用户名: 密码: 验证码:
高强抗热腐蚀航空涡轮叶片材料(DZ68)的初步研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验合金DZ68是为了满足在沿海工作的飞机发动机涡轮叶片材料的工作需要所研制的一种定向凝固镍基高温合金。这就要求DZ68合金具有高的承温能力和优异的抗热腐蚀等性能。本试验运用低偏析技术这一新的合金化思路,并且参考Rene’142、DZ125L和DZ38G等合金的成分,在DZ68合金中少加或不加正偏析严重的Hf、Nb和Ti,而加入偏析较小的Al和Ta来保证γ′的数量;同时加入一定量的负偏析元素W、Re以提高合金固溶强化效果,并且保持较高的Cr含量,来提高合金的抗热腐蚀性能。
     DZ68合金的热处理制度由均匀化预处理、固溶处理和两段时效处理组成,热处理制度为1240℃/0.5h+1260℃/0.5h+1280℃/2h/空+1120℃/4h+1h缓冷到1080℃+1080℃/4h/空冷+900℃/4h/空冷。DZ68-1合金试样经过热处理后,进行了室温拉伸性能和高温持久性能试验,并与DZ125和DZ38G合金进行了比较,持久试验条件为980℃/235MPa和980℃/245MPa。在900℃、75%Na_2SO_4+25%NaCl熔盐的条件下,测试了DZ68-1合金的抗热腐蚀性能,并与DZ125L和DZ38G合金进行了比较。
     力学性能试验的结果表明,由于DZ68-1中γ′的体积份数大约为50%,并且含有一定量W和Re,使其有优异的力学性能。DZ68-1与DZ125的室温拉伸性能相当,而DZ38G的抗拉强度和延伸率较低。在本试验持久条件下,DZ68-1合金的持久性能已接近DZ125的水平,显著高于DZ38G合金。
     热腐蚀试验的结果表明,DZ68-1合金的抗热腐蚀性能与DZ38G合金相当,明显好于DZ125L合金。三种合金的热腐蚀均属于碱性熔融腐蚀,但由于它们的成分、组织均匀性和腐蚀产物的不同,三种合金的热腐蚀过程也不相同。DZ125L合金在较短的时间内就发生严重的腐蚀;DZ38G合金的组织偏析较严重,使其在腐蚀过程中发生了局部腐蚀;DZ68-1合金的组织均匀,腐蚀过程中发生均匀腐蚀,即使在Cr含量较低于DZ38G合金的情况下,其抗热腐蚀能力与DZ38G相当。
In order to meet the requirements of marine gas turbine blade materials, a new-typed directional solidification nickel-base superalloy DZ68 alloy was developed. So DZ68 alloy should have high temperature capability and good hot corrosion resistance. On the basis of Rene' 142, DZ125L and DZ38G (IN738) alloys, DZ68 was made by ourselves with low-segregation. The segregating lightlyγ'- phase forming elements of AI and Ta are added into DZ68 for precipitation hardening, this alloy has a small amount of Ti and no Hf or Nb segregating severely elements. High contents of refractory elements such as W and Re are added for solid solution strengthening and High Cr content is added into DZ68 for hot corrosion resistance.
     The heat treatment of DZ68 is composed of prior homogeneous treatment, solid solution treatment and two aging treatments. The whole heat treatment as follows: 1240℃/0.5hrs+1260℃/0.5hrs+1280℃/2hrs air cool, 1120℃/4hrs+One hour cool to 1080℃+1080℃/4hrs air cool, 900℃/4hrs air cool. Mechanical properties of DZ125, DZ38G and DZ68-1 alloys after each heat treatment have been compared in this paper. The rupture conditions are in the cases of 980℃/235MPa and 980℃/245MPa. The hot corrosion resistances of DZ125L, DZ38G and DZ68-1 alloys have been compared at the conditions of 900℃and 75%Na_2SO_4+25%NaCl molten salt.
