用户名: 密码: 验证码:
基于三维网络模拟技术的裂隙网络水力研究及隧道涌水非线性预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家自然科学基金项目,编号:40272117和编号:40472136项目,以及教育部资助优秀年轻教师基金项目“三维网络结构岩体力学模型及工程地质灾害研究”。本文以诸永高速公路白鹤隧道永嘉端(K126+100~K128+110)地质超前预报工作为依托,重点对K126+800~K127+500间围岩进行研究,作为项目的主要研究人员,在2006年3月到2006年12月间对白鹤隧道工程地质情况进行全面调查分析,并于5初到12月底常驻隧道口进行现场地质工作,采用地质构造分析、现场地质描述、节理裂隙统计、监控量测、综合物探等手段进行现场工作,对白鹤隧道工程地质特征、节理裂隙的三维网络模型以及隧道涌水预测问题进行系统的研究。将神经网络与三维网络模型结合起来,通过对比可以看出隧道涌水量的预测成果具有较好的精度。
     本文首先对白鹤隧道地质构造、地层岩性、地形地貌、气象水文、地质环境等特征进行了介绍,再对三维网络模拟技术进行介绍,引进图论模型进行不连续面间拓扑关系表示,在大量室内外工作基础上实现了三维网络模型的生成,并在三维网络模型基础上进行裂隙全局搜索,利用三维网络模拟结果直接进行隧道涌水量、涌水位置和渗透性预测。在隧道涌水量计算方面,比较分析了多个常规涌水量计算方法,并选择部分较为合适的方法进行涌水量计算。在三维网络模型基础上,提取了反映岩体裂隙发育和连通特性的重要参数,并将其用于神经网络预测模型中。然后根据现场数据获得实际样本建立神经网络模型,进行隧道涌水量预测,最后采用遗传优化神经网络权值方法,再次进行涌水量预测,取得较好结果。
Gushing water of tunnel is a common geological phenomena in the tunnel project. The gushing water have an important influence on stability of tunnel project. Different types of rock mass engineering geological conditions and hydro-geological conditions may have totally different results in water gushing. The studies of gushing water in tunnel at home and abroad have accumulated a wealth of experience and substantial results. However, there is still not a mature enough and stable way in prediction of gushing water. Baihe Tunnel is a long tunnel of the Zhuyong highway in Taizhou. By numerous structural geology in history, the tunnel area where geological conditions in larger, the tunnel construction have arisen in the course of collapses, block-fall, deformation, water and mud gushing and other issues. For needs of geological forecasting work in Baihe Tunnel, this paper focused in-depth study on the problem of gushing water in Baihe Tunnel.
     The author in the field work, take the geological survey and analysis as the major means. Uninterrupted description of the geological analysis and monitoring of the tunnel face were carried out under excavation. At the same time, the external topography geological condition in zone of the tunnel is investigated in detail. This paper takes geological structure cybernetics and rock structure cybernetics as the major guiding ideology. By fully grasping the characteristics of the formation lithology and geological structure of Baihe tunnel, groundwater controlling rock stratum of the export side of the Baihe tunnel was determined, and the location of gushing water of the tunnel was inferred. Against the characteristics of fissures bedrock, on the basis of a large number of joint surveys of discontinuities, a series of indoor use analytical tools was used to deal with it. Respectively, a trace map and structure pole map were drawn. Then, analysis of structural homogeneity of rock mass was made, the attitude distribution of discontinuities in the fractured rock mass and bulk density of discontinuities were solved. After that, methods based on the Monte Carlo principle were used to generate the fissures, and the statistical discontinuities three-dimensional network models were constructed.
     Three-dimensional network model with considerable confidence can be used as a platform for follow-up study. Parameters reflecting the rock characteristics were distilled from the three-dimensional network model in this paper. Based on graph theory of the correlation matrix, the distribution of length of fracture string in the model was coded to solve it. At the same time, the generation of the shortest path between the given fractures is solved. Visualization technology of three-dimensional network is used for the display of three-dimensional network model.
     In this paper, domestic and international conventional tunnel inflow forecasting methods were compared against the actual situation of the tunnel.
     An appropriate or more appropriate method for this tunnel was selected for the gushing water calculation of its stable inflow. According to the needs of working in situ, the author used rectangular and triangular weir as a top-water tunnel gushing measurement tools. By contrasting the gushing water worked out by conventional methods and reality inflow, the conventional methods result in quite a difference results with each other. It means that they are not effective and stable means for prediction and assessment of gushing water in tunnel.
