用户名: 密码: 验证码:
框支剪力墙结构的简化计算和落地剪力墙合理刚度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
框支剪力墙结构起源于20世纪30年代。它是一种“上刚下柔”、竖向刚度突变的复杂高层建筑结构。多次震害分析表明,框支剪力墙结构属于抗震性能较差的高层建筑结构。但由于具有其它结构不可替代的使用功能,使其在世界各地特别是我国获得了非常广泛的应用。随着研究深入,有关框支剪力墙结构的受力特性和改进抗震性能措施先后被提出。然而仍有一些问题没有得到很好的解决。因此,对其展开深入研究是非常有实际意义的。论文完成的主要工作如下:
     (1)采用依次放松约束节点的子结构法,根据转换层附近竖向构件传力机制的不同,提出了框支剪力墙结构和带转换层筒体结构在静力水平荷载作用下简化计算模型,并对转换层设置高度、标准剪力墙类型、落地剪力墙刚度等因素对结构内力和侧移的影响进行了分析。
     (2)将框支剪力墙结构等效为悬臂杆,以悬臂杆刚度来反映框支剪力墙结构竖向刚度突变,运用结构力学中的柔度矩阵法,建立了自振特性简化计算模型,它具有计算量小适用范围广等优点,同时还可灵活的结合工程实际,提供不同精度的运算。
     (3)将框支剪力墙结构以转换层为界,划分为转换层上部剪力墙子结构和转换层下部框-剪子结构,借鉴框-剪结构楼层扭转新刚度模型,进行了框支剪力墙结构扭转近似计算。该方法运算简单、精度较高。
     (4)借鉴转换层上、下等效侧向刚度比的概念,推导出了转换层上、下等效扭转刚度比和等效层间侧移角比的计算公式与取值范围。这两个参数能更有效的控制结构扭转角、层间位移角、剪力突变以及转换层附近剪力墙的应力集中。
     (5)通过控制最大层间相对位移与层高之比、竖向构件轴压比等因素,推导了落地剪力墙合理刚度计算公式;根据转换层上、下等效侧向刚度比和等效层间侧移角比的取值范围,得到了落地剪力墙合理刚度取值范围。
     (6)提出了落地剪力墙刚度合理性综合评判模型,较为全面合理地分析了多种因素对落地剪力墙刚度合理性的影响。通过该模型对已有落地剪力墙进行评定,衡量其合理性,进而反馈给设计者相应的调整信息,可避免诸如扭转、剪重比等因素无法直接凭计算来考虑的缺点。
     (7)将框支剪力墙结构以转换层为界,划分为转换层上部剪力墙子结构(含转换层)和转换层下部框-剪子结构;视楼板(包括转换层楼板)为水平放置的深梁,然后采用超单元法,充分考虑剪力墙类型与布置、转换层类型的影响,对每个子结构建立考虑楼板刚度的单元刚度矩阵;最后推导了考虑阻尼影响依次放松约束节点的动力子结构法计算公式,完成了结构动力分析。
     (8)通过对试验数据及抗扭刚度计算公式的参数分析,探讨了轴压比、偏心距、纵横钢筋配筋强度比、剪扭比及弯扭比等诸多因素对构件抗扭刚度退化的影响。并在已有试验的基础上,给出了便于查用的构件抗扭刚度-扭转角退化曲线,它可为考虑扭转的高层建筑结构弹塑性简化分析提供条件。
The shear wall structures supported on frames originated in the 1930s. It is a complex tall building structure for its asymmetric vertical rigidity. It is shown that its earthquake-resistance capability is inferior from many earthquake damage researches, but it is still widely applied in many countries, especially in China, since its superior architectural function. The mechanical properties and modified measures of the shear wall structures supported on frames are put forward successively as the research going on. Today there are still a lot of problems to be solved, and it is necessary to make an investigation on this structure. This doctoral thesis is arranged as followings:
     (1) According to the different force transfer mechanism near the transfer story, the analytical modeles of the shear wall structures supported on frames and the tube structures with transfer story under the dead horizontal actions are put forward by the substructure method. Some factores of influencing on the structural distortion and force action are discussed also, such as the height of the transfer story, the shear wall types, and the rigidity of the shear wall linked with ground.
