用户名: 密码: 验证码:
GH742合金的热变形规律及组织、性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GH742合金是一种具有非常优异高温性能的高合金化镍基高温合金,使用温度可以达到750~800℃。但是由于合金化程度很高,合金的热加工问题非常突出,是合金发展的瓶颈。本文系统分析了铸态GH742和GH742y合金的凝固偏析行为与均匀化工艺,并重点研究了铸态GH742与轧态GH742M合金的热变形规律与动态再结晶形核机制,同时对锻态和轧态GH742M合金的热处理组织与力学性能进行了探讨,以期提高我国在难变形高温合金及其加工方面的研究水平,为高性能航空涡轮盘的国产化提供研究基础和实际指导。
     铸态GH742合金存在明显的枝晶偏析,Cr、Co、Al偏析于枝晶干,Nb、Ti、Mo偏析于枝晶间。γ'相在枝晶内的析出形貌和尺寸不同,枝晶干处为细小球形,枝晶间处为粗大方形或十字花形。MC碳化物,(γ+Y')共晶,Laves相,δ相的枝晶间析出与Nb和Ti偏析有关;高Mo含量及其枝晶间偏析是析出σ相的重要原因;稀土元素La、Ce在枝晶间的富集促使含氧硫稀土相和Ni5Ce相的析出。合金的凝固温度区间为1346-1190℃,各相的凝固顺序为:γ基体,MC碳化物,(Y+γ')共晶,Laves相,Ni5Ce相。合金中的δ相,σ相和γ'相是在凝固结束后固态析出的。稀土元素的加入可以有效降低O、S等杂质元素含量,改善碳化物的尺寸和分布,细化合金晶粒;同时,加剧Nb、Ti等元素的偏析,降低合金的终凝温度,促使许多有害相析出。
     铸态GH742合金中的稀土相在1120℃开始熔化,γ'相的完全溶解温度在1120℃以上,采用一种在1100℃低温预处理和1160℃高温扩散的二次均匀化工艺,可以获得无初熔、偏析极低的均一组织。元素扩散计算表明,提高均匀化温度显著提高元素的扩散系数,比增加均匀化时间更有效;Nb的扩散系数比Ti小得多。经过1100℃×30h+1160℃×40h均匀化处理可以提高合金的热变形塑性,降低变形抗力,有利于动态再结晶的发生。
     铸态GH742和轧态GH742M合金热压缩变形时的流变应力随着应变速率的降低和温度的升高而降低。高温、高或低应变速率均有利于动态再结晶的发生,相应的再结晶晶粒尺寸也较大。增加应变,有利于提高再结晶体积分数,但低应变速率变形时晶粒粗化。γ'相的存在恶化了合金的塑性,大幅提高了合金的变形抗力。γ'相能够钉扎晶界,阻碍晶界迁移,抑制动态再结晶形核。
     铸态GH742和轧态GH742M合金热变形时的应力指数和表观变形激活能随着温度的升高而降低,应变速率敏感性指数比较小,难以实现超塑性成形。应变对合金热加工图的影响很大,尤其是轧态GH742M合金,其变化反映了变形过程中的微观组织演化。低温、高应变速率变形容易产生绝热剪切带,而高温、低应变速率容易产生“楔形”裂纹。轧态GH742M合金高温变形的本构方程为:ε=8.89×10σp5.33exp(-809.48×103/RT)。
     合金热变形后的位错形态和位错密度是动态发展的,跟变形温度、应变速率以及应变均有关系,是加工硬化、动态回复和动态再结晶三者综合作用的结果。动态再结晶优先在原始晶界上形核,形成“项链”组织。铸态GH742和轧态GH742M合金再结晶开始形核机制均为不连续动态再结晶,但铸态合金随着应变的增加同时发生连续动态再结晶。孪生在动态再结晶形核和长大过程中发挥重要的作用,MC碳化物有利于再结晶的形核。应变速率不改变合金动态再结晶形核机制,但影响再结晶的形核和长大速率
     轧态GH742M合金在高温104~1s-1拉伸变形时,随着初始应变速率的提高,合金塑性和拉伸强度均逐渐提高。低应变速率时的拉伸断口为明显的沿晶断裂,而高应变速率拉伸时表现出一定的穿晶断裂特征。
     轧态GH742M合金在1080℃以下固溶处理时,晶粒尺寸变化不大;当固溶温度超过1080℃后,晶粒长大非常明显。经过1020℃×8h,AC+780℃×16h,AC热处理后,合金存在大量晶界强化相和三种尺寸的γ'相,可以提高在两相区变形的塑性,细化变形后的再结晶晶粒,有利于提高合金的热加工性能。
     GH742M合金经过标准热处理后的组织主要由γ基体,γ'相,MC和M23C6碳化物以及M5B4硼化物等组成。轧态GH742M合金的室温拉伸性能优于锻态GH742M合金,但持久寿命低于锻态合金;复合添加0.10%La和0.01%Ce对GH742合金室温拉伸性能影响不大。
     GH742y合金的合金化程度比GH742合金更高,其枝晶偏析也更严重,析出相也更复杂,枝晶间存在一次和二次析出γ'相,MC碳化物,(γ+γ,')共晶,Laves相,σ相,μ相,δ相,M6C碳化物及Ni5Ce相等。合金凝固温度区间为1348~1167℃,各析出相的凝固顺序为γ基体,MC碳化物,一次γ'相,(γ+γ')共晶,Laves相,Ni5Ce相和M6C碳化物。相分计算表明,枝晶间严重偏析区域的电子空位数已超过了2.30,导致σ相和μ相的析出。合金在1120℃发生初熔,γ,'的全溶温度在1140℃以上,采用1100℃+1160℃+1180℃三次均匀化工艺可以很好地消除第二相和元素偏析,获得均一的奥氏体组织。
GH742 alloy is a high alloying nickel-base superalloy with excellent performance at high temperature, serving up to 750~800℃as turbine disc materials. However, the hot workability becomes quite poor due to the higher alloying level, which limits the further development of the alloy. In this dissertation, the solidification and segregation of as-cast GH742 and GH742y alloys were firstly analyzed, and then the hot deformation behavior and nucleation mechanism of dynamic recrystallization both in as-cast GH742 and as-rolled GH742M alloys were investigated, and finally the microstructure after standard heat treatment and mechanical properties of as-forged and as-rolled GH742M alloys were discussed. The main results are summarized as following:
     The as-cast GH742 alloy exhibits severe dendritic segregation with Cr, Co, Al segregated to the dendrite cores and Nb, Ti, Mo segregated to the interdendritic regions. The morphology ofγ' particles is varied at different regions, which are spherical and small in the dendrite cores, while cubical and coarse in the interdendritic regions. The precipitates such as MC type carbide, (γ+γ') eutectic, Laves phase andδphase are precipitated in the interdendritic regions because of the intensive segregation of Nb and Ti. High content of Mo as well as its segregation is a significant reason for the precipitation ofσphase. Two phases containing rare earth elements, Ni5Ce phase and a RE-O-S phase, are precipitated in the interdendritic regions due to the enrichment of La and Ce. The solidification temperature of GH742 alloy ranges between 1346℃and 1190℃, and the solidification sequence isγmatrix, MC carbide, (γ+γ') eutectic, Laves phase, Ni5Ce phase. Theδphase,σphase andγ' phase are precipitated after solidification. Additions of La and Ce decrease the contents of O and S, modify the distribution and dimension of MC carbide, and refine the grain size. However, they aggravate the segregation of Nb and Ti, lower the solidus temperature, and cause the precipitation of many detrimental phases.
