用户名: 密码: 验证码:
锌精馏冷凝器的模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷凝器如何有效的将锌蒸气冷凝为液态,一直是锌精炼工艺的瓶颈。而目前锌蒸气的热物性参数并不完整。冷凝方面的以往研究所得到的一些实验关联式,一般针对冷却面为回转面或平板表面,误差较大,其结果很难直接应用于锌精馏冷凝设备。因此,通过模拟实验的手段,针对锌精馏冷凝器结构特性进行工业实验是研究设计冷凝器所必要的。
     为了有效地分析该类型冷凝器结构特性对冷凝效果的影响,综合考虑了冷凝器现场,工艺及理论计算方面的限制,结合实际测试数据建立了冷凝器的结构数学模型,从实验结果可靠性的角度出发研究并建立了可行的物理实验模型和完整的汽水实验系统,进行了充分的模拟对比实验。在实验的基础上进行了热平衡校核,分析了误差来源。通过对对比实验结果的分析研究认为:在一定的液封压力下,冷凝器的容积对冷凝的影响较大;单独增加散热面积而不考虑长宽比对冷凝器容积空间的影响也是不可取的,合理的长宽比更有利于冷凝器冷凝强度的均匀分布,根据实验结果,并考虑到其它一些不确定因素的影响,最佳的长宽比应在1.15左右;冷凝蒸气入口位置的变化对冷凝量的影响不大,冷凝器仅改变进气口的位置并不能明显提高冷凝能力,但对冷凝器各冷凝面的冷凝强度的均匀性影响较大;当蒸气入口置于中位时,冷凝器壁温分布较为均匀,器壁温差上下变化不大,有利于减少设备热应力,提高设备的使用寿命。
How to effectively condensing zinc vapor into liquid in condenser influences the development of zinc refinery technology all through. There is insufficient data in existing references about the thermodynamics properties of zinc vapor. Dimensional equations attained from the study of condensation usually aim at revolving or tabulating cooling surface. The error is large. It is difficult to use these equations directly for condenser design, thus it is important and necessary to study the structure properties of zinc refinery condenser by simulation experiments
    In order to effectively analyzing the influence of the structure characteristics of condenser on the process of condensation, the dissertation synthesized the constraint conditions of field N technique and simulation computation of condenser , and established a structural model. A set of feasible Pilot models and integrated steam/water experimental system had been set up according to the reliability of experimental results, and stimulation experiments had been conducted for comparison. The study checked thermal equilibrium and results, analyzed relative error and error limit. The results of these comparative experiments show that under a given pressure for liquid_encapsulated the volume of a condenser obviously affects the condensation. And it is unfeasible for a condenser to only add its external area, without considering its aspect ratio. A reasonable aspect ratio is beneficial for keeping well-proportioned distribution of condensation intensity. According to the results of these experiments, and taking in
    to consideration of some uncertain factors, the best aspect ratio is approximately 1.15; The results of these comparative experiments also show that the position of steam intake almost has no influence on condensation quantity, but the change of the position of steam intake will obviously affect the well-proportioned distribution of condensation intensity. When the intake is placed in the middle of the condenser in the vertical direction, the temperature distribution of condenser wall is uniform, the difference in temperature of a single wall is small, which will be in favor of reducing thermal stress and improving the longevity of the use of condenser.