     (2) The shear wall structure supported on frames is predigested as an equivalent cantilever bar. The asymmetric vertical rigidity of the whole structure is displayed by the rigidity of the equivalent cantilever bar. By the flexibility matrix method, a simplified model is set up for the structure free vibration calculation. It is accurate and convenient enough for use.
     (3) The whole structure is divided into shear wall structure above transfer story and frame-shear wall structure under transfer story two substructures. A new formula for calculating story rigidity is introduced, which can consider the frames and shear walls anti-lateral rigidity at the same time. A calculation method of torsion effect in shear wall structures supported on frames is set up. It is shown that the concept of the developed rigidity model is clear and the results are exact, which can be very useful for reference during calculating the appreciative torsion effect.
     (4) Using the concept of ratio of equivalent lateral rigidity, the formulas and value ranges are deduced for two new parameters, which are the ratio of equivalent torsional rigidity of the stories above the transform to the below, and the ratio of equivalent story-drift of the stories above the transform to the below. The two parameters can control the mutations of the structural torsional angle, the ratio of story-drift and the shear force effectively.
     (5) Some formulae of the optimal rigidity of the shear wall linked with ground are deduced strictly from the controls of resistance to shear force and the maximum ratio of the bottom floor sideway to the height. The value ranges of the optimal rigidity of the shear wall linked with ground is given by the maximum ratio of sideway to height of the bottom floor under earthquake actions, the ratio of equivalent lateral rigidity and the ratio of equivalent story-drift of the stories above the transform to the below.
     (6) The model of fuzzy comprehensive evaluative on the optimal rigidity of shear wall linked with the ground is presented. It can take various influencing factors into account roundly, such as torsion and the ratio of shear to weight, which can not be considered directly by other ways. So the model is more reasonable for judging the optimal rigidity of the shear wall linked with ground.