     The incipient-melting temperature of RE-O-S phase in as-cast GH742 alloy is 1120℃, while the absolutely soluble temperature of coarseγ' phase is over 1120℃, thus a two-step homogenization treatment via low temperature pretreatment at 1100℃followed by high temperature diffusion at 1160℃is established to eliminate the dendritic segregation and obtain uniform austenitic microstructure without incipient-melting. Increasing the homogenization temperature can remarkably increase the rate of elemental diffusion, which is more effective than increasing the homogenization time. The diffusion coefficient of Nb is much smaller than that of Ti, requiring more time to be absolutely homogenized. The two-step homogenization treatment by 1100℃x 30h+1160℃x 40h for the ingot improves the hot deformation plasticity, decreases the flow stress, and favors the dynamic recrystallization process.
     The flow stress of as-cast GH742 and as-rolled GH742M alloys during hot compression deformation decreases with the increasing of temperature and the decreasing of strain rate. Dynamic recrystallization is easier to take place at higher temperature and higher or lower strain rate, and the corresponding recrystallized grain size is larger. Increasing strain can increase the volume fraction of the recrystallized grains, but the grains become coarser at low strain rate. The existence of y'particles decreases the hot deformation plasticity, and significantly increases the flow stress. Theγ'particles can pin the grain boundaries, which restrain the migration of grain boundaries and the nucleation of dynamic recrystallization.
     Both the stress exponent and apparent activation energy of as-cast GH742 and as-rolled GH742M alloys decrease as the temperature increases during hot compression deformation. The strain rate sensitivity is less than 0.3, indicating that the GH742 alloy is very difficult to achieve superplastic forming. The strain has an obvious influence on the hot processing map, especially for the as-rolled GH742M alloy, which reflects the microstructure evolution during deformation. The adiabatic shear bands occur at lower temperature and higher strain rate, while the wedge type cracks are prone to produce at higher temperature and lower strain rate. The constitutive equation of as-rolled GH742M alloy during hot deformation is as follows:ε= 8.89x1017σp5.33 exp(-809.48 x 103/RT)
     The dislocation morphology and density develop dynamically, relating with the deformation conditions such as temperature, stain rate and strain, which are the integrative effect of work hardening, dynamic recovery and dynamic recrystallization. Nucleation of new recrystallized grains starts preferentially at the initial grain boundaries to form a necklace structure. The starting nucleation mechanism of dynamic recrystallization in as-cast GH742 and as-rolled GH742M alloys is discontinuous dynamic recrystallization, though continuous dynamic recrystallization simultaneously takes place as the strain increases in the as-cast GH742 alloy. Twinning plays an important role in the nucleation and growth of dynamically recrystallizaed grains. The MC carbide in the alloy can accelerate the nucleation of new grains. The strain rate does not affect the nucleation mechanism of dynamic recrystallization, but can affect the rate of nucleation and growth of recrystallized grains.
     The elongation to failure as well as the tensile strength of as-rolled GH742M alloy increases with the increasing initial strain rate ranging from 10-4 to Is-1 when deformed at high temperatures. The tensile rupture surface at lower strain rate is a typical intergranular fracture, while it exhibits some characteristic of transgranular fracture at higher strain rate.
     The grain size of as-rolled GH742M alloy does not change obviously when the temperature of solid solution treatment is below 1080℃, and it begins to grow intensively when the temperature is over 1080℃. Three dimensions ofγ' phase and lots of strengthening phases along the grain boundaries by 1020℃x 8h, AC+780℃x 16h, AC treatment exist in the alloy, which can not only improve the deformation plasticity below 1080℃, but also refine the recrystallized grains.
     The microstructure of as-rolled GH742M alloy after standard heat treatment consists of y matrix, y'phase, MC and M6C carbides, M5B4 boride. The tensile property at room temperature of as-rolled GH742M alloy is better than that of as-forged GH742M alloy, but its stress rupture life is less than that of as-forged GH742M alloy. The co-addition of 0.10%La and 0.01% Ce does not influence the tensile property at room temperature of as-forged GH742M alloy.
     GH742y is a derivative of GH742 alloy, which has a higher level of Al, Ti, Nb, and W, V in addition. The higher alloying level of GH742y alloy makes the dendritic segregation more serious and the precipitates more complicated. The primary and secondaryγ' phases, (γ+γ') eutectic, MC and M6C carbide, Laves phase,8 phase, a phase,μphase and Ni5Ce phase are precipitated in the interdendritic regions. The solidification temperature of GH742y alloy ranges between 1348℃and 1167℃, and the solidification sequence is y matrix, MC carbide, primary y'phase, (γ+γ') eutectic, Laves phase, Ni5Ce phase and M6C carbide. The phase calculation reveals that the electron vacancy number of severe segregation regions is beyond 2.30, causing the precipitation of TCP phases such asσphase andμphase. The incipient-melting temperature of Ni5Ce phase is 1120℃, and the absolutely soluble temperature of coarseγ'phase is over 1140℃. A three-step homogenization treatment via 1100℃+1160℃+1180℃is established to obtain uniform austenitic microstructure.
