用户名: 密码: 验证码:
煤矿开采对矿区地下水系统扰动的定量评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水系统作为自然水文循环系统的重要组成部分,是维系地球生命支撑系统不可或缺的基本要素。因此,研究如何正确认识和评价煤矿开采对地下水系统的扰动,对保护地下水系统,实现区域可持续发展具有重要意义。
     论文以矿区地下水系统作为研究对象,采取理论分析和数值计算相结合的研究方法,分析了煤矿开采导致矿区地下水系统扰动的现象,探索了地下水系统扰动的定量评价问题,提出了涌水量系数法的评价体系。
     论文首先结合前人的研究成果从系统论的角度给出了矿区地下水系统的定义及其组成,介绍了地下水系统的自组织特性,并从系统与环境之间相互关系的角度介绍了矿区地下水系统的多重性功能。在矿区,地下水既是水资源的重要组成部分和重要的环境要素,并参与自然界的水文循环,又是矿井水害的主要水源,具有一定的特殊性。
     进而从人地系统的理论出发,认识矿区人地系统中人与地的相互作用,概括出了开采对含隔水层子系统、水化学子系统以及水资源子系统的扰动。煤矿区是一个典型的小型人地系统。在矿区人地系统中人与地的相互作用是十分剧烈的。采空区塌陷导致顶底板含、隔水层破断,影响储集和运移地下水的功能,对含、隔水层子系统产生扰动。开采改变了煤层的原有赋存状态,在新的环境的作用下形成酸性矿井水、含悬浮物矿井水、高矿化度矿井水等,对水化学子系统产生扰动。为保障煤矿安全生产,疏干降压,强力抽排地下水,地下水资源损失严重。
     运用传统的地下水降落漏斗法和新提出的涌水量系数法开展了地下水系统扰动的定量评价研究。重点是从矿区揭示的资料的有限性这一实际情况出发,提出了涌水量系数的概念,并给出了基于该指标的完整的评价体系。通过矿区水文长观孔的水位观测资料可以求算出地下水水位的最大降深和漏斗半径,定量评价地下水系统的扰动。涌水量和降雨量是矿区的重要技术信息,通过年涌水量(Wa)、年降雨量(Ra)和矿区面积(Am)构造出涌水量系数(y),y=Wa /( Ra·Am)。再把涌水量系数(y)与矿区的降雨入渗补给系数(b)进行比较,划分出Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ共五个扰动等级,对开采导致的地下水系统的扰动进行定量评价。同时涌水量和降雨量都是时间序列,可以用ARIMA时间序列分析方法建模和预测,因此应用涌水量系数法既可以用于定量地评价地下水系统的扰动,也可以对地下水系统的扰动进行预测。
     论文最后还以韩桥矿区为例进行了实例研究,进一步验证了该评价体系的可行性。通过对矿区水文地质条件的综合分析,以1973~2008年的矿井年涌水量数据为基础,运用ARIMA时间序列分析方法,实现了涌水量的预测。通过该法也可以对降雨量序列进行建模和预测,从而实现涌水量系数法的评价和预测功能。韩桥矿区的涌水量系数介于0.885~2.553之间,扰动等级评定为最高的Ⅴ级,这与其采取疏干开采,对地下水系统扰动剧烈的情况完全相符。
     本论文的创新点:(1)创新研究思路,一改矿区地下水研究中“就矿论矿”,以防治水为重点的思维定势,把地下水系统这一自然系统作为研究的中心,探索煤矿开采(人工干预)对地下水系统的扰动及其定量评价。(2)首次提出涌水量系数的概念,给出了涌水量系数的定义及其计算方法,并基于涌水量系数制定了完整的评价指标体系。
As a key component of natural hydrological cycle, groundwater system is the inevitable basic element for life supporting system on the Earth. So, how to exactly understanding and evaluating mining-induced disturbance on groundwater system in coal mines are of great significance for protecting groundwater system and regional sustainable development.
     The main object of the dissertation is the groundwater system in coal mining areas. On the basis of theoretical analysis and numerical calculation of groundwater system disturbance caused by coal mining, the dissertation focuses on the quantitative evaluation of groundwater system disturbance in coal mining areas, and puts forward an evaluation system, in which water inrush coefficient is seen as the critical factor.
     From the viewpoint of system theory, this dissertation firstly introduces the definition of groundwater system in coal mining areas, as well as its composition and features of self-organization based on a systematical literature surveying. Then the different kinds of the function of groundwater system in the interaction among water resource, environment and human being, as well as natural water cycle, including mine water hazards, are discussed in detail. In a coal mining area, the groundwater plays not only the role of the component of water cycle, but also as an important water source both for the normal production and for water disaster.