     The mechanically experimental results show that the mechanical properties of DZ68-1 are high, because theγ'-volume faction of DZ68-1 is about 50% and it contains a certain amounts of W and Re. The room temperature tensile properties of DZ68-1 are similar to DZ125, the extension strength and extensibility of DZ38G is poor. The rupture properties of DZ68-1 are equivalent to DZ125 in the experimental cases and better than that of DZ38G.
     The hot corrosion experimental results show that the hot corrosion resistance of DZ68-1 is equivalent to DZ38G alloy and better than that of DZ125L. In this paper, the hot corrosion mechanism of three alloys is previously proposed the basic dissolution model. The processes of their hot corrosion are different for which they have different compositions, corrosive productions and microstructures. DZ125L alloy is corroded severely after short time; DZ38G alloy is locally corroded seriously for its non-uniform microstructure; DZ68-1 alloy has a more homogeneous microstructure and uniform corrosion, so its hot corrosion resistance is equivalent to DZ38G even if the chromium content of DZ68-1 is lower than that of DZ38G.
引文
[1] Sims cT著,赵杰,朱世杰,李晓刚,王富岗译.高温合金.大连:大连理工出版社,1992.1.
    [2] 师昌绪,陆达,荣科.中国高温合金四十年.北京:中国科学技术出版社,1996.5-21.
    [3] 黄乾尧,李汉康,郭建亭等.高温合金.北京:冶金工业出版社,2000.69-74.
    [4] 师昌绪,仲增墉.金属学报.中国高温合金40年.1997(33):1-8.
    [5] 殷凤仕.熔体处理和热处理对M963合金微观结构及力学性能的影响:(博士学位论文).沈阳:中科院金属研究所,2002.
    [6] Ross W. Rene' 80: A cast turbine blade alloy. Metal Progress, 1971, 3:93-94
    [7] Earl W Ross, Kenvin S O'Hara. Rene' 142: A high strength, oxidation resistant DS turbine airfoil alloy. The Minerals, Metal & Materials Society, Superalloys 1992: 257-265.
    [8] Cetel A D, Duhl D N. Second generation columnar grain nickel-base superalloy. The Minerals, Metal & Materials Society, Superalloys 1992: 287-296.
    [9] Nathal M V, Maier R D, Ebert L J. The influence of cobalt on the tensile and stress-rupture properties of the Nickel-base superalloy Mar-M247. Metall. Trans. 1982(10):1767-1774.
    [10] He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T. Effect of carbides on the creep properties of a Ni-base superalloy M963. Mater. Sci. Eng. A. 2005(397):297-304.
    [11] He L Z, Zheng Q, Sun X F, Hou G C, GuanH R, Hu Z Q. M23C6 precipitation behavior in a Ni-base superalloy M963. J Mater. Sci. 2005(40): 2959-2964.
    [12] Jiang W H, Yao X D, Guan H R, Hu Z Q. Carbide behavior during high temperature creep in DZ40M co-base superalloy. J Mater. Sci. Technol. 1999(15): 515-518.
    [13] Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy. Mater. Sci. Eng. A. 2003(361):191-197.
    [14] Sun W R, Lee J H, Seo S M, Choe S J, Hu Z Q. The eutectic characteristic of MC-type carbide precipitation in a DS nickel-base superalloy. Mater. Sci. Eng. A. 1999(271):143-149.
    [15] Chen Q Z, Jones C N, Knowles D M. Effect of alloying chemistry on MC carbide morphology in modified RR2072 and RR2086 SX superalloys. Scripta Mater. 2002(47):669-675.
    [16] Lvov G, Levit V I, Kaufman M J. Mechanism of primary MC carbide decomposition in Ni-base superalloys. Metall. Trans. A. 2004(35):1669-1679.
    [17] 黄乾尧,师燕渝.一种镍基高温合金的碳化物析出与转化动力学.金属学报.1988(24):A399-403.
    [18] 李玉清.NiCrWTi铸造高温合金中MC和M23C6的可逆反应.金属学报.1982(18):577-580.