     (7) The whole structure is divided into shear wall structure above transfer story and frame-shear wall structure under the transfer story two substructures, and the floors are regarded as horizontal deep beams. Fully considering the types of transfer story and shear wall, the element rigidity matrix of each substructure can be set up by using super finite element method. Finally, the structural dynamic analysis with damp is carried out by dynamic substructure method.
     (8) According to the experimental results and the parameter analyze of the formula for torsion rigidity, the various the factors of influencing on torsion rigidity are discussed, such as the ratio of axial compressive force to axial compressive ultimate capacity of section, the eccentricity, the ratio of shear to torsion, and the ratio of moment to torsion. The degradation graph of torsion rigidity is given by the known experiments, which can be used for inelastic torsional analysis of the tall building structures.
引文
[1]Monograph on Planning and Design of Tall Buildings,Vols,CB,CL,PC,SB,SC,and ASCE,New York,1980,8-20
    [2]B.S.Smith and A.Coull.Tall Building Structures:Analysis and Design.John Wiley & Sons Inc,1991,1-16
    [3]L.(Ed.).Bcedle.Second Century of the Skyscraper.New York:Council on Tall Buildings and Urban Habitat Press,1988,1-33
    [4]L.(Ed.).Bcedle.Developments in Tall Buildings.Stroudsburg:Council on Tall Buildings and Urban Habitat Press,1983,4-58
    [5]D.P.Billington,M.(Eds.).Goldsmith.Techniques and Aesthetics in the Design of Tall Buildings.Bethlehem:Institute for the Study of the High-Rise Habitat Press,1986,1-15
    [6]C.W.Condit.The Two Centuries of Techniques Evolution Underlying the Skyscraper.In:Second Century of the Skyscraper Council on Tall Buildings and Urban Habitat.New York,1988,11-24
    [7]C.H.Thornton,U.Hungspruke,L.M.Joseph.Design of the World's Tallest Buildings-Petronas Twin Towers at Kuala Lumpur City Center.The Structural Design of Tall Buildings,1997,6(4):245-262
    [8]沈蒲生.高层建筑结构设计.北京:中国建筑工业出版社,2006,1-11,239-243
    [9]丁大钧.高层建筑结构体系(一).工业建筑,1998,28(1):43-47
    [10]J.J.A.Tolloczko,H.R.Viswanath,J.N.Clarke.Multi-Purpose High-Rise Towers and Tall Buildings.London:Concrete & Society,1997,3-17
    [11]包世华.新编高层建筑结构(第二版).北京:中国水利水电出版社,2005,1-36
    [12]钢筋混凝土高层建筑设计与施工规程(JGJ3-91).北京:中国建筑工业出版社,1991,2
    [13]高层建筑混凝土结构技术规程(JBJ 3-2002).北京:中国建筑工业出版社,2002,151-152
    [14]丁大均,蒋永生.土木工程概论.北京:中国建筑工业出版社,2003,1-48
    [15]沈蒲生.高层建筑结构疑难释义.北京:中国建筑工业出版社,2003,56-88
    [16]梁启智.高层建筑结构分析与设计.广州:华南理工大学出版社,1993,96-99,220-225
    [17]方鄂华.高层建筑钢筋混凝土结构概念设计.北京:机械工业出版社,2004, 204-225,337-371
    [18]徐培福,傅学怡,王翠坤等.复杂高层建筑结构设计.北京:中国建筑工业出版社,2005,187-275
    [19]惠卓,秦卫红,吕志涛.一种新型的高层建筑结构体系—巨型建筑结构体系.东南大学学报,1999,29(4A):197-203