     From the theory of human-earth system, the paper also introduces the interaction between human activities and earth system in mining areas, summarizes the mining- induced disturbance on different subsystems, like aquifer and aquitard subsystem, water chemical subsystem and water resource subsystem. The coal mining area is a typical human-earth system in a smaller dimension, where the interaction between human and earth is very fierce. The breaking of roof or floor of coal seam could lower the storage and migration capability of groundwater system and cause disturbance on the aquifer and aquitard subsystem. Mining activity not only changes the occurrence of coal seam, but also disturbs the water chemical subsystem, resulting in acidized, mineralized water, suspended substance in mine water. Because of the drainage of mine water for safety production, the amount of water resource in mining areas decreases obviously.
     In the dissertation, the mining-induced disturbance on groundwater system is evaluated by means of the factors, such as groundwater depression cone and water inrush coefficient. This paper proposes the conception of water inrush coefficient and the evaluate indicator system integrating with the actual situation of coal field. The drawdown and radius of groundwater depression cone can be calculated by data of observational material of water level in observation drills, so the disturbance on groundwater system can be quantitative evaluated. Water inrush and rainfall are the important technical information in mine. Water inrush coefficient (y) is conformed by annual water inrush (Wa), annual rainfall (Ra) and area of mine(Am) as y = Wa /( Ra·Am). Five classes of disturbances can be recognized by comparing water inrush coefficient(y) with coefficient of recharge from precipitation (b). Time series of water inrush and rainfall could be calculated for modeling and predicting using ARIMA. So the water inrush coefficient that is consisted by water inrush and rainfall could not only be used for quantitative evaluation, but also for prediction of the disturbance on groundwater system.
     As a case study, the water inrush coefficient was calculated based on the data from study area Hanqiao Coal Mine in Xuzhou, China. The results indicate that the evaluation system is feasible. Taking the water inrush of 1973-2008 as an example, the use of ARIMA model was introduced and the prediction to rainfall was verified in the dissertation. The water inrush coefficient is between 0.885 and 2.553. The degree of disturbance isⅤ, the highest. The reason is that water drainage results in lowering of the groundwater table in mining and the groundwater system had been disturbed violently.
     Innovations in the dissertation include:①The dissertation takes the groundwater system in coal mining area as the focus of the study, instead of mine disastrous inundation prevention. It explores an indicator system for quantitative evaluation of mining-induced disturbance on groundwater system.②For the first time, the concept of water inrush coefficient is proposed in this dissertation and used in the evaluate indicator system mentioned above.
引文
[1]虎维岳.新时期我国煤矿水害的基本特点及对策[C].全国煤田地质年会交流资料.2004.
    [2]王树玉.煤矿五大灾害事故分析和防治对策[M].徐州:中国矿业大学出版社,2006:1-2,271﹣312.
    [3]竺士林等.煤炭开采对水资源及环境的影响[J].水资源保护,1994,(4):39-45.
    [4]阎海渠.浅论河北煤矿区水环境问题与水资源保护[J].华北地质矿产杂志,1999,14(2):195-198.
    [5]孙洪星,童有德,邹人和.煤矿区水资源的保护及污染防治[J].中国煤炭,2000,26(3):9-1.
    [6]王洪亮等.神木大柳塔地区煤矿开采对地下水的影响[J].陕西地质,2002,20(2):89-96.
    [7]牛仁亮.山西煤炭开采对水资源的破坏影响及评价[M].北京:中国科学技术出版社,2003.9.
    [8]杨策,钟宁宁等.煤炭开发影响地下水资源环境研究一例——平顶山市石龙区贫水化原因分析[J].能源环境保护,2006,20(1):50-52.
    [9]韩宝平,郑世书等.煤矿开采诱发的水文地质效应研究[J].中国矿业大学学报,1994,23(3):70-77.
    [10] Stoner J D. Probable Hydrologic Effects of Subsurface Mining [J]. Groundwater Monitoring Review,1983,5(1): 51-57.
    [11] Booth C J.Strata-movement Concepts and the Hydrogeological Impact of Underground Coal Mining [J]. Groundwater,1986,24(4): 507-515.
    [12] Stoner J. D. et al. Water Resource and the Effects of Coal Mining, Green County, Pennsylvania [J]. Water Resources Report,1987,63: 60-72.