     This paper takes theory of "Generalized System Science and Engineering Geology," as a guide. It's mentioned that gushing water in tunnel is a comprehensive geological processes related to many factors. And it is a highly nonlinear problems and uncertainties. It is not an effectively way to reveal the fundamental reason of water gushing in tunnel using traditional methods. In a wide range of comparison and analysis of domestic and foreign counterparts, on the basis of owned materials of this tunnel and the geological conditions, this paper use a neural network combined with three-dimensional network in inflow forecast of gushing water. That is, three-dimensional network as an objective portrait of fractured rock mass. In this paper, parameters such as the greatest length of fracture string, the average length of fracture string, the number of the most isolated fracture, were extracted from the three-dimensional network as key parameters of gushing water tunnel. In a detailed analysis on the basis of other factors, a reliable indicator system was formed, and the establishments of neural networks training samples were formed. A neural network toolbox of matlab7.1 was used for the tunnel inflow forecasting. This paper also uses genetic algorithms to optimize the value and bias of neural network, making neural networks in the training areas for convergence faster and the overall situation has improved. In this paper, predicted results response the gushing water after the tunnel excavation, the research results can provide scientific basis for the reference and anti-drainage tunnel engineering design.
     By in-depth systematically researching of gushing water of Baihe tunnel Yongjia exit fractured bedrock in this paper, some main results and conclusions were made as follows:
     1 On the basis of wide range collecting of Baihe tunnel project regional geological meteorology and hydrology materials, physical geography and geology conditions of Baihe tunnel was summarized. In some different ways, the engineering geological environmental conditions are investigated and analyzed in details. Also the influencing factor which may influence the characteristics of gushing water in fractured bedrock mass tunnel was discussed. The classification of rock mass along the tunnel line was analyzed too. For the purpose of measuring the total gushing water of the tunnel, a triangular-notch weir and rectangular weir were set up. By measuring the flow in some part in the tunnel, the totally geology conditions and gushing water characteristics are obtained.
     2 By real-time discontinuities survey in situ, a process called one footage one observation was carried out for tunnel face excavation. After extensive obtainment of fractures in situ and rock mass geology characteristics, indoor work was taken. A 2d trace map and 3d joint pole map of discontinuities was drawn. The discontinuities revealed after excavation whose structural homogeneity of rock mass was analyzed. The advantages grouping of structural homogeneity of rock mass was divided. Then, by Monte Carlo simulation method, according to relevant theories and steps of 3D network modeling, the model of tunnel's discontinuities of 3D network was made. In addition, according to the recycling process of footage in tunnel excavation, a new statistical method called volume method was used for in situ rock mass fracture investigation. The volume method is a more reliable means for bulk density of fractures.
     3 The analysis of fractures characteristics in 3D space was carried out based on 3D network model, and the specificities of discontinuities implied in 3D network model was solved. The relationship of discontinuities was indicated by graph topological theory and showed by associated matrix. A algorithm was put forward to judged the relationship between different discontinuities, and the generation of discontinuities associated matrix was made by coding. Based on the profound understanding of associated matrix, the global searching and generation of the 3D network relevant discontinuities was achieved. Some useful and important parameters, such as percentage of longest fracture series, average length of fracture series and percentage of isolated fracture which are used to describe the seepage characteristics of rock mass, are obtained from the analysis of relevant discontinuities properties. By DST(deep search traveling) of graph, the shortest path between specified discontinuities is solved.
     4 The author firmly grasp the geological conditions as the main line, based on the ideology of system and control, from the point of view of geological structure and rock mass structure control, water diversion and prevention of layered tuff to bedrock fissured water are explained and forecasted, and the probability of water gushing of tunnel in forward excavation if inferred by geology analysis. In analysis of geological environment, with the view of geological structure and regional structure, combining some geological underground stress of adjacent tunnel and regional focal mechanical solution, and by contrasting the different between high and low stress character, a conclusion that most part of the tunnel may be a region with low horizontal ground stress was made. This conclusion is very important for further researching, and it is proved by engineering practice.
     5 Conventional method of calculation and assessment of ground water resources and tunnel water gushing of the domestic and international are analyzed. Application of the methods and their existing problems are compared and analyzed. Some suitable methods are chose for calculation of tunnel's steady inflow after comparative analysis. Different ways caused different result, and the results of a certain gap were mainly due to parameters and conditions arising from the application.
     6 Based on the factors affecting gushing water, especially factors extracted from three-dimensional model, the neural network forecasting model was established. Using Matlab toolbox for neural networks, by contrasting at home and abroad BP neural network was selected for inflow forecast. The training samples were selected form the tunnel space that has been excavated for some time or with steady gushing water. By comparison of real total gushing water and prediction result, it is found that the prediction result is quite good.
     7 Using genetic algorithms to optimize the neural network model, the connection weight and bias is the optimizing object. Using the Matlab genetic algorithm toolbox as the optimizing tools, the shortage such as slow network convergence and perplex of local minimum of BP network can be overcome. A better result of gushing water prediction can be obtained using the weigh matrix optimized by genetic algorithm.