引文
[1]黄乾尧,李汉康.高温合金[M],北京:冶金工业出版社,2000,1-8
    [2]郭建亭.高温合金材料学[M],北京:科学出版社,2008,3-16
    [3]师昌绪,仲增墉.中国高温合金40年[J].金属学报,1997,33(1):1-8
    [4]周瑞发.热加工参数对高温合金组织和性能的影响[J].材料工程,1990,(5):8-16
    [5]仲增墉,庄景云.变形高温合金生产工艺中几个重要问题的研究和进展[J].钢铁研究学报,2003,15(7):1-9
    [6]王乐安.难变形合金锻件生产技术[M],北京:国防工业出版社,2005,28-32
    [7]江和甫.对涡轮盘材料的需求及展望[J].燃气涡轮试验与研究,2002,15(4):1-6
    [8]黄福祥.涡轮盘用变形高温合金在俄国的发展[J].航空材料学报,1993,13:49-56
    [9]张义文,杨士仲,李力,李世魁,张莹,张凤戈,国为民,冯涤.我国粉末高温合金的研究现状[J].材料导报,2002,16(5):1-4
    [10]余永宁.金属学原理[M],北京:冶金工业出版社,2000,390-393
    [11]Zhao D, Chaudhury P K. Effect of starting grain size on as-deformed microstructure in high temperature deformation of alloy 718[A]. Superalloy 718,625,706 and Various Derivatives[C]. Warrendale, PA,1994,303-313
    [12]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metall,1966, 14(9):1136-1138
    [13]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metall Trans,1991,22(7):1545-1558
    [14]Yuan H, Liu W C. Effect of δ phase on the deformation behavior of Inconel 718 [J]. Mater Sci Eng A,2005,408:281-289
    [15]张伟红.NiTi基合金热加工基础及管件高速热成形工艺研究[D],沈阳:中国科学院金属研究所,2006
    [16]周义刚,曾卫东,俞汉清.热加工图研究进展与应用[J].稀有金属材料与工程,2005,34(增刊):715-719
    [17]Raj R, Ashby M F. Grain boundary sliding, and the effects of particles on its rate[J]. Metall Trans A,1972,3:1937-1942
    [18]Gandhi C, Raj R. An upper bound on strain rate for wedge type fracture in nickel during creep[J]. Metall Trans A,1981,12:515-520
    [19]Rao K P, Doraivelu S M, Roshan H M, Prasad Y V R K. Deformation processing of an aluminum alloy containing particles:Studies on AI-5 pct Si alloy 4043[J]. Metall Trans A,1983,14:1671-1679
    [20]Prasad Y V R K, Gegel H L, Doraivelu S M, Malas J C, Morgan K A, Barker D R. Modeling of dynamic material behavior in hot deformation forging of Ti-6242[J]. Metall Trans A,1984,15:1883-1892
    [21]Ravichandran N, Prasad Y V R K. Dynamic recrystallization during hot deformation of aluminum:A study using processing maps[J]. Metall Trans A,1991,22:2339-2348
    [22]McQueen H J, Evangelista E, Jin N, Kassner M E. Energy dissipation efficiency in aluminum dependent on monotonic flow curves and dynamic recovery[J]. Metall Mater Trans A,1995,26:1757-1766
    [23]Radhakrishna Bhat B V, Mahajan Y R, Roshan H Md, Prasad Y V R K. Characteristics of superplasticity domain in the processing map for hot working of an Al alloy 2014-20vol.%Al2O3 metal matrix composite[J]. Mater Sci Eng A,1994,189:137-145
    [24]Sivakesavam O, Prasad Y V R K. Characteristics of superplasticity domain in the processing map for hot working of as-cast Mg-11.5Li-1.5Al alloy[J]. Mater Sci Eng A, 2002,323:270-277
    [25]Sivakesavam O, Prasad Y V R K. Hot deformation behaviour of as-cast Mg-2Zn-1Mn alloy in compression:a study with processing map[J]. Mater Sci Eng A,2003,362: 118-124
    [26]Srinivasan N, Prasad Y V R K, Rama Rao P. Hot deformation behaviour of Mg-3A1 alloy—A study using processing map[J]. Mater Sci Eng A,2008,476:146-156
    [27]Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys[J]. Mater Sci Eng A,1998,243:82-88
    [28]Park N K, Yeom J T, Na Y S. Characterization of deformation stability in hot forging of conventional Ti-6A1-4V using processing maps[J]. J Mater Process Technol,2002, 130-131:540-545
    [29]Poletti C, Degischer H P, Kremmerb S, Marketz W. Processing maps of Ti662 unreinforced and reinforced with TiC particles according to dynamic models[J]. Mater Sci Eng A,2008,486:127-137
    [30]Venugopal S, Mannan S L, Prasad Y V R K. Processing maps for hot working of commercial grade wrought stainless steel type AISI 304[J]. Mater Sci Eng A,1994,177: 143-149
    [31]McQueen H J, Jin N, Ryan N D. Relationship of energy dissipation efficiency to microstructure evolution in hot working of AISI 304 steel[J]. Mater Sci Eng A,1995,90: 43-53
    [32]Al Omar A. Cabrera J M, Prado J M. Characterization of the hot deformation in a microalloyed medium carbon steel using processing maps[J]. Scripta Mater,1996,34(8): 1303-1308
    [33]Narayana Murty S V S, Nageswara Rao B, Kashyap B P. Identification of flow instabilities in the processing maps of AISI 304 stainless steel[J]. J Mater Process Technol,2005,166:268-278
    [34]Narayana Murty S V S, Nageswara Rao B. On the flow localization concepts in the processing maps of IN718[J]. Mater Sci Eng A,1999,267:159-161
    [35]Cai D Y, Xiong L Y, Liu W C, Sun G D, Yao M. Development of processing maps for a Ni-based superalloy[J]. Mater Charact,2007,58:941-946
    [36]Aghaie-Khafri M, Golarzi N. Forming behavior and workability of Hastelloy X superalloy during hot deformation [J]. Mater Sci Eng A,2008, in press
    [37]Lyszkowski R, Bystrzycki J. Hot deformation and processing maps of an Fe3Al intermetallic alloy[J]. Intermetall,2006,14:1231-1237
    [38]Hab T K, Jung J Y. A study on the hot workability of a cast Ti-Al intermetallic compound[J]. Mater Sci Eng A,2007,449-451:139-143
    [39]Brechet Y, Estrin Y, Reusch F. A dynamic recrystallisation criterion:DRX map[J]. Scripta Mater,1998,39(9):1191-1197
    [40]Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys[J]. Mater Sci Eng A,1998,243:82-88
    [41]Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Current issues in recrystallization:a review[J]. Mater Sci Eng A,1997,238:219-274
    [42]D'Anna G, Benoit W. Dynamic recovery of the microstructure of screw dislocations in high purity b.c.c. metals[J]. Mater Sci Eng A,1993,164:191-195
    [43]McQueen H J, Blum W. Dynamic recovery:sufficient mechanism in the hot deformation of Al (<99.99)[J]. Mater Sci Eng A,2000,290:95-107
    [44]Nes E, Marthinsen K, Brechet Y. On the mechanisms of dynamic recovery[J]. Scripta Mater,2002,47:607-611
    [45]Cizek P, Parker B A, McCulloch D G. A crystallographic study of dislocation cell arrangement in aluminium deformed at an elevated temperature [J]. Mater Sci Eng A, 1995,194:201-210
    [46]刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-12
    [47]McQueen H J. Development of dynamic recrystallization theory[J]. Mater Sci Eng A, 2004,387-389:203-208
    [48]Kaibyshev R, Sitdikov O. Dynamic recrystallization of magnesium at ambient temperature[J]. Z Metallkd,1994,85:738-743.