    [13] World Commission on Environment and Development[M].Oxford University Press, 1987. [ 14 ]中国科学院可持续发展战略研究组.可持续发展的研究历程[EB/OL].http://www.china.org.cn/chinese/ zhuanti / 295930.htm.
    [15]牛文元.可持续发展导论[M].北京:科学出版社,1994.
    [16]牛文元.可持续发展——21世纪中国的必然选择[J].中国科学院院刊,2000(4):270-275.
    [17]中国21世纪议程——中国21世纪人口、环境与发展白皮书[M].北京:中国环境科学出版社,1994.
    [18]世界环境与发展委员会(WCED),王之佳等译.我们共同的未来[M].长春:吉林人民出版社,1997.
    [19]刘振英著.中国可持续发展问题研究[M].北京:中国农业出版社,2001.9.
    [20]刘青松等编著.可持续发展简论[M].北京:中国环境科学出版社,2003.4.
    [21]佟元清. 32届地质大会水文地质议题对我国地下水研究的启示[J].水文地质工程地质.2005(2):11-16.
    [22]水利部水资源司,南京水利科学研究院.21世纪初期中国地下水资源开发利用[M].北京:中国水利水电出版社,2004.1.
    [23]巩中友,张立杰.可持续发展与地下水资源开发利用[J].经济技术协作信息. 2001(11):33.
    [24]郑世书,陈江中,刘汉湖等.专门水文地质学[M].徐州:中国矿业大学出版社,1999:148-163.
    [25]朱学愚,钱孝星.地下水水文学[M].北京:中国环境科学出版社,2005:3-5.
    [26] Li Bai-ying. The“Down-Three-Zone”Theory of Preventing Floor Water-Inrush Disasters and Application [C]. The 30th International Geological Congress. Beijing ,China.
    [27]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报,1999,18(4):11-18.
    [28]王作宇,刘鸿泉等.承压水上采煤学科理论与实践[J].煤炭学报,1994,19(1):40-48.
    [29]黎良杰,钱鸣高.底板岩体结构稳定性与底板突水关系的研究[J].中国矿业大学学报,1995,24(4):18-23.
    [30]钱鸣高,缪协兴等.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [31]黎良杰,钱鸣高.采场底板突水相似材料模拟研究[J].煤田地质与勘探,1997,25(1):33-36.
    [32]黎良杰,殷有泉.评价矿井突水危险性的关键层方法[J].力学与实践,1998,20(3):34-36.
    [33]缪协兴,钱鸣高.采动岩体的关键层理论研究新进展[J].中国矿业大学学报,2000,29(1):25-29.
    [34]钱鸣高,缪协兴,许家林,茅献彪.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003:2-4,65-70,113-115.
    [35] Joseph J.Donovan, Bruce R.Leavitt. The Future of Mine-water Discharges from Underground Coal Mines of the Pottsburgh Coal Basin, WV-PA [C]. the 2004 National Meeting of the American Society of Minning and Reclamation, 2004.
    [36]顾则仁.矿井水资源的开发利用[J].煤炭科学技术,1999,27(12):11-15.
    [37]胡克武,吕玉国等.矿井水防治与利用[J].煤矿安全,2002,33(7):51-53.
    [38]陈维益,权景伟.徐州矿区矿井水资源城市化的实践及思考[J].煤炭科技,2002,(4):5-7.
    [39]马沛廷,陈维益.矿井水综合利用在新河煤矿的实践[J].煤矿开采,2002,48(1):68-70.
    [40]任春辉等.矿井水综合利用技术应用[J].煤炭技术,2005,24(10):105-106.
    [41]李松营,翟二安.贫水矿区对矿井水的综合开发利用[J].西部探矿工程,2005(1).
    [42]孙廷春.矿井水的回收与利用[J].煤炭加工与综合利用,2006(1):47-49.
    [43]袁存忠,陈锦如.水资源与矿井水处理利用[J].合肥工业大学学报,2000,23(增刊):927-933.
    [44]肖利萍等.矿井水资源化可行性研究[J].辽宁工程技术大学学报,2003,22(6):862-864.
    [45]陈雄,刘俊杰等.矿井水资源化与生态环境安全探讨[J].安全与环境学报,2004,4(增刊):65-68.
    [46]李甲亮等.煤矿矿井水资源化与循环经济[J].能源环境保护,2004,18(1):20-26.
    [47]程学丰,胡友彪等.淮南矿区矿井水水质特征及其资源化[J].安徽理工大学学报,2005,25(3):5-8.