引文
1. 张有天. 岩石水力学与工程[M]. 北京:中国水利水电出版社,2005,4
    2. 郭旭晶. 石太客运专线特长隧道涌水灾害随机性预测研究[D]. 成都:西南交通大学,2007
    3. 徐则民,黄润秋. 深埋特长隧道及其施工地质灾害[M]. 成都:西南交通大学出版社,2000,5
    4. 白明洲,许兆义,王连俊,等. 复杂岩溶地区隧道施工突水地质灾害研究[J]. 中国安全科学学报,2006,16(1):114~118
    5. 付开隆. 渝遂高速公路中梁山隧道岩溶塌陷及涌水量分析[J]. 水文地质工程地质, 2005,2:107~110
    6. 梁明贵. 大瑶山隧道涌水量的控制[J]. 世界隧道,1998,6:50~52
    7. 刘建国,刘义立. 华蓥山隧道特大涌水突泥的综合治理[J]. 公路,2003,10:25~29
    8. 刘仁阳. 大风垭口隧道特大土石流及涌水处治[J]. 公路,2006,5:207~212
    9. 谢康和. 岩土工程有限元分析理论与应用[M]. 科学出版社,2005,5
    10. 薛禹群. 地下水动力学原理[M]. 地质出版社,1986,12
    11. 陈崇希. 地下水流动问题数值方法[M]. 武汉:中国地质大学出版社,1990,6
    12. 陈崇希. 矿坑涌水量计算方法研究[M]. 武汉:武汉地质学院出版社,1985,11
    13. 切尔内绍夫. 水在裂隙网络中的运动[M]. 北京:地质出版社,1987,1
    14. 仵彦卿. 岩体水力学导论[M]. 成都:西南交通大学出版社,1995,3
    15. 陈剑平,肖树芳,王清. 随机不连续面三维网络计算机模拟原理[M]. 长春:东北师范大学出版社,1995,11
    16. 陈剑平,王清,肖树芳. 岩体裂隙网络分数维计算机模拟[J]. 工程地质学报,1995,3(3):79~85
    17. 陈剑平等. 岩体裂隙网络分形特征研究[J].中国科协第二届全国青年学术讨论会文集,1995:482~485
    18. 陈剑平,王清,肖淑芳. 岩体结构统计均质区的划分[J]. 地质灾害与环境保护,1996,7(1):19~24
    19. 陈剑平. 窗口不连续面迹长概率估算法[J]. 工程地质学报,1996,4(1):8~13
    20. 陈剑平. K-S 检验假设分布有效性的工程地质应用[J]. 全国五届工程地质大会文集,1996,560~563.
    21. 陈剑平. X 平方检验假设分布有效性的工程地质应用[J]. 长春地质学院学报,1996,26(3):332~335
    22. 陈剑平. 岩体随机不连续面三维网络数值模拟技术[J]. 岩土工程学报,2001,22(4):397~402
    23. 赵红亮. 裂隙岩体三维网络流的渗径搜索[D]. 长春:吉林大学,2003
    24. 卢波. 溪洛渡电站拱坝坝肩岩体三维连通率数值模拟研究[D]. 长春:吉林大学,2002
    25. 王良奎,陈剑平,卢波. 拱坝坝肩侧裂面的面连通率研究[J]. 煤田地质与勘探,2002,30(1):41~44
    26. 王良奎,陈剑平,卢波. 样本窗口中不连续面体积密度的评价与应用[J]. 煤田地质与勘探 , 2002,(03)
    27. 仵彦卿. 岩体水力学基础(一)──岩体水力学的基本问题[J]. 水文地质工程地质,1996,6:24~28
    28. 仵彦卿. 岩体水力学基础(二)─—岩体水力学的基础理论[J]. 水文地质工程地质,1997,01:24~28
    29. 仵彦卿. 岩体水力学基础(三)──岩体渗流场与应力场耦合的集中参数模型及连续介质模型[J]. 水文地质工程地质,1997,02:54~57
    30. 仵彦卿. 岩体水力学基础(四)──岩体渗流场与应力场耦合的等效连续介质模型[J]. 水文地质工程地质,1997,03:10~14
    31. 仵彦卿. 岩体水力学基础(五)——岩体渗流场与应力场耦合的裂隙网络模型[J]. 水文地质工程地质,1997,05:41~45
    32. 仵彦卿. 岩体水力学基础(六)——岩体渗流场与应力场耦合的双重介质模型[J]. 水文地质工程地质,1998,01:43~46
    33. 仵彦卿. 岩体水力学基础(七)——岩体水力学参数的确定方法[J]. 水文地质工程地质,1998,02:42~48
    34. 田开铭. 偏流与裂隙水脉状径流[J]. 地质论评,1983,5
    35. 田开铭. 裂隙水交叉流的水力特性[J]. 地质学报,1986,2
    36. 万力, 田开铭. 交叉孔压水试验法确定三维各向异性渗透张量[J]. 水文地质工程地质,1990,4
    37. 周志芳,王锦国. 裂隙介质水动力学原理[M]. 北京:高等教育出版社,2007
    38. 周志芳,王锦国. 裂隙介质水动力学[M]. 北京:中国水利水电出版社,2004,1
    39. Snow,Anisotropic permeability of fractured media. Water Resour. Rse.. 1969,5(6): 1273-1289
    40. Snow And T.Maini. Determination of in situ hydraulic parameters in jointed rock. In:Proc.2ndCong. ISRM.1970,235-245
    41. Louis C.. rock hydraulics rock mechanics. Edited by L.muller udine.1974,299-387
    42. Sharp J.C.. Fluid flow through fissured media .Ph.D. Thesis Imperial coll.,university of london.1971
    43. 刘继山. 结构面力学参数与水力参数耦合关系及其应用[J]. 水文地质工程地质 , 1988,2
    44. Tsang.Y.w and C.F.Tsang. Channel model of flow through fractured media.water resour. Res..1987,23(3):467-479