    [19] 黄乾尧,张绍津,甄宝林.镍基铸造高温合金中元素对一次碳化物MC的组成及其形态的影响.钢铁.1987(16):41-47.
    [20] 李玉清,刘锦岩.高温合金中Cr_7C_3相的晶体结构与孪晶.金属学报.1986(22):A50-63.
    [21] Volek h, Pyczak F, Singer R F, Mughrabi H. Partitioning of Re between γand γ' phase in nickel-base superalloys. Scripta Materialia 52 (2005):141-145.
    [22] Warren P J, Cerezo h, Smith G D W. An atom probe study of the distribution of rhenium in a nickel-base superalloy. Materials Science and Engineering A250 (1998):88-92.
    [23] Pyczak F, Devrient B, Neuner F C, Mughrabi H. The influence of different alloying elements on the development of the γ/γ' microstructure of nickel-base superalloys during high-temperature annealing and deformation, hcta Materialia 53 (2005):3879-3891
    [24] Pyczak F, Devrient B, Mughrabi H. The effects of different alloying elements on the thermal expansion coefficients, Lattice constants and misfit of nickel-base superalloys investigated by X-ray diffraction. The Minerals, Metal & Materials Society, Superalloys 2004: 827-836.
    [25] Tascioglu E, Baldan h. Effect of section-size and initial γ' morphology on the creep behavior of a superalloy. J. Mater. Sci. L. 2001(20):155-158.
    [26] Chang K M, Liu X B. Effect of γ' content on the mechanical behavior of the Waspaloy alloy system. Mater. Sci. Eng. h. 2001(A308):1-8.
    [27] Mangen W, Nembach E. The effect of grain size on the yield strength of the γ'-hardened superalloy nimonic PE16. Acta Metall. 1989(37):1451-1463.
    [28] 柳光祖,田耘,单秉权.氧化物弥散强化高温合金.粉末冶金技术.2001(19):20-23
    [29] 何峰,汪武祥.直接热等静压粉末Udimet720合金的组织与性能.粉末冶金技术.2001(11):7-11.
    [30] 张莹.俄罗斯粉末高温合金涡轮盘的生产工艺.钢铁研究学报.2000(12):63-69.
    [31] 国为名,宋璞生,吴剑涛,张风戈,杨成,张义文,陈生大.粉末高温合金的研制与展望.粉末冶金技术.1999(9):9-16.
    [32] 金涛,李金国,赵乃仁,王震,孙晓峰,管垣荣,胡壮麒.抽拉速率对一种镍基单晶高温合金凝固参数和凝固组织的影响.材料工程.2002(3):36-40.
    [33] 刘忠元,李建国,傅恒志,佘力,陈荣章,王罗宝.两种定向凝固方法DZ22合金的力学性能和组织.材料研究学报.1996(10):13-18.
    [34] 何国,李建国,毛协民,傅恒志.定向凝固晶粒宏观竞争生长机制的实验研究.人工晶体学报.1995(24):278-283.
    [35] Woodford D A, Stiles D, High-temperature performance evaluation of a directionally solidified nickel base superalloy. J Mater. Eng. Perf. 1997(6):521-533.
    [36] Versnyder F L, Shank M E. Development of columnar grain and single crystal high temperature materials through directional solidification. Mater. Sci. Eng. 1970(6):213.
    [37] Huang W D, Zhou R H. Interface morphology transitions during directional solidification in a transparent model alloy. Acta Metall. Sinica. 1991(27):A86-A91.
    [38] 周镇华,李建国,付恒志.定向凝固技术及其研究进展.材料导报.1996(6):1-6.
    [39] 林栋梁,黄颂惠.定向凝固技术及定向凝固高温合金.材料科学与工程.1985(4):166.
    [40] Erickson J S. Advances in fabricating aerospace structures, process speeds up directional solidification. Metal Progress. 1971(3):58-60.
    [41] Sims C T. A history of superalloy metallurgy for superalloy Metallurgists. The Minerals, Metal & Materials Society, Superalloys 1984: 401-422.