    [20]沈祖炎,陈荣毅.巨型结构的应用与发展.同济大学学报,2001,29(3):258-262
    [21]P.V.Banavalkar.Concept and Application of Spine Structures for High-Rise Buildings.Habitat and High-Rise,Tradition and Innovation.In:Proceeding of the 5~(th)World Congress.The Netherlands,1995,14(3):137-142
    [22]中国建筑科学研究院结构所.高层建筑转换层结构设计及工程实例.北京:中国建筑科学研究院,1993,14-16
    [23]傅学怡.带转换层高层建筑结构设计建议.建筑结构学报,1999,20(2):28-42
    [24]李国胜.关于底部大空间剪力墙结构的转换层设计.建筑结构,2001,20(7):28-42
    [25]张家华.高层建筑预应力混凝土板式转换层结构的性能和设计研究:[东南大学博士学位论文].南京:东南大学土木工程学院,1998,5-13
    [26]王森.高层建筑梁、板式转换层结构设计计算方法的研究:[中国建筑科学研究院博士学位论文].北京:中国建筑科学研究院,2000,2-8
    [27]唐兴荣.特殊和复杂高层建筑结构设计.北京:机械工业出版社,2006,96-112
    [28]徐培福,黄澄波,经天放等.底层大空间剪力墙结构方案探讨.建筑结构,1981,12(3):1-10
    [29]包世华,方鄂华.高层建筑结构设计.北京:清华大学出版社,1985,196-202
    [30]R.P.Gupta,S.C.Goel.Dynamic Analysis of Staggered Truss Framing System.Journal of the Structural Division,ASCE,1972,98(STT):1475-1492
    [31]钢筋混凝上高层建筑结构设计与施工规定(JZ102-79).北京:中国建筑工业出版社,1979,51-88
    [32]D.R.Green.Force Actions in Shear Wall Support System.Response of Multistory Concrete Structures to Lateral Force,ACI,1982,27(6):15-24
    [33]N.S.Cushman,C.H.Nam,C.B.Tatum.Technology Transfer in Building Construction-Case of Seismic Design.Journal of Construction Engineering and Management,199.2,18(1):129-141
    [34]J.S.Kuang,A.I.Atanda.Interaction Based Analysis of Continuous Transfer Girder System,Conquest of Vertical Space in the 21st Century.In:International Conference 3~(th).London,1997,189-198
    [35]J.S.Kuang,Z.J.Zhang.Analysis and Behavior of Transfer Plate-Shear Wall Systems in Tall Buildings.The Structural Design of Tall and Special Buildings,John Wiley & Sons,2003,12(5):409-421
    [36]J.S.Kuang,S.B.Li.Interaction-Based Design Tables for Transfer Beams Supporting in-Plane Loaded Shear Walls Structure.The Structural Design of Tall Buildings,John Wiley & Sons,Ltd,2001,10(2):121-133
    [37]J.P.Colaco,Z.H.Lambajian.Analysis of Transfer Girder System.Journal Proceedings,ACI,1971,68(10):774-778
    [38]J.S.Kuang,A.I.Atanda.Interaction Based Analysis of Continuous Transfer Girder System Supporting in-Plane Loaded Coupled Shear Walls.The Structural Design of Tall Buildings,John Wiley & Sons,Ltd,1998,7(4):285-293
    [39]R.K.L.Sut,A.M.Chandleri,J.H.Li,Seismic Assessment of Transfer Plate High Rise Buildings.Structural Engineering and Mechanics,2002,14(3):287-306
    [40]J.H.Li,R.K.L.Su,A.M.Chandler,Assessment of Low-Rise Building with Transfer Beam under Seismic Forces.Engineering Structures,2003,25(12):1537-1549