引文
[1] 邱竹贤.有色金属冶金学.北京:冶金工业出版社,1988.209~214
    [2] 梁连科,车荫昌,杨怀等.冶金热力学及动力学.沈阳:东北工学院出版社,1990.1~44
    [3] 李椿.热学.北京:高等教育出版社,1978,339~342
    [4] 虞冠敏,戴永年.内热式多级连续蒸馏真空炉传热过程分析.昆明理工大学学报,1997,22(2):36~38
    [5] [美] J.舍克里.冶金中的流体流动现象(,彭一川,徐匡迪,樊养颐译,肖泽强校).北京:冶金工业出版社,1985.10~22
    [6] Barin. I, Knache. O. Thermochemical Properties of Znorganic Substance. Springer-Verlag. Berlin and New York: 1973
    [7] Gaskell. D. R. Introduction to Metallugical Thermodynamics. 2nd Ed, Mc GRaw_Hill, 1981, 140~145
    [8] 张圣弼.冶金物理化学实验.北京:冶金工业出版社,1994.37~105
    [9] 王常珍.冶金物理化学研究方法.北京:冶金工业出版社,1982.76~136
    [10] 陈新民.火法冶金过程物理化学.北京:冶金工业出版社,1984.394~422
    [11] 《重有色金属冶炼设计手册》编委会.重有色金属冶炼设计手册:铅锌铋卷.北京:冶金工业出版社,1996.575~577
    [12] 魏寿昆.冶金过程热力学.上海:上海科学技术出版社,1980.33~90
    [13] 赵天从.重金属冶金学:下册.北京:冶金工业出版社,1981.86~106
    [14] Rao. Y. K. Stoichiometry and Themodynamics of Metallurgical Processes. London: Cambridge University Press, 1985. 223~260
    [15] 傅崇说.有色冶金原理.北京:冶金工业出版社,1993.140~145
    [16] 蔡军林,张全,梅炽等.锌精馏铅塔燃烧室热工问题诊断.中南工业大学学报(自然科学版),2001,32(6):587~590
    [17] 鄂加强,张全,梅炽等.锌精馏铅塔燃烧室内烟气的传热特性.有色金属,2002,(54)2:58~60
    [18] 张全,何金桥,鄂加强等.锌精馏过程中铅塔的烟气系统的诊断研究.有色金属(冶炼部分),2002,4:8~9
    [19] 《铜铅锌冶炼设计参考资料》编写组.铜铅锌冶炼设计参考资料:中册.北京:冶金工业出版社,1978.227~256
    [20] 傅崇说.冶金溶液热力学原理与计算.北京:冶金工业出版社,1989.37~46
    [21] [苏] A.伏尔斯基,E.谢尔吉耶夫斯卡娅.冶金过程理论(,董庆和译).北京:
    
    科学出版社,1987.31~39
    [22] 徐采栋,林蓉,汪大成.锌冶金物理化学.上海:上海科学技术出版社,1978.174~180
    [23] [美] B.V.卡里卡,R.M.戴斯蒙德著,刘吉萱主译.工程传热学(,刘吉萱主译).北京:人民教育出版社,1981.451~456
    [24] Jean-Louis Martin. Safety in the Zinc Refinery at Noyelles-Godault[A]. ISPConference[C]. Stoke Orchard, UK, 1998, 246~251.
    [25] 史琳,胡柱国,蔡颐年.用光散射效应分析激波管内膨胀率对水蒸汽成核与凝结的影响.空气动力学学报,1994,12(4):475~481
    [26] [日] 西川兼康,藤田恭伸.传热学(,孙业斌,侯克复,宋敬埔译).北京: 兵器工业出版社,1990.204~228
    [27] 徐志强.不饱和冷却冷凝器传热机理及设计应用.硫酸工业,1994,(5):9~13
    [28] J W Rose. Condensation. Heat tranfer. Heat and Mass transfer, 1999, 35:479~485
    [29] Collier J G, Thome J R. Convection boiling and condensation. 3rd ed Oxford: Clarendon Press, 1994, 169~219
    [30] 陈金星,钱斌.冷凝及汽化温度的变化对制冷系数影响的研究.常熟高专学报,2001,15(7):26~29
    [31] 列光华,江涛.相变的分类及特征.湛江师范学院学报(自然科学版),1998,(2):31~35
    [32] Nusselt, W., VDI_Z, 60-27(1916), 541
    [33] ROHSENOW. W. M. Handbook of Heat Transfer. NEW York: McGraw-Hill, 1973. 77~104
    [34] 冯健美,张强.纯质制冷剂管内冷凝计算方法的回顾与评价.西安建筑科技大学报,1998,30(4):370~374
    [35] SEBAN R A, HODGSON J A. Laminar film condensation in a tube with upward vapor flow. Int J Heat Mass Transfer, 1982, 25(9) : 1291~1300
    [36] SEBAN R A, FAGHRI A. Film Condensation in a vertical tube with a closed top. Int J Heat Mass Transfer, 1984, 27(6) : 944~948
    [37] G Koch, D C Zhang, A L eipertz. Condensation of steam on the surface of hard coated copper discs. Heat and Mass transfer, 1997, 32: 149~156.