    45. Neuzil C.E., and J.V. Trancy. flow through fractures. water resour.res.. 1981,17(2):191-199
    46. Tsang Y.W. and P.A. Witherspoon. Hydromechanical behavior of a deformable rock fracture subject to normal stress.j.geophy.res..1981,86(b10):9287-9298
    47. Ttsang Y.W.and P.A. Witherspoon. The dependence of fracture mechanical and fluid flow propertiews on fracture roughness and sample size .U. geophy.res.. 1983, 88(b3):2359-2366
    48. Elsworth D.. a model to evaluate the transient dydroulic response of three- dimen- sionnal sparsely fractured rock masses. water resour. res..1986,22(13):1809-1815
    49. Barton N. R., S. Bandis, and K. Bakhtar. Strength, deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. & Geomech . Abstr..1985, 22(3):121-140
    50. Walsh J.B.. effect of pore pressure and confining pressure on fracture permeability. int .j.rock mech.min.sci.& geomech.abstr..1981,18(3):429-435
    51. 周创兵,叶自桐,韩冰. 岩石节理面形态与水力特性研究[J]. 水科学进展,1997,8(3):233~239
    52. 周创兵,叶自桐,何炬林,等. 岩石节理张开度的概率模型与随机模拟[J]. 岩石力学与工程学报,1998,17(3):267~272
    53. 周创兵,熊文林. 节理面粗糙度系数与分形维数的关系[J] 武汉水利电力大学学报,1996,25(5):1~5
    54. 周创兵,熊文林. 不连续面的分形维数及其在渗流分析中的应用[J]. 水文地质工程地质,1996,6:1~6
    55. 王媛,速宝玉. 单裂隙面渗流特性及等效水力隙宽[J]. 水科学进展,2002,13(1):61~68
    56. 王媛. 单裂隙面渗流与应力的耦合特性[J]. 岩石力学与工程学报,2002,21(1):83~87
    57. 王媛,速宝玉,徐志英. 粗糙裂隙渗流及其受应力作用的计算机模拟[J]. 河海大学学报(自然科学版),1997,25(6):80~85
    58. 速宝玉,詹美礼,张祝天. 充填裂隙渗流特性实验研究[J] 岩土力学,1994,15(4):46~52
    59. 速宝玉,詹美礼,赵坚. 仿天然岩体裂隙渗流的实验研究[J]. 岩土工程学报,1995,17(5):19~24
    60. 速宝玉,詹美礼,赵坚. 光滑裂隙水流模型实验及其机理初探[J]. 水利学报,1994,5:19~24
    61. 田开铭. 各向异性裂隙介质渗透性的研究与评价[M]. 北京:学苑出版社,1989,9
    62. 柴军瑞,仵彦卿. 考虑动水压力裂隙网络岩体渗流应力耦合分析[J]. 岩土力学, 2001,22(4):459~462
    63. 仵彦卿. 裂隙岩体应力与渗流关系研究[J]. 水文地质工程地质,1995,06:30~35
    64. Pyak-Nolte L J., K. K. Nolte, L. R. Myer, and N. G. W. Cook. Fluid flow through single fractures. In: Rock joints, Edited by Barton & Stephansson. Balkema, 1990, 405-412
    65. Bawden W. F., J. H. Curran, and J. C. Roegiers. Importance of joint behavior on potential water into underground structures-an analytical approach. In: Un-erground Rock Engineering. Harpell’s Press Cooperative, 1979. CIM Special Vol. 22:211-218
    66. Bawden W. F.. Influence of fracture deformation on secondary permeability – a numerical approach. Int. J. Rock Mech. Min. Sci. & Geonmech . Abstr.. 1980,17: 265-279
    67. Esaki T., H. Hojl, T. Kimura, and N. Kameda. Shear-flow coupling test on rock joints. In:Proc. 7th Int. Cong. ISRM. 1992,389-392
    68. Detournay E.. Hydraulic conductivity of closed rock fracture:an experimental and analytical study. In: Underground Rock Engineering. Harpell’s Press Cooperative CIM Special vol. 22.1980,168-173