    [41]C.S.Li,S.S.E.Lam,M.Z.Zhang.Shaking Table Test of a 1:20 Scale High-Rise Building with a Transfer Plate System.ASCE,2006,132(11):1732-1744
    [42]L.Gerny.Column Supported Walls with Opening Playing and Design Tall Buildings.In:Proc-International Conference,ASCE,New York,1972,3:486-501
    [43]L.Gerny,R.Leon.Column Supported Shear Walls Concrete Framed Structures:Stability and Strength.Netherlands:Elsevier Applied Science Publishers,1986,1-87
    [44]中国建筑科学研究院建筑结构研究所.高层建筑结构设计.北京:科学技术出版社,1982,12-17
    [45]中国建筑科学研究院建筑结构研究所,广州工学院.底层为框架的钢筋混凝土剪力墙模型试验研究.北京:科学技术出版社,1976,1-30
    [46]黄宗瑜,沈聚敏.框支剪力墙结构地震反应的研究.建筑结构学报,1986,29(6):22-35
    [47]E.H.Fang.Failure Modes of RC Tall Shear Walls.In:Conference of International Workshop on Concrete Shear in Earthquake.Houston,1991,6:352-356
    [48]徐培福,吴廉仲等.底层大空间剪力墙结构12层模型试验研究.建筑结构学报,1984,12(2):8-15
    [49]中国建筑科学研究院.底层大空间剪力墙结构十二层模型在竖向荷载作用下的试验研究.见:底层大空间高层剪力墙结构论文集.北京:中国建筑科学研究院,1987,1-14
    [50]黄宝清,郝锐坤.底层大空间上层鱼骨式剪力墙结构十二层模型在纵向水平荷载作用下的试验研究.见:底层大空间高层剪力墙结构论文集.北京:中国建筑科学研究院,1987,26-31
    [51]P.F.Xu,L.Z.Wu,R.K.Hao.Investigation of Seismic Behavior of Shear Wall Structural System for Low Cost Housing,In:8th World Conference on Earthquake Engineering.San Francisco,1984,11(2):161-168
    [52]P.F.Xu,R.K.Hao,L.Z.Wu.Seismic Resistant Design of Shear Wall Structure with Large Space Ground Floor,In:Third International Conference on Tall Buildings,Hong Kong.Guangzhou,1984,8:1104-1132
    [53]郝锐坤,徐培福等.底层大空间剪力墙结构12层模型拟动力试验研究.建筑结构,1981,12(3):1-10
    [54]宁淦泉.地震区高层建筑框支剪力墙结构设计与试验研究.北京市建筑设计研究院,1982,36-40
    [55]北京市建筑设计研究院.高层框支剪力墙结构的试验研究与设计建议.见:底层大空间高层剪力墙结构论文集.北京:中国建筑科学研究院,1987,37-44
    [56]王崇昌,黄良壁,王宗哲等.延性钢筋混凝土框支剪力墙结构研究.西安冶金建筑学院学报,1993,22(3):44-50
    [57]叶列平.框支剪力墙试验及理论分析研究:[南京工学院博士学位论文].南京:南京工学院土木系,1992,3-23
    [58]何益斌.钢筋混凝土框支剪力墙结构静力、动力荷载试验和理论分析研究:[湖南大学博士学位论文].长沙:湖南大学土木系,1993,24-42
    [59]廖志.框支剪力墙受力性能研究:[湖南大学硕士学位论文].长沙:湖南大学土木系,1993,1-20
    [60]P.S.Shen,Z.Liao,Y.B.He.Deformation and Stresses in Reinforced Concrete Shear Walls Supported on Frames.Journal of Hunan University,1989,18(1):17-27
    [61]耿娜娜,徐培福.带转换层简体结构的刚度和剪力分布突变.建筑科学,2002,37(3):6-15
    [62]徐培福,傅学怡,耿娜娜等.搭接柱转换结构的试验研究和设计要点.建筑结构,2003,39(12):10-15
    [63]叶艳霞,梁兴文.复杂高层框支剪力墙结构模型试验.长安大学学报(自然科学版),2005,25(9):4-10
    [64]黄襄云,金建敏,周福霖等.高位转换框支剪力墙高层抗震性能研究.地震工程与工程振动,2004,24(3):73-81
    [65]林子臣,方鄂华.多层大空间剪力墙结构体系抗震性能实验研究.烟台大学学报(自然科学与工程版),1996,21(1):73-78
    [66]张兰英,李艳娜,吴庆荪.带高位转换层的框支剪力墙结构弹塑性地震反应分析.工业建筑,2002,33(6):24-27
    [67]赵冬,冯仲齐,梅占馨.框支剪力墙结构在地震力作用下弹塑性分析的有限元方法.应用力学学报,2001,18(1):149-153
    [68]李斌,孙祯.RC框支剪力墙结构抗震性能的研究.包头钢铁学院学报,1999,18(4):464-472
    [69]肖小玲.框支剪力墙受力分析:[西南交通大学硕士学位论文].成都:西南交通大学土木系,2004,86-87