    [38] BLANGETII F, NAUSHAHI M K. Influence of mass transfer on the momentum transfer in condensation and evaporation phenomena. Int J Heat Mass Transfer, 1980, 23(2) : 1694~1695
    [39] 潘阳,顾文斌.垂直管内汽-液两相间传质及界面对冷凝过程的影响.华东
    
    工业大学学报,1995,17(2):93~101
    [40] 陈鸿复.冶金炉热工与构造.北京:冶金工业出版社,1990.32~48
    [41] 赵国华,陈健生,李修伦.倾斜式汽液逆流冷凝传热研究.化学工程,2001,29(4):14~18
    [42] 龙怀祖.管内冷凝传热计算方法探讨.石油规划设计,2001,(1):7~10
    [43] CHEN S J, Reed J G, Tien C L. Reflux condensation in a two_phase closed thermosyphon. Int J Heat Mass Transfer, 1984, 27(9) : 1587~1594
    [44] Reed J G, rien C L. Modeling or the two_phase closed thermosyphon. Trans ASME, 1987, 109(8) : 722~730
    [45] Pan Y, Gu W B, Wang X W. Modeling and analysis of the two_phase closed thermosyphon. IntJHeatMass Transfer, 1984, 27(9) : 1587~1594
    [46] Dukler, A.. E. Bergelin, O. P., Chem. Eng. Prog., 48-11(1952), 557
    [47] 王遵敬,陈民,过增元.气液界面动力学行为与热力学性质的分子动力学研究.工程热物理学报,2001,22(1):70~73
    [48] Benjamin G B. Wave Formation in laminar flow down an inclined plane. J Fluid Mech, 1957,(2): 554~574
    [49] Yih C S. Stability of liquid flow down an inclined plane. Physics of Fluid, 1963,(7) : 321~325
    [50] Whiraker S. Effect of surface active agents on the stability of falling liquid films. IndEngChen fundam, 1964, 3(2) : 132~138
    [51] Krantz W B, Goren S L. Stability of thin liquid films flowing down a plane. Ind Eng Chen fundam, 1971, 10(1) : 91~101
    [52] Kapitza P L. Wave flow thin layers of a viscous fluid. In Collected Papers of P. L. Kapitza. New York: Macmillan, 1964
    [53] Shkadov Ya. Theory of wave flows of thin layer of a viscous liquid. Izv. Akad. Nauk SSSR, Mekh Zhikd, Gaza, 1968, 2:20~25
    [54] Yang R, Wood B D. Anumerical solution of the motion on a falling liquid film. Can J Chem Eng, 1997, 69(6) : 723~728
    [55] Alekseenko S V, Nakoryakov, Pokusacv B G. Wave formation on vertical falling liquid film. Int J Multiphase Flow, 1985, 11(5) : 607~627
    [56] Yu L, Wasden F, Dukler A E et al. Non-linear evolution of waves on falling at high Reynoldsnumbers. Physics of Fluid, 1995, 7(8) : 1886~1902
    [57] Brauner N, Maron DM, Ziji W. Interfacial collocation equations of thin liquid film : stability analysis. Chem Engng Sci, 1987, 42(8) : 1886~2035
    
    
    [58] Benny D J. Long waves on liquid film. J Math Phys, 1966, 45:150~158
    [59] 钱焕群,胡志华,孙贺东等.下降液膜流动模型及稳定性分析.热能动力工程,2003,18(1):82 85
    [60] Bankoff S G. Stability of liquid flow down a heated inclined plane. Int J Heat Mass Transfer, 1970, 14:377~385
    [61] Marschall E, Lee C Y. Stability of condensate flowdown a vertical wall. Int J Heat Mass Transfer, 1973, 16:44~48
    [62] Spindler B. Linear stability of liquid films with interfacial phase change. Int J Heat Mass Transfer, 1982, 25(2) : 161~173
    [63] 师晋生,施明恒.饱和下降液膜的稳定性研究.应用力学学报,1999,16(4):27~34
    [64] Bankoff S G. Dynamics and stability of thin heated liquid films. Trans ASME. J Heat transfer, 1990, 112(3) : 538~546
