Hiroyuki Tomizawa, Katsunori Bekki. Rapidly Solidified La(Fe1-xSix)13 Alloys and Their Magnetocaloric Properties[J], Ieee Transactions on Magnetics,2006, Vol.(10):3608-3610.
    2.肖素芬,陈云贵,涂铭旌.热处理时间对La(Fe0.92Co0.08)11.9Si1.1化合物组织的影响[J],磁性材料及器件,2004,35(2):25-27.
    3. Liang Jingkui, Rao Guanghui, Tang Weihua, etal. Phase relations of R-T-M ternary system, crystal structure and magnetic properties of R(T,M)13 compounds (R=Light rare earth; T=Co, Fe; M=Al, Si) (Ⅰ) [J], Progress in natural science,1996,6 (6):641-650.
    4. Liang Jingkui, Rao Guanghui, Tang Weihua, etal. Phase relations of R-T-M ternary system, crystal structure and magnetic properties of R(T,M)13 compounds (R=Light rare earth; T=Co, Fe; M=Al, Si)(Ⅱ) [J], Progress in natural science,1997,7(1):1-13.
    5. Raghavan V. Fe-La-Si (Iron-Lanthanum-Silicon) [J], Journal of Phase Equilibria,2001,22(2):158-159.
    6. Hu F.X., Shen B.G., Sun J.R., Cheng Z.H., Rao G.H., Zhang X.X. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6[J], Applied Physics Letters,2001,78(23):3675-3677.
    7. Fujita A, Fujieda S, Fukamivhi K. Large magnetocaloric effect in La(FexSi1-x)13 itinerant-electronmeta magnetic compounds[J], Applied Physics Letters,2002,81(7):1276-1278.
    8. Wen G H, Zheng R K, Zheng R K, Chen JL, Wu G H. Magnetic entropy change in LaFe13-xSix intermetallic compounds [J], Journal of Applied Physics,2002, 91(10):8537-8539.
    9. Cheng Zhaohua, Di Naili, Li Qingan, Kou Zhiqi, Luo Zhi, Ma Xiao, Wang Guangjun, Hu Fengxia, Shen Baogen. Mossbauer effect probe of field-induced magnetic phase transition in LaFe13-xSix intermetallic compounds [J], Applied Physics Letters,2004,85(10): 1745-1747.
    10. Satoshi Hirosawa, Hiroyuki Tomizawa, Katsunori Bekki. Rapidly Solidified La(Fe1-xSix)13 Alloys and Their Magnetocaloric Properties [J], Ieee Transactions on Magnetics,2006, 42(10):3608-3610.
    1. Asaya FuJita, Shun Fujieda, Kazuaki Fukamichi, etal. Materials transactions, giant magnetic entropy change in hydrogenated La(Fe0.88Si0.12)13Hy compounds [J], Japan Institute of Metals,2002,43 (5):1202,1345.
    2. Zhu Yaomin, Xie Kun, Song Xiaoping, Sun Zhanbo, Lv Weipeng. Magnetic phase transition and magnetic entropy change in melt-spun La1-xNdxFe11.5Si1.5 ribbons [J], Journal of Alloys and Compounds,2005,392:20-23.
    3. Wang G F, Song L, Li F A, Ou Z Q, Tegus O, Bruck E, Buschow K H J. Magneto caloric effect in the La0.8Ce0.2Fe11.4-xCoxSi1.6compounds[J], Journal of Magnetism and Magnetic Materials,2008.
    4. Liu X D, Liu X B, Altounian Z, et al. Microstructure of (Fe0.88Co0.12)82La7Si11 prepared by arc-melting/melt spinning and subsequent annealing [J], Applied Physics A,2006, and 82: 339-343.
    5. Liu X B, Liu X D, Altounian Z, et al. Phase formation and structure in rapidly quenched La(Feo.88Co0.12)13Six alloys[J], Journal of Alloys and Compounds,2005,397:120-125.
    6. Liang Jingkui, Rao Guanghui, Tang Weihua, etal. Phase relations of R-T-M ternary system, crystal structure and magnetic properties of R(T,M)13 compounds (R=Light rare earth; T=Co, Fe; M=Al, Si)(Ⅱ) [J], Progress in natural science,1997,7(1):1-13.
    7. Raghavan V. Fe-La-Si (Iron-Lanthanum-Silicon) [J], Journal of Phase Equilibria,2001, 22(2):158-159.
    1. Liang Jingkui, Rao Guanghui, Tang Weihua, etal. Phase relations of R-T-M ternary system, crystal structure and magnetic properties of R(T,M)13 compounds (R=Light rare earth; T=Co, Fe; M=Al, Si) (Ⅰ) [J], Progress in natural science,1996,6 (6):641-650.
    2. Liang Jingkui, Rao Guanghui, Tang Weihua, etal. Phase relations of R-T-M ternary system, crystal structure and magnetic properties of R(T,M)13 compounds (R=Light rare earth; T=Co, Fe; M=Al, Si)(Ⅱ) [J], Progress in natural science,1997,7(1):1-13.