    [70]邬玉娟.底部大空间剪力墙结构的地震响应分析:[西南交通大学硕士学位论文].成都:西南交通大学土木系,2004,12-68
    [71]唐瑞森.高层建筑底部大空间剪力墙结构的简捷计算法.工业力学,1984,1(1):24-27
    [72]包世华.框支剪力墙和落地剪力墙在水平荷载下作用下共同工作的内力和位移.建筑结构学报,1982,3(5):33-41
    [73]包世华.框支剪力墙、落地剪力墙和壁式框架在水平荷载下作用下共同工作的内力和位移.建筑结构学报,1983,4(6):26-37
    [74]黄宗瑜,沈聚敏.框支剪力墙结构体系的简化抗震分析.建筑结构学报,1988,1(4):22-35
    [75]梁启智,韩小雷.高层建筑框支剪力墙结构的空间分析.建筑结构学报,1990,11(2):1-15
    [76]唐瑞森.高层建筑底部大空间剪力墙结构自振周期、地震内力及位移的简捷计算法.见:第九届全国高层建筑结构学术交流会会议论文集.北京:建筑工业出版社,1986,(3):648-655
    [77]包世华.框支剪力墙和落地剪力墙在水平荷载下作用下共同工作时的自振周期.建筑结构学报,1988,9(1):42-52
    [78]包世华.框支剪力墙、落地剪力墙和壁式框架在水平荷载下作用下共同工作的自振周期.结构工程学报,1990,1(1):34-43
    [79]汪梦甫.底层大空间高层结构自由振动的实用计算方法.上海力学,1994,15(2):66-73
    [80]汪梦甫.底层大空间高层结构自由振动的模态综合解法.湖南大学学报,1993,20(4):105-123
    [81]张同亿、李从林、吴敏哲.框支剪力墙结构考虑楼板变形计算的超元法.工业建筑,2001,31(8):33-35
    [82]张同亿、李从林、吴敏哲.高层建筑框支剪力墙结构自振特性计算的超元法.工程力学(增刊),2001:857-861
    [83]张同亿、李从林、许菊萍.高层框支剪力墙结构地震反应分析的超元法.地震工程与工程振动,2002,22(2):80-84
    [84]张同亿、李从林、王忠礼.框支剪力墙结构简化分析的超元法.建筑结构,2001,31(1):37-39
    [85]张同亿.高层建筑框支剪力墙结构静、动力分析的超元法:[兰州铁道学院硕士学位论文].兰州:兰州铁道学院土木系,1998,1-45
    [86]马庆宁.用Q.R.法分析考虑楼板变形的高层建筑结构:[广西大学硕士学位论文].南宁:广西大学力学系,1999,4-28
    [87]叶艳霞,梁兴文,李青宁等.底部大空间上部弱楼板高层结构动力分析子结构法.工业建筑,2003,33(3):27,32-34
    [88]叶艳霞,梁兴文,李青宁等.楼板开大洞框支剪力墙高层结构空间有限元动力分析.世界地震工程,2002,18(4):136-142
    [89]叶艳霞,梁兴文,李青宁等.复杂框支剪力墙结构空间弹塑性分析.世界地震工程,2005,21(2):136-140
    [90]叶艳霞,梁兴文.框支分区剪力墙高层结构整体简化分析方法研究.世界地震工程,2005,21(3):70-74
    [91]叶艳霞.框支分区剪力墙结构抗震性能及空间精细分析和简化分析方法研究:[西安建筑科技大学博士学位论文].西安:西安建筑科技大学土木系,2003,101-121
    [92]胡安妮.高层建筑转换层的结构形式受力特点及其应用:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学土木系,1999,58-61
    [93]荣维生.带板式转换高层建筑混凝土结构抗震性能研究:[中国建筑科学研究院博士学位论文].北京:中国建筑科学研究院,2004,25-111
    [94]吴绮芸,程绍革,李玉英等.L形交叉剪力墙框支转换梁受力性能.建筑科学,1997,21(2):11-15
    [95]宋冰.高层建筑平板结构转换层的受力分析与研究:[中国航空工业规划设计研究院硕士学位论文].北京:中国航空工业规划设计研究院,1998,3-31
    [96]宁海永.高层建筑结构的桁架转换层研究:[北京交通大学硕士学位论文].北京:北京交通大学建工学院,2004,12-45
    [97]杨志勇.高位转换框支剪力墙高层建筑抗震性能研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学土木学院,2004,2-48
    [98]徐培福,王翠坤,郝锐坤等.转换层设置高度对框支剪力墙结构抗震性能的影响.建筑结构,2000,30(1):38-42
    [99]廖耘.框支短肢剪力墙结构受力分析:[西南交通大学硕士学位论文].成都:西南交通大学土木系,2002,6-56
    [100]凌育洪,李少云.环梁节点在钢管混凝土框支剪力墙结构的设计.长安大学学报(建筑与环境科学版),2004,21(1):15-17
    [101]凌育洪,刘挺.钢管混凝土柱框支剪力墙结构应用的设计探讨.南昌大学学报(工科版),2004,26(31:89-93
    [102]荣维生.板式转换结构转换层位置对高层建筑抗震性能的影响.建筑科学,2004,20(4):1-7
    [103]黄勤勇.转换层上、下刚度比对框支剪力墙结构抗震性能的影响.结构工程师,2003,26(1):17-23
    [104]沈蒲生.底层大空间高层建筑中落地剪力墙合理数量的确定方法.湖南建材,1987,(1):35-40
    [105]郭长城.建筑结构振动计算.北京:中国建筑工业出版社,1982,61-87
    [106]殷芝霖,张誉,王振东.抗扭.北京:中国铁道出版社,1990,9-362
    [107]刘继明,时伟.钢筋混凝土偏压剪扭构件的变形计算方法探讨.工程抗震,2001,23(3):16-19