    69. 张有天. 水利情—张有天科技论文选集[M]. 北京:水利水电出版社,2003,7
    70. Gale J.. The effects of fracture type (induced versus natural) on the stress, fracture closure, fracture permeability relationships. In: Proc. US 23rd Symp. On Rock Mechanics. 1982:290-298
    71. Gale J.. Hydraulic behavior of rock joints. In: Rock Joints. Edited by Barton & Step- hansson. Balkma,1990,351-362
    72. 常宗旭,赵阳升,胡耀青,等. 三维应力作用下单一裂缝渗流规律的理论与试验研究[J]. 岩石力学与工程学报,2004,23(4):620~624
    73. 陈平,张有天. 裂隙岩体渗流与应力耦合分析[J]. 岩石力学与工程学报,1994,13(4):299~308
    74. 刘才华,陈从新,付少兰. 充填砂裂隙在剪切位移作用下渗流规律的实验研究[J]. 岩石力学与工程学报,2002,21(10):1457~1461
    75. 薛翊国. 锦屏一级水电站左岸渗流模型分析与高边坡稳定性评价[D]. 长春:吉林大学,2006
    76. Barenblatt, G.I. , et al. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. Engl. Thransl. 1960,5
    77. 周创兵,陈益峰,姜清辉. 岩体表征单元体与岩体力学参数[J]. 岩土工程学报,2007,29(8):1135~1142
    78. 伍法权. 统计岩体力学原理[M]. 北京:中国地质出版社,1993,5
    79. 徐光黎,潘别桐等. 岩体结构模型与应用[M]. 武汉:中国地质大学出版社,1993
    80. 谷德振. 岩体工程地质力学基础[M]. 北京:科学出版社,1979
    81. 谷德振. 谷德振文集[M]. 北京:地震出版社,1994,5
    82. 孙广忠. 地质工程理论与实践[M]. 北京:地震出版社,1996,12
    83. 孙广忠. 工程地质与地质工程[M]. 北京:地震出版社,1993,6
    84. 孙广忠. 岩体力学基础[M]. 北京:科学出版社,1983
    85. 孙广忠. 岩体结构力学[M]. 北京:科学出版社,1988
    86. Arnold, K. J. On spherical probability distributions. Unpublished Ph. D. Dissertation, Mass. Inst. Of Tech. 1941,42
    87. Hudson J. A.. UK rock mechanics research for radioactive waste disposal. In: Proc. 5th Congr., ISRM. 1983(2),E161-165
    88. Bridges, M.D. Presentation of fracture data for rock mechanics. Proceedings, 2nd Australian-New Zealand Conf. on Geomech. 1976,144-148
    89. R.J. Shanley and M.A.Mahtab. Delineation and analysis of clusters in orientation date. Mathematical Geology. 1976,8(1):9-23
    90. Priest. S. D., and J. a. Hudson. Discontinuity spacings in rock. Int. J. Rock Mech. Min. Sci. &Geomech . Abstr..1976.13(1):135-139
    91. Priest. S. D., and J. a. Hudson. Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. & Geomech . Abstr.. 1981,18: 183-197
    92. P.H.S.W.Kulatilake and T.H. Wu. Tstimation of mean trace length of discontinuities. Rock Mechanics and Rock Engineering .1984,17:215-232
    93. Stanley M. Miller. A statistical method to evaluate homogeneity of structural popu- lations. Methematical Geology. 1983,15(2):317-328
    94. Z.sen and A.Kazi. Discontinuity Spacing and RQD Estimates from Finite Length Scanlines. Int.J.Rock Mech. Min.Sci. and Geomech. Abstr. 1984,21(4):203-212
    95. Baecher, G.B., Lanney, N.A., and Einstein, H.H. Statistical description of rock prope- rties and sampling. Proceeding, 18th U.S. Symp. On Rock Mech., Colorado. 1977, 5c1.1-5c1.8
    96. Bingham, C. Distributions on the sphere and on the projective plane. Unpublished Ph. D. Dissertation, Yale University. 1964,93