    [42] 师昌绪,陆达,荣科.中国高温合金四十年.北京:中国科学技术出版社,1996.100-102.
    [43] Gurrappa I. Hot corrosion Behavior of CM 247LC Alloy in Na_2SO_4 and NaCl Environments. Oxid. Met., 1999, 51: 353-371.
    [44] 李铁藩等.金属高温氧化和热腐蚀.北京:化学工业出版社,2003:259-260.
    [45] Stringer J. High-temperature corrosion of superalloys. Mater. Sci. Tec. 1987, 3: 482-493.
    [46] Rapp R A. Chemistry and Electrochemmistry of the Hot Corrosion of Metals. CORROSION-NACE, 1986, 42(10): 568-577
    [47] Goebel J A, Pettit F S. Na_2SO_4-Induced Accelerated Oxidation(Hot Corrosion)of Nickel. Metall. Trans., 1970: 1943-1954.
    [48] Simons E L, Browning G V, Liebhatsky H A. Sodium sulfate in gas turbines. Corrosion, 11 (1955) 505-514.
    [49] Seybolt A U. Contribution to the study of hot corrosion. Trans. AIME 242 (1968): 1955-1961.
    [50] 朱日彰,左禹,郭曼玖.镍基高温合金热腐蚀过程中内硫化-氧化机制的探讨.金属学报,21(1985):451.
    [51] Bornstein N S, DeCrescente M A. The role of sodium in the accelerated oxidation phenomenon termed sulfidation. Metall. Trans., 2 (1971): 2875-2883.
    [52] Bornstein N S, DeCrescente M A. The role of sodium and sulfur in the accelerated oxidation phenomena-sulfidation. Corrosion, 26 (1970): 209-214.
    [53] Goebel J A, Pettit FS, Goward G W. Mechanism for the hot corrosion of nickel-base alloys. Metall. Trans., 4 (1973): 261-276.
    [54] 张允书,石声泰.热腐蚀的电化学机理初探.腐蚀科学与防护技术,1993,5:23-30.
    [55] 曾潮流,张鉴清等.熔盐腐蚀电化学.腐蚀科学与防护技术,1992,4(1):16-26.
    [56] 朱日彰,何业东,齐慧滨等.高温腐蚀及耐高温腐蚀材料.上海:上海科学技术出版社,1995:250-260.
    [57] Shi S T, Zhang Y S, Li X M. Sub-melting Point Hot Corrosion of Alloys and Coatings. Mater. Sci. Eng., 1989, 120: 277-282.
    [58] Chiang K T, Pettit F S, Meier G H. In High Temperature Corrosion. NACE-6, Ed by Rapp R A. 1983, 519-530.
    [59] Luthra K L, Shores D A. Mechanism of Na_2SO_4 Induced Corrosion at 600-900℃. J. Electrochem. Soc. Solid-State Science and Technology, 1980, 2202-2210.
    [60] Luthra K L. Low Temperature Hot Corrosion of Cobalt-Base Alloys: PartⅠ. Morphology of the Reaction Product. Metall. Trans., 1982, 13A: 1843-1852.
    [61] Luthra K L. Low Temperature Hot Corrosion of Cobalt-Base Alloys: PartⅡ. Reaction Mechanism. Metall. Trans., 1982, 13A: 1853-1864.
    [62] Misra A K, Whittle. Effects of SO_2 and SO_3 on the Na_2SO_4 Induced Corrosion of Nickel. Oxid. Met., 1984, 22(1/2): 1-33.
    [63] Karl P L, Per K. Sulfate-Induced Hot Corrosion of Nickel. Oxid. Met., 1984, 21(5/6): 233-270.
    [64] Luthra K L. Simultaneous Sulfidation-Oxidation of Nickel at 603 ℃ in SO_2-O_2-SO_3 Atmospheres. Metall. Trans., 1979, 10A: 621-631.
    [65] 朱日彰,郑晓光.镍在705℃熔盐中加速腐蚀的研究.中国腐蚀与防护学报,1987,7(3):207-212.