    [49]Kaibyshev R, Sitdikov O. On the role of twinning in dynamic recrystallization [J]. Fiz Met Metalloved,2000,89(4):70-77
    [50]Gourdet S, Montheillet F. A model of continuous dynamic recrystallization[J]. Acta Mater,2003,51:2685-2699
    [51]Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminum [J]. Mater Sci Eng A,2000.283:274-288
    [52]Cizek P, Wynne B P. A mechanism of ferrite softening in a duplex stainless steel deformed in hot torsion[J]. Mater Sci Eng A,1997,230:88-94
    [53]Belyakov A, Kaibyshev R, Sakai T. New grain formation during warm deformation of ferritic stainless steel[J]. Metall Trans A,1998,29:161-167
    [54]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two-stage deformation of Mg-3Al-1Zn alloy sheet[J]. Mater Sci Eng A,2003,339:124-132
    [55]Hales S J, McNelley T R. Microstructural evolution by continuous recrystallization in a superplastic Al-Mg alloy [J]. Acta Metall,1988,36:1229-1239
    [56]Gudmundsson H, Brooks D, Wert J A. Mechanisms of continuous recrystallization in an Al-Zr-Si alloy[J]. Acta Metall Mater,1991,39:19-35
    [57]Liu Q, Huang H, Yao M, Yang J. On deformation-induced continuous recrystallization in a superplastic Al-Li-Cu-Mg-Zr alloy[J]. Acta Metall Mater,1992,40:1753-1762
    [58]Nieh T G, Hsiung L M, Wadsworth J, Kaibyshev R. High strain rate superplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy [J]. Acta Mater,1998,46: 2789-2800
    [59]Brunger E, Wang X, Gottstein G. Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H[J]. Scripta Mater,1998,38(12),1843-1849
    [60]Belyakov A, Miura H, Sakai T. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel [J]. Mater Sci Eng A,1998,255:139-147
    [61]Wusatowska-Sarnek A M, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper[J]. Mater Sci Eng A,2002,323:177-186
    [62]McQueen H J, Knustad O, Ryum N, Solberg J K. Microstructural evolution in Al deformed to strains of 60 at 400℃[J]. Scripta Metall,1985,19:73-78
    [63]Henshall G A, Kassner M E, McQueen H J. Dynamic restoration mechanisms in Al-5.8 at. pct Mg deformed to large strains in the solute drag regime[J]. Metall Trans A,1992, 23:881-889
    [64]Kassner M E, McMahon M E. The dislocation microstructure of aluminum deformed to very large steady-state creep strains[J]. Metall Trans A,1987,18:835-846
    [65]Blum W, Zhu Q, Merkel R, McQueen H J. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083) [J]. Mater Sci Eng A,1995-1996,205:23-30
    [66]Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization[J]. Mater Sci Eng A,2005,410-411:152-155
    [67]Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium[J]. Acta Metall, 1982,30:1909-1919
    [68]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Metall,1996,44(1):127-136
    [69]曹金荣,刘正东,程世长,杨钢,谢建新.应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响[J].金属学报,2007,43(1):35-40
    [70]Ryan N D, McQueen H J. Dynamic softening mechanisms in 314 austenitic steel[J]. Can Metall Q,1990,29(2):147-162
    [71]Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta Metall,1981, 29(11):1865-1875
    [72]Srinivasan N, Prasad Y V R K. Hot working characteristics of Nimonic 75,80A and 90 superalloys:a comparison using processing maps[J]. J Mater Process Technol,1995,51: 171-192
    [73]Kima S I, Choi S H, Lee Y. Influence of phosphorous and boron on dynamic recrystallization and microstructures of hot-rolled interstitial free steel[J]. Mater Sci Eng A,2005,406:125-133
    [74]马立强,袁向前,刘振宇,张丕军,焦四海,吴迪,王国栋.铌微合金钢动态再结晶的规律[J].钢铁研究学报,2006,18(9):47-50
    [75]Venugopal S, Tyagi A K, Krishan K, Mannan S L, Prasad Y V R K. Influence of carbide particles on the dynamic recrystallization of as-cast 304 stainless steel:a study using secondary ion mass spectrometric (SIMS) analysis[J]. Mater Lett,1995,25:245-248
    [76]Tian B H, Lind C, Paris O. Influence of Cr23C6 carbides on dynamic recrystallization in hot deformed Nimonic 80a alloys[J]. Mater Sci Eng A,2003,358:44-51
    [77]Goetz R L. Particle stimulated nucleation during dynamic recrystallization using a cellular automata model[J]. Scripta Mater,2005,52:851-856
    [78]Meyers M A, Xu Y B, Xue Q, Perez-Prado M T, McNelley T R. Microstructural evolution in adiabatic shear localization in stainless steel [J]. Acta Mater,2003,51: 1307-1325
    [79]Gottstein G, Kocks UF. Dynamic recrystallization and dynamic recovery in<111> single crystals of nickel and copper[J]. Acta Metall,1983,31:175-188
    [80]Wang X, Bruunger E, Gottstein G. The role of twinning during dynamic recrystallization in alloy 800H[J]. Scripta Mater,2002,46:875-880
    [81]Kupka M, Prewendowski M. Dynamic recrystallization in a Fe-40 at.%Al alloy[J]. J Alloys Compds,2007,437:367-372