    [108]刘继明,孙黄胜,张连德.钢筋混凝土双向偏压剪构件在反复扭矩下受扭性能试验研究.建筑结构学报,2001,22(3):48-83
    [109]林咏梅,张连德.钢筋混凝土双向压弯剪扭构件抗扭性能的试验研究.西安建筑科技大学学报,1998,30(1):20-24
    [110]张连德,王泽军,卫云亭.钢筋混凝土偏压扭构件非线性全过程分析.建筑结构学报,1990,11(2):16-27
    [111]张连德,陈为滢,卫云亭.低周反复扭矩作用下钢筋混凝土双向偏压构件抗扭性能研究.土木工程学报,1993,26(2):29-37
    [112]赵嘉康,张连德,卫云亭.钢筋混凝土压、弯、剪、扭构件受扭性能的研究.土木工程学报,1993,26(1):20-30
    [113]聂建国,胡少伟等.钢-混凝土组合梁复合弯扭作用下的性能进行过试验及理论分析.计算力学学报,2004,21(4):435-439
    [114]聂建国,熊辉,胡少伟.开口截面钢-混凝土组合梁弯扭性能的理论分析与试验研究.土木工程学报,2004,37(11):6-11
    [115]胡少伟.钢-混凝土组合梁抗扭性能的研究.清华大学土木系,1999,12-18
    [116]韩林海,钟善桐.钢管混凝土纯抗扭问题研究.工业建筑,1995,25(1):7-13
    [117]杜赞华.拉弯扭共同作用下RC构件极限扭转试验研究.西南交通大学学报,2000,35(2):129-132
    [118]刘大海,杨翠如,钟锡根.高层建筑抗震设计.北京:中国建筑工业出版社,1993,204-215
    [119]吕西林,李学平.超限高层建筑工程抗震设计中的若干问题.建筑结构学报,2002,23(2):13-18
    [120]徐培福,黄吉锋,韦承基.高层建筑结构在地震作用下的扭转振动效应.建筑科学,2000,16(1):1-6
    [121]何浩祥,张玉怿,李宏男.建筑结构在双向地震作用下的扭转振动效应.沈阳建筑工程学院学报(自然科学版),2002,18(4):241-243
    [122]潘东辉,蔡健.建筑结构在不同方向地震作用下的扭转振动效应.工程抗震与加固改造,2004,26(6):9-14
    [123]梁莉军,黄宗明,杨溥.各国规范关于结构地震下抗扭设计方法的对比.重庆建筑大学学报,2002,24(2):52-56
    [124]谭俊清,李青宁,梁兴文.高层建筑筒体结构在扭转效应下框筒裙梁高度优化分析.西安建筑科技大学学报,1999,31(3):284-287
    [125]混凝土结构设计规范(DB 50010-2002).北京:中国建筑工业出版社,2002,2-87
    [126]李君如,詹肖兰,欧阳炎.高层建筑结构分析.北京:人民交通出版社,1990.187-192
    [127]沈蒲生.结构分析的计算机方法.长沙:湖南科学技术出版社,1994,146-193
    [128]沈蒲生.高层建筑结构设计例题.北京:中国建筑工业出版社,2005,96-99
    [129]孟焕陵,沈蒲生.框-剪结构中连接形式对剪力墙合理数量的影响[J].华中科技大学学报(城市科学版).2005,22(2):71-77
    [130]方鄂华.多层及高层建筑结构设计.北京:地震出版社,1992,51-57
    [131]建筑抗震设计规范(GBJ11-1989).北京:中国建筑工业出版社,1989,10-28
    [132]建筑抗震设计规范(GB 50011-2001).北京:中国建筑工业出版社,2001,141-159
    [133]唐瑞森.高层建筑底层大空间剪力墙结构自振周期、地震内力及位移的简捷计算法.见:第九届全国高层建筑结构学术交流会论文集.北京:建筑工业出版社,1986,(3):648-655
    [134]包世华.框支剪力墙和落地剪力墙共同工作时的自振周期.见:第九届全国高层建筑结构学术交流会论文集.北京:建筑工业出版社,1986,(5):1190-1200
    [135]王光远.建筑结构的振动.北京:科学出版社,1978,95-98
    [136]刘云平,赵建昌,李永和.变刚度筒中筒结构分析的超元方法.兰州交通大学学报(自然科学版),2005,24(1):115-119
    [137]A.Coull,B.Bose.Discussion of Simplified Analysis of Frame-tube Structures.J.Struct.Div.,ASCE,1977,103(1):297-299
    [138]A.Coull,N.K.Subedi.Frame-tube Structures for High-rise Buildings.J.Struct.Div.,ASCE,1971,97(8):2097-2105
    [139]A.Coull,B.Bose.Discussion of Simplified Analysis of Frame-tube Structures.J.Struct.Div.,ASCE,1977,103(1):297-299
    [140]A.Coull,N.K.Subedi.Frame-tube Structures for High-rise Buildings.J.Struct.Div.,ASCE,1971,97(8):2097-2105
    [141]A.H.Khan,B.S.Stafford.A Simple Method of Analysis for Deflection and Stressed in Wall-frame Structures.Building and Envir.,1976,89(11):69-78
    [142]K.H.Ha,P.Fazio,O.Moselhi.Orthotropic Membrane for Tall Building Analysis.J.Struct.Div.ASCE,1978,104(9):1495-1505