    [66] Vasantasree V, Hocking M G. Hot Corrosion of Ni-Cr alloys in SO_2+O_2 atmospheres-Ⅰ. Corrosion kinetices. Corrosi. Sci., 1976, 16: 261-278.
    [67] Bocking M G, Vasantasree V. Hot Corrosion of Ni-Cr alloys in SO_2+O_2 atmospheres-Ⅱ. Visual observations analyses and mechanisms. Corrosi. Sci., 1976, 16: 279-295.
    [68] Ren X, Wang F H, Wang X. High-temperature oxidation and hot corrosion behaviors of the NiCr-CrAl coating on nickel-based superalloy. Surface & Coatings Technology, 2005, 198: 425-431.
    [69] Kearsey R M, Beddoes J C, Jones P, Au P. Compositional design considerations for microsegregation in single crystal superalloy systems. Intermetallics, 2004,12:903-910.
    [70] Yaoxiao Z. Process of the Formation of (γ+γ') Eutectics and Control of σPhase In a Cast Nickel Base Superalloy. Acta Metall. Sin., 1986,22(2), A93.
    [71] 朱耀宵.工业和舰船用燃气轮机涡轮叶片的新材料-M38合金.高温合金论文集.1979:398-402.
    [72] 朱耀宵.新型涡轮叶片材料-低偏析铸造和定向凝固高温合金.第六届全国高温合金年会论文集,1987,:71-76.
    [73] 朱洪群,唐亚俊,郭守仁,胡壮麒.Zr对定向凝固DZ38合金组织和偏析的影响.金属学报,1995(31):50-53.
    [74] Yaoxiao Zhu, Shunnan Zhang, Leying Xu, Jing Bi, Zhuangqi Hu, Changxu Shi. Superalloys with low segregation. The Minerals, Metal & Materials Society, Superalloys 1988: 703.
    [75] Yaoxiao Zhu, Shunnan Zhang, Tianxiang Zhang, Jinghua Zhang, Zhuangqi Hu, Xishan Xie, Changxu Shi. A new way to improve the superalloys. The Minerals, Metal & Materials Society, Superalloys 1992: 145.
    [76] 黄乾尧,李汉康,郭建亭等.高温合金.北京:冶金工业出版社,2000.134-146.
    [77] Sreunz P, Mukherji D, Gilles R, Wiedenmann A, Fuess H. Determination of γ' solution temperature in Re-rich Ni-base superalloy by small-angle neutron scattering. Journal of Applied Crystallography, 2001,34: 541-548.
    [78] Sathian S. Metallurgical and Mechanical Properties of Ni-based superalloy friction welds(Master thesis). Toronto, Canada: Department of Merdugy and Materials Science University of Toronto, 1999.
    [79] Burgel R, Grossmann J, Lusebrink O, Mughrabi H, Pyczak F, Singer R F, Volek A. Development of a new alloy for directional solidification of large industrial gas turbine blades. Ultrasonics, The Minerals, Metal & Materials Society, Superalloys 2004: 25-34.
    [80] 张天相,宁秀珍,佟英杰,朱耀宵.镍基高温合金随Ta、Ta和Nb变化的几个实用二元相图.铸造高温合金论文集,中国科学出版社,1997:167
    [81] 黄乾尧,李汉康,郭建亭等.高温合金.北京:冶金工业出版社,2000.364-367.
    [82] 曾广亮.定向凝固和单晶镍基高温合金热腐蚀行为研究:(硕士学位论文):沈阳:中国科学院金属研究所,1992.
    [83] 李云,郭建亭,袁超,杨洪才,徐宁,申志明.镍基铸造高温合金K35的热腐蚀行为.中国腐蚀与防护学报.2005,25(4):250-255.
    [84] Shinata Y. Acceleraed oxidation rate of chromium induced by sodium chloride. Oxidation of Metals, 1987, 27:315-331.
    [85] Bourhis Y, John C S. Na2S04- and NaCl induced hot corrosion of six Nickel-base superalloy. Oxidation of Metals, 1975, 9:507-528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700