    [82]Del Valle J A, Ruano OA. Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy[J]. Mater Sci Eng A,2008, in press
    [83]El Wahabi M, Gavard L, Montheillet F, Cabrera J M, Prado J M. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels[J]. Acta Mater, 2005,53:4605-4612
    [84]李龙飞,杨王玥,孙祖庆.原始晶粒尺寸对低碳钢中铁素体动态再结晶的影响[J].金属学报,2004,40(2):141-147
    [85]陈绍楷,李晴宇,苗壮,许飞.电子背散射衍射(EBSD)及其在材料研究中的应用[J].稀有金属材料与工程,2006,35(3):500-504
    [86]张小立,庄传晶,吉玲康,冯耀荣,霍春勇,赵文轸.EBSD及其在钢铁研究领域中的应用[J].材料导报,2006,20(11):96-99
    [87]Humphreys F J. Review grain and subgrain characterisation by electron backscatter diffraction[J]. J Sci,2001,36:3833-3854
    [88]Dingley D J, Randle V. Microtexture determination by electron back-scatter diffraction[J]. J Mater Sci,1992,27:4545-4566
    [89]Wright S I, Adams B L. Automatic analysis of electron backscatter diffraction patterns[J]. Metall Trans A,1992,23:759-767
    [90]Kaibyshev R, Shipilova K, Musin F, Motohashi Y. Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion[J]. Mater Sci Eng A, 2005,396:341-351
    [91]Kang J H, Torizuka S. Dynamic recrystallization by large strain deformation with a high strain rate in an ultralow carbon steel[J]. Scripta Mater,2007,57:1048-1051
    [92]余永宁.金属学原理,北京:冶金工业出版社,2000,428-469
    [93]Gottstein G, Deshpande S. Dynamic recrystallization under changing loading conditions [J]. Mater Sci Eng,1987,94:147-154
    [1]杜挺.稀土元素在金属材料中的作用与机理[J].中国有色金属学报,1996,6(2):13-18
    [2]Wang R M, Song Y G, Han Y F, J. Effect of rare earth on the microstructures and properties of a low expansion superalloy [J]. J Alloys Compd,2000,311:60-64
    [3]Fu H G, Xiao Q, Kuang J C, Jiang Z Q, Xing J D. Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe-B cast steel [J]. Mater Sci Eng A,2007,466:160-165
    [4]Zheng L, Gu C Q, Zheng Y R. Investigation of the solidification behavior of a new Ru-containing cast Ni-base superalloy with high W content [J]. Scripta Mater,2004,50: 435-439
    [5]Zhu Y X, Zhang S N, Zhang T X, Zhang J H, Hu Z Q, Xie X S, Shi C X. A new way to improve the superalloys [A]. Superalloys 1992 [C]. New York:The Minerals, Metals & Materials Society,1992,145-154
    [6]Sun W R, Guo S R, Lu D Z, Hu Z Q. Effect of sulfur on the solidification and segregation in Inconel 718 alloy [J]. Mater Lett,1997,31:195-200
    [7]Wang A C, Li Y Y, Fan C G, Yang K, Li D F, Zhao X, Shi C X. Effect of P and Si (Mn) on the solidification segregation in an iron-based superalloy [J]. Scripta Metall Mater, 1994,31:1695-1700
    [8]Zhu H Q, Guo S R, Guan H R, Zhu Y X, Hu Z Q. The effect of silicon on the microstructure and segregation of directionally solidified IN738 superalloy [J]. Mater High Temp,1994,12:285-291
    [9]周刚,王文皓,李依依.微量元素在Ni基合金凝固过程中的分配行为的模拟[J].金属学报,2000,36(5):472-476
    [10]谢永军,梁学锋,缪宏博,李伟.GH742合金钢锭的组织及偏析的消除[J].钢铁研究学报,2003,15(7):17-20
    [11]田玉亮,王玲,董建新,张麦仓.GH742铸锭偏析及均匀化过程中元素分布规律[J].稀有金属材料与工程,2006,35(8):1315-1318
    [12]Williams D, Moffatt G. The Handbook of Binary Phase Diagrams[M]. New York:the General Electric Company,1978
    [13]Sponseller D L. Differential thermal analysis of nickel-base superalloy [A]. Superalloys 1996 [C]. New York:The Minerals, Metals & Materials Society,1996,259-270
    [14]Dupont J N, Robino C V, Michael J R, Notis M R, Marder A R. Solidification of Nb-bearing superalloys [J]. Metall Mater Trans A,1998,29:2785-2796
    [15]孙晓峰,殷凤仕,李金国,侯贵臣,郑启,管恒荣,胡壮麒.一种铸造镍基高温合金的凝固行为[J].金属学报,2003,39(1):27-29
    [16]Li D, Cosandey F, Maurer G E, Foote R, Tien J K. Understanding the role of cerium during VIM refining of nickel-chromium and nickel-iron alloys [J]. Metall Trans B,1982, 13B:603-611
    [17]余永宁.金属学原理[M],北京:冶金工业出版社,2003,266-268
    [18]Wang L M, Lin Q, Yue L J, Liu L, Guo F, Wang F M. Study of application of rare earth elements in advanced low alloy steels[J]. J Alloys Compd,2008,451:534-537
    [19]林清英.镧在镍铬钴钨合金中的偏聚作用[J].中国稀土学报,1998,16(2):158-161
    [20]Murata Y, Morinaga M, Yukawa N, Ogawa H, Kato M. Solidification structures of Inconel 718 with microalloying elements[A]. Superalloy 718,625,706 and Various Derivatives[C]. Warrendale, PA,1994,81-88
    [21]孙文儒.微量元素P,S和Si对IN718和GH761合金凝固过程,元素偏析,组织结构和力学性能的影响(D),沈阳:中国科学院金属研究所,1996
    [22]郭可信.高合金钢和高温合金中的相[J].金属学报,1978,14(1):73-95
    [23]Ma P L, Zhu J. Magnesium distribution in a nickel-based superalloy [J]. Metall,1986(1), 19:115-118
    [1]Semiatin S L, Kramb R C, Turner R E, Zhang F, Antony M M. Analysis of the homogenization of a nickel-base superalloy [J]. Scripta Mater,2004,51:491-495
    [2]Kramb R C, Antony M M, Semiatin S L. Homogenization of a nickel-base superalloy ingot material [J]. Scripta Mater,2006,54:1645-1649
    [3]龙正东,马培立,仲增墉.IN706合金锭的均匀化处理[J].钢铁研究学报,1997,9(1):21-24
    [4]谢永军,梁学锋,缪宏博,李伟.GH742合金钢锭的组织及偏析的消除[J].钢铁研究学报,2003,15(7):17-20