    97. N.F. Grossman. The bivariate normal distribution on the tangent plane at the mean attitude. Proceedings of the Int. Symp. On Fundamentsls of Rock Joints, Bjorkliden Sweden.1985,3-11
    98. Goodman, R. E. and H.R. Smith. RQD and fracture spacing. Journmam of the Geotechincal Engineering Division 106. 1980,191-193
    99. A. Kayzulovic and R.E. Goodman. Determination of principal joint frequencies. Int.J. Rock Mech. Min. Sci. and Geomech. Abstr. 1985,21(6):345-347
    100. Piteau D.R. Geological factors significant to the stability of slope cut in rock. S. Af. Inst. Min. Met., Symp. Planning Open Pit Mines. Johannesburg. 1970,33-53
    101. 潘别桐. 岩体结构面的变形习性及应用[J]. 四川水力发电,1989,4:33~43
    102. Samaniego, j.a.analysis of water flow through two-dimensional networks, 1983(ph.d.thesis)
    103. 潘别桐. 裂隙岩体的渗透性评价[J]. 四川水力发电,1987,1:14~24
    104. 潘别桐. 工程岩体强度的估算方法[J]. 中国地质大学学报,1985,10(1):55~63
    105. 孙讷正,刘保东. 一个不连续裂隙网络的随机模拟技术及数值方法[J]. 水文地质工程地质,1991,18(4):19~22
    106. Oda M..permeability tensor for discontinuous rock masses. geotechnique. 1985,35(4): 483-495
    107. Kulatilake, Jianping Chen, Jianren Teng et al. Discontinuity network modelling of the rock mass around a tunnel close to the permanent shiplock area of the three gorges dam site in China. Proceedings of The 35th U.S. Symp. On Rock Mech. Balkema, Rotterdam. 1995,807-812
    108. 卢波,陈剑平,王良奎. 基于三维网络模拟基础的复杂有限块体的自动搜索及其空间几何形态的判定[J]. 岩石力学与工程学报,2002,21(8):1232~1238
    109. 陈剑平,石丙飞,王清. 工程岩体随机结构面优势方向的表示法初探[J]. 岩石力学与工程学报,2005,24(2):241~245
    110. 陈剑平等,卢波,王良奎,等. 复杂不稳定块体的自动搜索及其失稳方式判断——基于随机不连续面三维网络模型[J]. 岩石力学与工程学报,2003,22(7):1126~1131
    111. 赵红亮,陈剑平. 裂隙岩体三维网络流的渗透路径搜索[J]. 岩石力学与工程学报 ,2005,24(4):622~627
    112. 庞作会. 基于节理网络模型的岩体 REV 数值估算与无网格伽辽金法(EFGM)[J]. 岩石力学与工程学报,1999,3
    113. 王渭明,仇圣华,秦文露,等. 裂隙岩体巷道中的“危石”预测模型[J]. 岩石力学与工程学报,2000,19(2):215~218
    114. 汪小刚,贾志新,陈祖煜. 岩石结构面网络模拟原理在节理岩体连通率研究中的应用[J]. 水利水电技术 1998,29(10):43~47
    115. 王国欣,肖淑芳,陈剑平. 不连续面三维网络在 RQD 中的应用研究[J]. 岩石力学与工程学报,2002,21(12):1761~1764
    116. 王旭,晏鄂川. 基于网络模拟的岩体边坡稳定性概率分析[J]. 地球与环境,2005,33(3):95~100
    117. 张勇,聂德新,张斌. 基于裂隙网络模拟的岩质边坡潜在滑面搜索方法[J]. 水土保持研究,2006,13(3):83~84
    118. 吴继敏,陈显春,李文奇,等. 金丽温高速公路连拱隧道超挖预测及原因分析[J]. 水文地质工程地质,2005,5:56~59
    119. 张文泉,肖洪天,刘伟韬. 矿井底板岩体裂隙网络模拟与突水通道搜寻研究[J]. 煤炭学报,2000,25(增):75~78
    120. 郝哲,王介强,何修仁. 岩体裂隙注浆的计算机模拟研究[J]. 岩土工程学报,1999,21(6):727~730
    121. 蒋长浩. 图论与网络流[M]. 北京:中国林业出版社,2001,7
    122. 刘缵武. 应用图论[M]. 长沙:国防科技大学出版社,2006
    123. (美) Robert Sedgewick 著,林琪译. C++算法图算法[M]. 北京:清华大学出版社, 2003
    124. 孙惠泉. 图论及其应用[M]. 北京:科学出版社,2004
    125. 王恩志,杨成田. 裂隙网络地下水流数值模型及非连通裂隙网络水流的研究[J]. 水文地质工程地质,1992,19(1):12~14
    126. 李晓春. 小湾水电站坝肩岩体裂隙网络渗流的三维网络与无网格法耦合模型研究[D]. 长春:吉林大学,2005