    [65] Joo S W, Davis S H, Bankoff S G. Long-wave instability of heated films: two-dimensional theory of uniform layers. J. Fluid Mech, i991, 230:117~146
    [66] Burelbac, Bankoff S G, Davis S H. Nonlinear stability of evaporating/ condensing liquid films. J. Fluid Mech, 1988, 195:463~494
    [67] Bankoff S G. Significant questions in thin liquid film heat transfer. Trans ASME. J HeatTransfer, 1994, 116:10~16
    [68] 蒋章焰,陶正文,阎维平.垂直表面自由降膜表面波的非线性演化.华北电力大学学报,1999,26(1):13~17
    [69] 叶学民,阎维平.沿倾斜壁面下降的蒸发/冷凝降膜二维表面波的线性稳定性.西安交通大学学报,2002,36(1):25~29
    [70] Chang H C. Evolution of nonlinear waves on vertical falling films a normal analysis. Chem Engng Sci, 1987, 42(3) : 515~533
    [71] 王补宣,张金涛,彭晓峰.壁薄液膜流动稳定性的分析.工程热物理学报,1997,20(4):457~461
    [72] Nusselt, W., VDI_Z, 60-28(1916), 569
    [73] CHEN S J, Reed J G, Tien C L. Reflux condensation in a two_phase closed thermosyphon with one side vertical surface heated in the evaporateor. Proc of 8th IHPC, Beijing, 1992:B-P22-1~B-P22-6
    [74] 陈长清.低温换热器的特点及研究方向.深冷技术,1991,(4):15~18
    [75] Ishibashi E, Nashikawd K. Saturated Boiling Heat Transferin Narrow Space. Int. J. of Heat Mass Transfer, 1969, 12:863~894
    [76] Chen L F, Peng S Y, etal. Experiment Research on Microfilm-thermsyphon
    
    Boiling Heat Transferin A Narrow Channel. Cryogenics, 1990, 30:278~291
    [77] 陈流芳,吴裕远.板翅式单元掖氦中微膜热虹吸浅池沸腾的实验研究.西安交通大学学报,1995,29(5):34~38
    [78] Maugham J R, Incropera F P. Mixed. Convection heat transfer for air flow in a horizontal and inclined channel. Heat and Mass transfer, 1987, 30:1307~1318
    [79] Ashworth S etal. Boiling Heat Transfer Studies on A 2m Narrow Channel Test-rig in Liquid Nitrogen. ICEC-12 Southampton, U. K., 1988:192~197
    [80] Ashworth S etal. Condensing and Boiling Performance of a 60cm Plate-fin Condenser-reboilerat LN_2 Temperture. ICEC-12 Southampton, U. K., 1988:334~338
    [81] 刘永忠.工业用板翅式冷凝蒸发实验单元强化传热实验研究.西安交通大学硕士论文,1992
    [82] 刘永忠,陈斌,厉彦忠等.板翅式换热器蒸发与冷凝传热性能的研究.低温与超导,1997,25(2):62~67
    [83] Nusselt W. Gesundheits-Ing, 1915, 58:477~490
    [84] Uermann R. VDI-Forschungsheft, 1936, 379
    [85] Griffiths, Davis H. The Transrnission of Heat by Radiation and Convection, 1922, 9
    [86] Schmit E. Beckmann W. Techn. Mech. u. Thermodynamic, 1930, 1:341~391
    [87] Nusselt W, Juerges W. Zcits. d. Ver. deutsch. Ing, 1923, 72:597
    [88] King W J. Mech. Engg, 1932, 54:347
    [89] Lorenz H H. Zeits. Tech. physik, 1934, 15:862
    [90] Sauders O A. Proc. Roy. Soc. London(A), 1936, 157: 278: 1939, 172:55
    [91] Jakob M. Heat Transfer, Vol 1, New York: John Wiley & Suns, Inc., 1949, 529
    [92] Touloukian Y S, Hawkins G A, Jakob M. Trans. ASME, 1948, 70:13
    [93] 杨世铭.自由运动放热的基本准则式.西安交通大学学报,1962,2:125~139
    [94] 姚平经,郑轩荣.换热器系统的模拟、优化与综合.北京:化学工业出版社,1992.1~22
    [95] 闵桂荣.不同流体在大空间中自然对流放热过程的研究.机械工程学报,1964,12(2):84~96
    [96] 吴平,王欲知.金属蒸气激光器冷凝区结构的优化.激光技术,1999,23(5):271~273
    [97] 杨世名.传热学.北京:高等教育出版社,1989,3
    [98] 张全,何金桥,凌振华等.锌精馏铅塔冷凝器热工测试分析.中南大学学报(自然科学版),2004,2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700