    [5]田玉亮,王玲,董建新,张麦仓.GH742铸锭偏析及均匀化过程中元素分布规律[J].稀有金属材料与工程,2006,35(8):1315-1318
    [6]中国航空材料手册编辑委员会.中国航空材料手册(第二卷变形高温合金铸造高温合金)[M],北京:中国标准出版社,2002,482-494
    [7]孙振岩,刘春明.合金中的扩散与相变[M],沈阳:东北大学出版社,2002,39-41
    [8]Gottstein G, Deshpande S. Dynamic recrystallization under changing loading conditions[J]. Mater Sci Eng,1987,94:147-154
    [1]Semiatin S L, Fagin P N, Glavicic M G, Raabe D. Deformation behavior of Waspaloy at hot-working temperatures[J]. Scripta Mater,2004,50:625-629
    [2]Monajati H, Jahazi M, Yue S. Deformation characteristics of isothermally forged Udimet 720 nickel-base superalloy[J]. Metall Mater Trans A,2005,36:895-905
    [3]Semiatin S L, Weaver D S, Fagin P N, Glavicic M G, Goetz R L, Frey N D, Kramb R C, Antony M M. Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material[J]. Metall Mater Trans A,2004,35: 679-693
    [4]李伟,梁学锋,谢永军,缪宏博.均匀化和均匀化后处理对GH742合金γ'相的影响[J].材料工程,2005,(12):33-36
    [5]龙正东,庄景云,邓波,仲增墉.一种提高高强化高温合金热加工性能的新方法[J].金属学报,1999,35(11):1211-1213
    [6]胥国华,张北江,秦鹤勇,赵光普,王林涛.GH742合金大锭型自耗锭的热变形行为和热加工工艺[J].热加工工艺,2007,36(6):26-29
    [7]Park N K, Yeom J T, Na Y S. Characterization of deformation stability in hot forging of conventional Ti-6Al-4V using processing maps[J]. J Mater Process Technol,2002, 130-131:540-545
    [8]Salehi A R, Serajzadeh S, Yazdipour N. A study on flow behavior of A-286 superalloy during hot deformation[J]. Mater Chem Phys,2007,101:153-157
    [9]汤春峰,曲选辉,段柏华,何新波.新型钴基耐热合金高温流变变形行为[J].北京科技大学学报,2006,28(6):542-545
    [10]余琨,黎文献,王日初,马正青,赵俊,孟力平.Mg-5.6Zn-0.7Zr-0.8Nd合金高温塑性变形的热/力模拟研究[J].金属学报,2003,39(5):492-498
    [11]Yuan H, Liu W C. Effect of δ phase on the deformation behavior of Inconel 718[J]. Mater Sci Eng A,2005,408:281-289
    [12]赵美兰.GH761合金热变形及热处理制度研究(D],沈阳:中国科学院金属研究所,2008
    [13]龙正东,马培立,仲增墉.IN706合金的热加工性能[J].钢铁研究学报,1996,8(2):31-34
    [14]McQueen H J, Ryan N D. Constitutive analysis in hot working[J]. Mater Sci Eng A,2002, 322:43-63
    [15]鞠泉,李殿国,刘国权.15Cr-25Ni-Fe基合金高温塑性变形行为的加工图[J].金属学 报,2006,42(2):218-224
    [16]Raj R. Development of a processing map for use in warm-forming and hot-forming processes[J]. Metall Trans A,1981,12:1089-1097
    [17]Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys[J]. Mater Sci Eng A,1998,243:82-88
    [18]Narayana Murtya S V S, Nageswara Raob B, Kashyap B P. Identification of flow instabilities in the processing maps of AISI 304 stainless steel[J]. J Mater Process Technol,2005,166:268-278
    [19]Nakkalil R. Formation of adiabatic shear bands in eutectoid steels in high strain rate compression[J]. Acta Metall Mater,1991,39(11):2553-2563
    [20]Meyers M A, Xu Y B, Xue Q, Perez-Prado M T, McNelley T R. Microstructural evolution in adiabatic shear localization in stainless steel[J]. Acta Mater,2003,51: 1307-1325
    [1]张北江,赵光普,焦兰英,胥国华,秦鹤勇,冯涤.热加工工艺对GH4586合金微观组织的影响[J].金属学报,2005,41(4):351-356
    [2]张北江,赵光普,胥国华,冯涤.GH742合金热变形行为与微观组织演化[J].金属学报,2005,41(11):1207-1214
    [3]Meyers M A, Benson D J, Vohringer O, Kad BK, Xue Q, Fu H H. Constitutive description of dynamic deformation:physically-based mechanisms [J]. Mater Sci Eng A, 2002,322:194-216
    [4]Monajati H, Jahazi M, Yue S. Deformation characteristics of isothermally forged Udimet 720 nickel-base superalloy[J]. Metall Mater Trans A,2005,36:895-905
    [5]Semiatin S L, Fagin P N, Glavicic M G, Raabe D. Deformation behavior of Waspaloy at hot-working temperatures [J]. Scripta Mater,2004,50:625-629
    [6]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Metall,1996,44(1):127-136
    [7]Barnett M R, Beer A G, Atwell D, Oudin A. Influence of grain size on hot working stresses and microstructures in Mg-3Al-1Zn[J]. Scripta Mater,2004,51:19-24
    [8]Zahiri S H, Davies C H J, Hodgson P D. A mechanical approach to quantify dynamic recrystallization in polycrystalline metals [J]. Scripta Mater,2005,52:299-304
    [9]Sommitsch C, Mitter W. On modeling of dynamic recrystallisation of fcc materials with low stacking fault energy[J]. Acta Mater,2006,54:357-375
    [10]Ganesan G, Raghukandan K, Karthikeyan R, Pai B C. Development of processing maps for 6061 Al/15% SiCp composite material[J]. Mater Sci Eng A,2004,369:230-235
    [11]Srinivasan N, Prasad Y V R K. Influence of sulfur on the processing map for hot working of nickel[J]. Scripta Metall Mater,1992,27:309-312
    [12]Sommitsch C, Polt P, Ruf G, Mitsche S. On the modeling of the interaction of materials softening and ductile damage during hot working of alloy 80A[J]. J Mater Process Technol,2006,177:282-286
    [13]Zhou L X, Baker T N. Effect of dynamic and metadynamic recrystallization on microstructures of wrought IN-718 due to hot deformation[J]. Mater Sci Eng A,1995, 196:89-95
    [14]McQueen H J. Initiating nucleation of dynamic recrystallization, primarily in polycrystals[J].Mater Sci Eng A,1988,101(5):149-160