    127. 贺少辉. 裂隙岩体核素迁移的稳态时间模型[J]. 北方交通大学学报,2001,25(1):9~14
    128. 方涛,柴军瑞,徐文彬. 基于二维裂隙网络模拟的岩体渗流数值分析[J]. 人民黄河,2007,29(11):85~87
    129. 张民庆,刘招伟. 圆梁山隧道岩溶突水特征分析[J]. 岩土工程学报 2005,27(4):422~426
    130. 刘丹,杨立中,于苏俊. 华蓥山隧道排水的生态环境问题及效应[J]. 西南交通大学学报,2001,36(3):308~313
    131. 聂志宏,张弥,白李妍. 用经验公式计算隧道用水量[J]. 铁道标准设计,2000,20(6~7):48~49
    132. 田海涛,董益华,王延辉. 隧道涌水量预测的研究[J]. 水利与建筑工程学报,2007,5(3):75~77
    133. 张雷,赵剑,张和平. 隧道涌水量预测的计算方法研究[J]. 公路交通技术,2007,1:121~129
    134. 邬强. 齐岳山隧道涌水量预测的研究[D]. 成都:西南交通大学,2006
    135. 朱大力,李秋枫. 预测隧道涌水量的方法[J]. 工程勘察,2000,28(4):18~22
    136. 冷天星. 高等级公路隧道水文地质试验及涌水量预测[J]. 云南交通科技,2001,17(4):46~48
    137. 卢金凯. 基岩裂隙水的野外调查方法[M]. 北京:地质出版社,1985
    138. 郭飞,朱学愚,吴剑峰. 多层递阶非平稳时间序列模型预测矿坑涌水量[J]. 南京大学学报(自然科学版),2000,36(3):300~305
    139. 王建秀,朱合华,叶为民. 隧道涌水量的预测及其工程运用[J]. 岩石力学与工程学报,2004,23(7):1150~1153
    140. 徐则民,杨立中. 深埋隧道围岩渗透性的预测研究—现状与进展[J]. 铁道工程学报,1999,3:52~55
    141. 胡伟,邹银生. 雪峰山特长深埋公路隧道涌水量灰色预测[J]. 西部交通科技(桥涵工程):40~42
    142. 韩力群. 人工神经网络教程[M]. 北京:北京邮电大学出版社,2006.,12
    143. 徐丽娜. 神经网络控制[M]. 哈尔滨:哈尔滨工业大学出版社,1999,5
    144. 涂序彦. 人工智能及其应用[M]. 北京:电子工业出版社,1988,10
    145. 赵向军,李文平,李龙海,等. 基于人工神经网络的矿井涌水量预测[J]. 辽宁工程技术大学学报,1998,17(2):156~159
    146. 周翔,朱学愚,文成玉,等. 基于遗传学习算法和 BP 算法的神经网络在矿坑涌水量计算中的应用[J]. 水利学报,2000,12:59~63
    147. 王金国,江洪清,高永奎. 基于 MATLABR 的矿井涌水量神经网络预测方法及应用[J]. 煤炭技术,2004,23(7):67~68
    148. 陈南祥,曹连海,徐建新. 偏最小二乘回归神经网络在径流预报中的应用[J]. 灌溉排水学报,2005,24(1):54~56
    149. 凌成鹏,孙亚军,杨兰和,等. 基于 BP 神经网络的孔隙充水矿井涌水量预测[J]. 水文地质工程地质,2007,5:55~58
    150. 姜素,孙亚军,杨兰. 基于 BP 神经网络方法的矿井涌水量预测[J]. 中国煤田地质,2007,19(2):38~40
    151. 雷英杰. MATLAB 遗传算法工具箱及应用[M]. 西安:西安电子科技大学出版社,2005
    152. 王小平,曹立明. 遗传算法理论、应用及软件实现[M]. 西安:西安交通大学出版社,2002
    153. 浙江省交通规划设计研究院,浙江省浙南综合工程勘察院. 诸永高速公路台州段第 2 合同,两阶段施工图设计工程地质勘查报告,2004,12
    154. 浙江省交通规划设计研究院,浙江省浙南综合工程勘察院. 诸永高速公路台州段第 3 合同,两阶段施工图设计工程地质勘查报告,2004,12
    155. 李军,黄敬峰,王秀珍. 山区年降水量的时空分布特征研究[J]. 科技通报,2006,22(1):41~47
    156. 周卫滨. 苍岭隧道岩爆预测和防治研究[D]. 杭州:浙江大学,2005
    157. 张秉鹤. 括苍山特长公路隧道相对浅埋洞段岩爆机理及防治措施研究[D]. 长春:吉林大学,2007
    158. 李先炜. 岩体力学性质[M]. 北京:煤炭工业出版社,1990,3
    159. 石丙飞. 广州科学城林语山庄人工高边坡稳定性评价及设计研究[D]. 长春:吉林大学,2006
    160. 王良奎. 溪洛渡水电站坝肩节理岩体变形参数模型研究 长春:吉林大学,2002
    161. 严蔚敏,吴伟民. 数据结构 北京:清华大学出版社,1992
    162. 殷人昆等 数据结构用面向对象方法与 C++描述[M] 北京:清华大学出版社,1999
    163. Cheng-Haw Lee et al. A continuum approach for estimating permeability in naturally fractured rocks. Engineerging Geology, 1995k 39:71-85
    164. Bandis S.C., A.C. Lumsden, and N.R. Barton. Fundamental of rock joint deformation. Int.J.Rock Mech. Min. Sci. & Geomech. Abstr..1983,20(6):249-268
    165. Brown E.T., and P.I. Boodt. Permeability determinations for a discontinuous crystan- lline rock mass. In: Proc. 6thInt. Cong. ISRM. 1987,23-30
    166. Oda M..An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water resourc. Res..1986,22(13):1845-1856