    3. Trivedi R, Kurz W. Dendritic growth [J], International Materials Reviews,1994,39 (2):49-73.
    4.马伟增,郑红星,李建国.过冷包晶合金的相选择分析[J],材料导报,2003,17(6):18-20.
    5. Chen Yuanfu, Wang Fang, Shen Baogen, Sun Jirong, Wang Guangjun, Hu Fengxia,Cheng Zhaohua, Zhu Tao. Effects of carbon on magnetic properties and magnetic entropy change of the LaFe11.5Si1.5 compound [J], Journal of Applied Physics,2003,93(10):6981-6983.
    6. X.D.Liu, X.B.Liu, Z.Altounian, G.H.Tu. Microstructures of (Fe0.88Co0.12)82La7Si11 prepared by arc-melting/melt spinning and subsequent annealing [J], Applied Physics A,2006,82:339-343.
    7. Herlach Dieter M. Solidification from undercooled melts [J], Materials Science and Engine-ering, 1997,A226-228:348-356.
    8. Moir S A, Herlach D M. Observation of phase selection from dendrite growth in undercoodled Fe-Ni-Cr melts [J], Acta Mater,1997,45(7):2827-2837.
    9. Hermann R, Loser W. Extension of the primary solidification region of Nd2Fe14B by levitation of undercooled melts[J], Journal of Applied Physics,1998,83, (11):6399-6401.
    10. Holland-Moritz Dirk. Short range order and solid-liqiud interfaces in undercooled melts [J], International Journal of Non-Equilibrium Processing,1998,11:169-199.
    11. Holland-Moritz D, Schroers J, Herlach D.M, Grushko B, Urban K. Undercooling and solidification behaviour of melts of the quasicrystal-forming alloys Al-Cu-Fe and Al-Cu-Co[J], Acta Materialia,1998, 46:1601.
    12. Christian J.W. In the theory of transformation in metals and alloys [J], Oxford,1975,418-476.
    13.宫民选.镧铁硅合金深过冷熔体中品体相的形核动力学[D),东北大学硕士论文,2008.
    1.宫民选.镧铁硅合金深过冷熔体中晶体相的形核动力学[D],东北大学硕士论文,2008.
    2. Holland-Moritz Dirk. Short range order and solid-liqiud interfaces in undercooled melts [J], International Journal of Non-Equilibrium Processing,1998,11:169-199.
    3. Holland-Moritz D, Schroers J, Herlach D.M., Grushko B, Urban K. Undercooling and solidification behaviour of melts of the quasicrystal-forming alloys Al-Cu-Fe and Al-Cu-Co[J], Acta Materialia,1998,46:1601.
    4. Christian J.W. In the theory of transformation in metals and alloys [J], Oxford,1975, 418-476.
    5. Mondal K, Murty B.S. On the prediction of solid-liquid interfacial energy of glass forming liquids from homogeneous nucleation theory [J], Materials Science and Engineering A,2007,454-455:654-661.
    6. Saatci B and Pamuk H. Expermental determination of solid-liquid surface energy for Cd solid solutin in Cd-Zn liquid solutions [J], J.Phys.Condens.Matter,2006,18:10143-10155.
    7. Spaepen Frans. A structural model for the solid-liquid interface in monatomic systems [J], Acta Metallurgica,1975,23:729-743.
    8. Thompson C.V. Ph.D. Thesis [D], Hurvard University,1979.
    9. Holland-Moritz D. On the energy of the interface between a melt and quasicrystalline and polytetrahedral phases [J], Journal of Non-Crystalline Solids,1999,250-252:839-843.
    10. Spaepen F, Meyer R B. The surface tension in a structural model for the solid-liquid interface [J], Scripta Materialia,1976,10,257.
    11. Shao G, TsakiropoulosP. Rate of nucleation in condensed systems prediction of phase selection in rapid solidification using time dependent nucleation theory [J], Acta Metall Mater,1994,42:2937-2954.
    12.李明军.深过冷Fe-Co合金中的亚稳相及其凝固行为[D],西安:西北工业大学,1999.
    13.樊建锋,刘新宝,谢辉,王锦程,宋广生,杨根仓.深过冷Al72Ni12Co16合金熔体中的相选择[J],中国有色金属学报,2003,13(5):1087-1091.
    14.庞华,邓江宁,林锦新,张宝金,曾梅光.用瞬态形核理论研究钕对快凝Al-Fe-V-Si合金非晶形成倾向的影响[J],中国稀土学报,2000,18(5):131-134.
    15.刘丽琴,张忠明,徐春杰,郭学锋.深过冷Cu-20%Pb亚偏晶合金的再辉与形核分析[J],热处理学报,2008,29(1):102-]06.
    16. Trivedi R, Kurz W. Dendritic growth [J], International Materials Reviews,1994,39 (2):49-73.
    17.陈光,傅恒志.非平衡凝固新型金属材料[J],科学出版社,北京,2004:68-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700