    [15]Imbert C, Ryan N D, McQueen H J. Hot workability of three grades of tool steel[J]. Metall Mater Trans A,1984,15:1855-1864
    [16]Akira Yanagida, Jun Yanagimoto. A novel approach to determine the kinetics for dynamic recrystallization by using the flow curve[J]. J Mater Process Technol,2004,151: 33-38
    [17]Srinivasan N, Prasad Y V R K, Rama Rao P. Hot deformation behaviour of Mg-3Al alloy—A study using processing map[J]. Mater Sci Eng A,2008,476:146-156
    [18]Garcia C I, Wang G D, Camus D E, Loria E A, DeArdo A J. Hot deformation behavior of superalloy 718[A]. Superalloy 718,625,706 and Various Derivatives[C]. Warrendale, PA,1994,293-302
    [19]Narayana Murty S V S, Nageswara Rao B. On the development of instability criteria during hotworking with reference to IN718[J]. Mater Sci Eng A,1998,254:76-82
    [20]Srinivasan N, Prasad Y V R K. Microstructure control in hot working of IN-718 superalloy using pressing map[J]. Metall Mater Trans A,1994,25:2275-2284
    [21]Sivakesavam O, Prasad Y V R K. Characteristics of superplasticity domain in the processing map for hot working of as-cast Mg-11.5Li-1.5Al alloy[J]. Mater Sci Eng A, 2002,323:270-277
    [22]Srinivasan N, Prasad Y V R K, Rama Rao P. Hot deformation behaviour of Mg-3Al alloy—A study using processing map[J]. Mater Sci Eng A,2008,476:146-156
    [23]Srinivasan N, Prasad Y V R K. Hot working characteristics of Nimonic 75,80A and 90 superalloys:a comparison using processing maps[J]. J Mater Process Technol,1995,51: 171-192
    [24]Al Omar A, Cabrera J M, Prado J M. Characterization of the hot deformation in a microalloyed medium carbon steel using processing maps[J]. Scripta Mater,1996,34(8): 1303-1308
    [25]Ganesan G, Raghukandan K, Karthikeyan R, Pai B C. Development of processing maps for 6061 Al/15% SiCp composite material[J]. Mater Sci Eng A,2004,369:230-235
    [26]蔡大勇.GH169及GH696高温合金热加工工艺基础研究[D],秦皇岛:燕山大学,2003
    [27]Srinivasan N, Prasad Y V R K. Characterisation of dynamic recrystallisation in nickel using processing map for hot deformation[J]. Mater Sci Technol,1992,8:206-212
    [28]Srinivasan N, Prasad Y V R K. Influence of sulfur on the processing map for hot working of nickel[J]. Scripta Metall Mater,1992,27:309-312
    [29]El Wahabi M, Gavard L, Montheillet F, Cabrera J M, Prado J M. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels [J]. Acta Mater, 2005,53:4605-4612
    [30]Zhao D, Chaudhury P K. Effect of starting grain size on as-deformed microstructure in high temperature deformation of alloy 718[A]. Superalloy 718,625,706 and Various Derivatives[C]. Warrendale, PA,1994,303-313
    [31]吴诗悖.金属超塑性变形理论[M],北京:国防工业出版社,1997,1-10
    [32]丁桦,张凯锋.材料超塑性研究的现状与发展[J].中国有色金属学报,2004,14(7):1059-1067
    [33]Watanabe H, Mukai T, Higashi K. Low temperature superplastic behavior in ZK60 magnesium alloy[J]. Mater Sci Forum,1999,304-306:303-308
    [34]Mohri T, Mabuch M, Nakamura M. Microstructural evolution and superplasticity of rolled Mg-29Al-2Zn[J]. Mater Sci Eng A,2000,290:39-144
    [35]Kim J S, Kim J H, Lee Y T. Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti-26A1-24V alloy [J]. Mater Sci Eng A,1999,263:272-280
    [36]Patankar S N, Lim C T, Tan M J. Superplastic forming of duplex stainless steel[J]. Metall Mater Trans A,2000,31:2394-2396
    [37]Chu J P, Liu I M, Wu J H. Superplasic deformation in coarse grained Fe-23A1 alloys [J]. Mater Sci Eng A,1998,258:236-242
    [38]Higashi K, Okada T, Mukai T. Superplastic behavior in a mechanically alloyed aluminum composite reinforced with SiC particulates[J]. Scripta Metall Mater,1992,26: 185-190
    [39]Valitov V A, Kaibyshev O A, Mukhtavov S K. Low temperature and high temperature rate superplasticity of nickel base alloys[J]. Mater Sci Forum,2001,357-359:417-424
    [40]吕宏军.GH4169高温合金板材超细晶处理及超塑成形研究[D],哈尔滨:哈尔滨工业大学,2003
    [1]Brunger E, Wang X, Gottstein G. Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H[J]. Scripta Mater,1998,38(12):1843-1849
    [2]Wusatowska-Sarnek A M, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper[J]. Mater Sci Eng A,2002,323:177-186
    [3]Dougherty L M, Robertson I M, Vetrano J S. Direct observation of the behavior of grain boundaries during continuous dynamic recrystallization in an Al-4Mg-0.3Sc alloy [J]. Acta Mater,2003,51:4367-4378
    [4]Poelt P, Sommitsch C, Mitsche S, Walter M. Dynamic recrystallization of Ni-base alloys—Experimental results and comparisons with simulations[J]. Mater Sci Eng A, 2006,420:306-314
    [5]Xu Y B, Yang H J, Marc Andre Meyers. Dynamic recrystallization in the shear bands of Fe-Cr-Ni monocrystal:Electron backscatter diffraction characterization[J]. Scripta Mater,2008,58:691-694