    167. 郭玉法,鲍庆煜. 岩溶隧道涌水量的预测方法研究[J]. 铁道勘察,2007,5:73~75
    168. 张志龙. 越岭长大公路隧道地质预报中的关键技术问题研究[D]. 成都:成都理工大学,2006
    169. 包超民,王孔忠. 浙江中生代火山—沉积地层和构造运动[J]. 中国区域地质,1999,5(2):201~204
    170. 陶奎元,毛建仁,刑光福,等. 中国东部燕山期火山-岩浆大爆发[J]. 矿床地质,1999,18(4):316~322
    171. Gangi A.F..Variation of whole and fractured porous rock permeability with confining pressure. Int.J.R.Rock Mech. Min,Sci.& geomech. Abstr..1982,15(3): 249-257
    172. Hantush M S. Hydraulics of wells. In: Advances in Hydroscience. Academic Press, Inc., New York. 1964
    173. 刘建刚,陈建生,陈亮,等. 小浪底缓倾角结构坝基的渗漏及示踪探测研究[J]. 岩石力学与工程学报,2004,23(8):1339~1343
    174. 卢刚,周志芳. 裂隙网络渗流理论的软硬互层状岩体渗流分析[J]. 水电能源科学 2006,24(4):41~43
    175. 熊光楚. 信息论系统论与地质找矿工作[M]. 北京:地质出版社,1998,5
    176. 王大纯等. 水文地质学基础[M]. 北京:地质出版社,1995,
    177. 贺鹏旭,毛建安. 隧道裂隙含水围岩非均质各向异性张量应用分析[J]. 西部探矿工程,2004,8:104~106
    178. 郑黎明. 隧道涌水灾害预测的随机性数学模型方法[J]. 西南交通大学学报,1998,33(3):273~278
    179. 李兴高,刘维宁,张昀青. 隧道渗涌水量的随机模型预测[J]. 中国安全科学学报,2002,12(4):60~64
    180. 朱大力,李秋枫. 用降水入渗系数经验值预测隧道涌水量[J]. 铁道工程学报,1995,1:100~102
    181. 徐则民,杨立中,黄润秋. 特长超深隧道涌水量预测的镜象法[J]. 铁道工程学报, 2000,1:55~58
    182. 徐国锋,杨建锋,陈侃福. 台缙高速公路苍岭隧道水文地质勘察与涌水量预测[J]. 岩石力学与工程学报,2005,24(2):5531~5535
    183. 浙江省地质局. 1:200 000 仙居幅水文地质普查报告[R]. 杭州:浙江省地质局, 1980
    184. 李忠,杨维训. 浙江苍岭隧道左线凝灰岩突水现象工程地质特征研究[J]. 铁道工程学报,2007,7:16~19
    185. 汪琦,温进芳,李忠. 浙江苍岭隧道凝灰岩突水现象地质特征研究[J]. 地下空间与工程学报,2006,2(3):425~429
    186. 中华人民共和国水利部. 中华人民共和国水利行业标准[S]. 堰槽测流规范,SL24-911992
    187. 阙金声. 三峡工程涪陵区水库塌岸非线性预测研究[D]. 长春:吉林大学,2007
    188. 徐佩华. 基于人工神经网络方法的锦屏一级水电站枢纽区高边坡稳定性分区研究[D]. 长春:吉林大学,2006
    189. RUMELHART D E, MCCLELLAND J L. Parallel Distributed Processing: Explor- ations in the Microstructure of Cognition [ M]. Cambridge, MA: MIT Press, 1986
    190. 飞思科技产品研发中心. 神经网络理论与 MARLAB7 实现[M]. 北京:电子工业出版社,2005,7:1~321
    191. 焦李成. 神经网络系统理论[M]. 西安:西安电子科技大学出版社,1990,12:1~60
    192. Neural Network Toolbox. Math Works, 2004.
    193. The Math Works. Inc. http://www.mathworkscom, 2004
    194. 飞思科技产品研发中心. MARLAB6.5 辅助神经网络分析与设计[M]. 北京:电子工业出版社,2003
    195. 楼顺天. 基于 MATLAB 的系统分析与设计---神经网络[M]. 西安:西安电子科技大学出版社,1998,9
    196. 李国会. 地下洞室岩体力学参数反分析研究[D]. 郑州:华北水利水电学院硕士学位论文,2005.
    197. 董长虹. Matlab 神经网络与应用[M]. 北京:国防工业出版社,2005
    198. 周开利,康耀红. 神经网络模型及其 MATLAB 仿真程序设计[M]. 北京:清华大学出版社,2005
    199. 从爽. 神经网络、模糊系统及其在运动控制中的应用[M]. 合肥:中国科学技术大学出版社,2001
    200. 袁曾任. 人工神经元网络及其应用[M]. 北京:清华大学出版社,1999,10
    201. 张治国.BP 神经网络的数学模型和计算方法及其计算机程序实现[D].吉林大学硕士论文,2003.6:8~15.
    202. 王双红,蔡美峰. 利用神经网络对地应力测量的结果进行分析[J]. 黄金,1998,19(11):16~19
    203. 梁建辉. 基于遗传算法的神经网络预测控制及应用[D]. 西安:西北工业大学,2003
    204. 李金锋. 遗传 BP 神经网络在地铁工程沉降预测中的应用[D]. 北京:中国地质大学,2006
    205. 周利洋. 基于遗传算法的神经网络的研究与应用[D]. 汕头:汕头大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700