    [143]王寿康,张毛心,吴方伯.变刚度框架-剪力墙结构的力法解及其简化.建筑结构,2001,31(4):61-63
    [144]F.R.Khan,J.A.Sbarounis.Interaction of Shear Walls and Frames.J.Struct.Div.ASCE,1964,90(3):285-335
    [145]A.C.Heidebrecht,B.S.Smith.Approximate Analysis of Tall Wall-Frames Structures.J.Struct.Div.ASCE,1973,99(2):199-221
    [146]K.Arvidsson.Non-uniform Shear Wall-Frames Systems with Elastic Foundations.Proc.Inst A.C.,1975,59(2):139-148
    [147]程文瀼,任振华,方向.变刚度、变层高的框-剪结构计算.东南大学学报,1993,23(1):69-75
    [148]张连德,陈为滢,卫云亭.低周反复扭矩作用下钢筋混凝土双向偏压构件抗扭性能的研究.土木工程学报,1993,26(2):29-37
    [149]张国顺.钢筋混凝土双向偏压构件抗扭性能的研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学土木系,1989,2-45
    [150]秦卫红.钢筋混凝土压、弯、剪构件在反复扭矩作用下抗扭性能的研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学土木系,1993,6-37
    [151]孙黄胜,施卫星,刘继明.双向偏压剪反复扭构件抗震性能试验研究.同济大学学报,2003,31(10):1151-1156
    [152]王东方,秦卫红.钢筋混凝土压弯剪扭构件的扭转刚度.同济大学学报,2004,32(2):167-171
    [153]沈蒲生.一级注册结构工程师考试手册(上册).北京:中国建筑工业出版社, 2000,976-989
    [154]孙黄胜,臧晓光,刘继明.钢筋混凝土复合受扭构件的开裂扭转计算.青岛建筑工程学院学报,2001,22(3):5-8
    [155]杨茀康,李家宝.结构力学.北京:高等教育出版社,1998,226-227
    [156]邓建中,葛仁杰,程正兴.计算方法.西安:西安交通大学出版社,2000,191-196
    [157]荣维生,王亚勇,周仁刀.转换层上、下结构侧向刚度对带板式转换结构转换高层建筑抗震性能的影响.工程抗震与加固改造,2004,26(6):1-8
    [158]孟焕陵,沈蒲生.均布荷载及集中荷载作用下框-剪结构中剪力墙的合理数量.华中科技大学学报(城市科学版),2004,21(1):64-68
    [159]杨纶标,高英仪.模糊数学原理及应用.广州:华南理工大学出版社,2003,139-147
    [160]L.A.Zadeh.Fuzzy Sets.In:Information and Control.,1965,(8):338-353
    [161]U.Hohle,S.E.Rodabaugh.In:Mathematics of Fuzzy Sets:Logic,Topology,and Measure Theory,the Handbook of Fuzzy Sets Series,Boston:Kluwer Academic Publisher,1999,1-20
    [162]赵西安.楼板变形对高层建筑结构内力与位移的影响.建筑结构,1982,31(6):61-63
    [163]S.C.Paper,R.H.Iding.Appropriateness of the Rigid Floor Assumption for Buildings with Irregular Feartures,In:Proc 8~(th)European Conference on Earthquake Engine.San Francisco,1984,4:274-281
    [164]刘开国.高层建筑结构考虑楼板变形的空间分析.建筑结构学报,1987,31(2):61-63
    [165]H.F.Karadogan.Earthquake Analysis of 3D Structure with Flexible Floor,In:Proc 7~(th)European Conference on Earthquake Engine.Athens,1982,11:169-177
    [166]李从林,张同亿.高层建筑结构考虑楼板变形计算的超元法.建筑结构,2000,21(2):17-18
    [167]R.A.Clough.Dynamics of Structures,2~(nd)Edition,London:McGraw-Hill,1993,169-341
    [168]A.K.Chopra.Dynamicsl of Structures,New Jersey:Prentice Hall International,1995,68-78
    [169]汪梦甫,沈蒲生.建筑结构动力分析的子结构法.湖南大学学报,1994,21(2):109-115
    [170]郑兆昌.模态综合技术.北京:清华大学出版社,1985,30-50
    [171]G.B.Warburton.The Dynamical Behavior of Structures,London:McGraw-Hill,1980,46-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700