    [6]杜随更,吴诗惇,段立宇,程功善.初始动态再结晶过程中的位错动态行为[J].西北工业大学学报,1997,15(3):333-337
    [7]Sommitsch C, Wieser V, Kleber S. A dislocation density model for the simulation of hot forming processes[J]. J Mater Process Technol,2002,125-126:130-137
    [8]Myshlyaev M M, McQueen H J, Mwembela A, Konopleva E. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Mater Sci Eng A,2002, 337:121-133
    [9]Kestenbach H J. Influence of dislocation substructure on recrystallization in type 304 stainless steel[J]. Metall Trans A,1977,8(1):213-216
    [10]Sitdikov O, Kaibyshev R. Dislocation glide and dynamic recrystallization in LiF single crystals[J]. Mater Sci Eng A,2002,328:147-155
    [11]Miura H, Sakai T, Hamaji H, Jonas J J. Preferential nucleation of dynamic recrystallization at triple junctions [J]. Scripta Mater,2004,50:65-69
    [12]Wang Y, Shao W Z, Zhen L, Zhang X M. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718 [J]. Mater Sci Eng A,2008,486: 321-332
    [13]Wang X, Brunger E, Gottstein G. The role of twinning during dynamic recrystallization in alloy 800H[J]. Scripta Mater,2002,46:875-880
    [14]Ponge D, Gottstein G. Necklace formation during dynamic recrystallization mechanisms and impact on flow behavior[J]. Acta Mater,1998,46(1):69-80
    [15]Miura H, Ozama M, Mogawa R, Sakai T. Strain-rate effect on dynamic recrystallization at grain boundary in Cu alloy bicrystal[J]. Scripta Mater,2003,48:1501-1505
    [16]Tian B H, Lind Christoph, Schafler E, Paris O. Evolution of microstructures during dynamic recrystallization and dynamic recovery in hot deformed Nimonic 80a[J]. Mater Sci Eng A,2004,367:198-204
    [17]Sommitsch C, Polt P, Riif G, Mitsche S. On the modeling of the interaction of materials softening and ductile damage during hot working of alloy 80A[J]. J Mater Process Technol,2006,177:282-286
    [18]Belyakov A, Miura H, Sakai T. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel[J]. Mater Sci Eng A,1998,255:139-147 参考文献
    [1]龙正东,邓群,林平,马培立,庄景云,仲增墉.热处理对GH742合金组织和力学性能的影响[J].材料工程,1999,(3):4144
    [2]中国航空材料手册编辑委员会.中国航空材料手册(第二卷变形高温合金铸造高温合金)[M],北京:中国标准出版社,2002,482-494
    [3]Fuchs G E. Solution heat treatment response of a third generation single crystal Ni-base superalloy[J]. Mater Sci Eng A,2001,300:52-60
    [4]Safari J, Nategh S. On the heat treatment of Rene-80 nickel-base superalloy[J]. J Mater Process Technol,2006,176:240-250
    [5]Jan Bosansky, Tibor Smida. Deformation twins—probable inherent nuclei of cleavage fracture in ferritic steels[J]. Mater Sci Eng A,2002,323:198-205
    [6]Kupka M, Prewendowski M. Dynamic recrystallization in a Fe-at.40% Al alloy [J]. J Alloys Compd,2007,437:367-372
    [7]Li X Y, Zhang J, Rong L J, Li Y Y. Effect of twins on the moderate temperature tensile deformation of a y'strengthened Fe-based superalloy[J]. J Alloys Compd,2008, in press
    [8]Cosandey F, Li D, Sczerzenie F, Tien J K. The effect of cerium on high temperature tensile and creep behavior of a superalloy[J]. Metall Trans A,1983,14:611-621
    [9]Cosandey F, Kandra J. Trace element effects on ductility and fracture of Ni-Cr-Ce alloys[J]. Metall Trans A,1987,18:1239-1248
    [10]Wang L M, Lin Q, Ji J W, Lan D N. New study concerning development of application of rare earth metals in steels[J]. J Alloys Compd,2006,408-412:384-386
    [11]Samanta S K, Mitra S K, Pal T K. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel [J]. Mater Sci Eng A, 2006,430:242-247
    [12]孙文儒,宋洪伟,郭守仁,胡壮麒.磷、硼微合金化——一种发展高性能变形高温合金的新途径[J].中国基础科学,2005,(6):15-16-147-
    [1]杨洪才.沉淀强化镍基高温合金中γ'相数量的计算表达式[J].金属学报,1982,18(4):510-514
    [2]吴贵林,王林涛,赵长虹,董健,金槿秀,田树森,庄景云,邓群,杜金辉.GH742y合金真空自耗锭的偏析及均匀化处理[J].钢铁研究学报,2003,15(7):366-371
    [3]邓群,杜金辉,庄景云,曲敬龙,赵长虹,吴贵林,王照坤.GH742y合金的铸态组织及铸态偏析的改善[J].钢铁研究学报,2007,19(5):89-93
    [4]D'Souza N, Dong H B. Solidification path in third-generation Ni-based superalloys, with an emphasis on last stage solidification[J]. Scripta Mater,2007,56(1):41-44
    [5]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2000,364-365
    [6]Zhao K, Lou L H, Ma Y H, Hu Z Q. Effect of minor niobium addition on microstructure of a nickel-base directionally solidified superalloy[J]. Mater Sci Eng A,2008,476(1-2): 372-377
    [7]Radhakrishnan B, Thompson R G. Solidification of the nickel-base superalloy 718:A phase diagram approach[J]. Metall Mater Trans A,1989,20:2866-2868
    [8]Sponseller D L. Differential thermal analysis of nickel-base superalloy [A]. Superalloys 1996[C]. New York:The Minerals, Metals & Materials Society,1996,259-270
    [9]Dupont J N, Robino C V, Michael J R, Notis M R, Marder A R. Solidification of Nb-bearing superalloys [J]. Metall Mater Trans A,1998,29:2785-2796
    [10]董建新,张麦仓,曾燕屏.含铌高温合金液相中铌偏聚行为[J].北京科技大学学报,2005,27(2):197-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700