    [48]丁宏伟,张举.干旱区内陆地下水持续下降及引起的环境问题-以河西走廊黑河流域中游地区为例[J].水文地质工程地质,2002,29(3):71-74.
    [49]张长春,邵景力等.地下水位生态环境效应及生态环境指标[J].水文地质工程地质,2003,30(3):6-10.
    [50] R Fernandez-Rubio. Water Problems in Spanish Coal Mining [J]. International Journal of Mine Water, Printed in Madrid Spain,1986,vol 5(3),13-28.
    [51] Bekendam R.F., Pottgens J. J. Ground Movements Over the Coal Mines in Southern Limburg, The Netherlands and Their Relation to Rising Mine Waters [C], Fith International Symposium on Land Subsidence, The Hague , 1995. [52 ] Kampes, B. M. Displacement Parameter Estimation Using Permanent Scatterer Interferometry [D]. Delft University of Technology, Delft, the Netherlands,Van,2005.
    [53] Wallbraun, A. (1992), The Impact of Block-bounding Faults on Groundwater Discharge in the Lower Rhine Embayment [D]. Aachen, Rheinisch-Westf?lische Technische Hochschule Aachen, 118 pp. [in German]
    [54] Miguel Caro Cuenca, Ramon F. Hanssen. Subsidence and Uplift at Wassenberg, Germany Due to Coal Mining Using Persistent Scatterer Interferometry [C].13th FIG Symposium on Deformation Measurement and Analysis, 4th IAG Symposium on Geodesy forGeotechnical and Structural Engineering. Lnec, Lisbon. 2008 May. 1-15.
    [55] Total Environment Centre. Impacts of Longwall Coal Mining on the Environment in New South Wales [R]. PO Box A176 Sydney South 1235. January 2007.9-11.
    [56] Eco Logical Australia, The Impacts of Longwall Mining on the Upper Georges River Catchment [C]: Report to Total Environment Centre, 2004.
    [57]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.
    [58]谭海樵.面向煤矿绿色开采的集成信息系统[J].中国矿业大学学报,2004,33(2):209-212.
    [59]钱鸣高等.资源与环境协调(绿色)开采及其技术体系[J].采矿与安全工程学报,2006,23(1):1-5.
    [60]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [61]刘长友,杨培举等.充填开采时上覆岩层的活动规律和稳定性分析[J].中国矿业大学学报,2004,33(2):166-169.
    [62]王金庄,康建荣等.煤矿覆岩离层注浆减缓地表沉降机理与应用探讨[J].中国矿业大学学报,1999,28(4):331-334.
    [63]张华兴,王建学等.离层注浆的实践与认识[J].煤炭科学技术,2000,28(9):11-13.
    [64]钟亚平,高延法等.唐山矿覆岩注浆减沉的工程实践[J].矿山压力与顶板管理,2001(4):75-76.
    [65]张发旺,周骏业,申保宏等.干旱地区采煤条件下煤层顶板含水层再造与地下水资源保护[M].北京:地质出版社,2006:1-12,107﹣110.
    [66]杨伟峰.薄基岩采动破断及其诱发水砂混合流运移特性研究[D].徐州:中国矿业大学资源与地球科学学院,2009.5.
    [67] L. S. Galetskiy et al. Ecological-Geological Problems of Developed Ore Mining Rigions in Conditions of Their Re-Strucruring [R].
    [68] Faulkner, B.B. AMD Inventory in West Virginia [C]. In: Proceedings of the 18th West Virginia Surface Mine Drainage Task Force Symposium. Morgantown, WV. April, 1997: 15-16.
    [69] Wood, S.C, P. L. Younger, N.S. Robins. Long-term Changes in the Quality of Polluted Minewater Discharges from Abandoned Underground Coal Workings in Scotland [J]. Quarterly Journal of Engineering Geology, 1999(32): 69-79.
    [70] Jones, P.M., S. M. Mulvay, D. Fish. The Role of Sulfate and Ionic Strength on the Shift from Acid to Alkaline Mine Drainage in Southwest Pennsylvania [C]. In: Proceedings ofthe International Land Reclamation and Mine Drainage Conference 1994. Vol. 2: Mine Drainage. U.S. Bureau of Mines SP 06B-94, pp. 289-295.
    [71] Rose, A.W., L.B. Phelps, R.R. Parizek, D.R. Evans. Effectiveness of Lime Kiln Flue Dust in Preventing Acid Mine Drainage at the Kauffman Surface Coal Mine, Clearfield County, Pennsylvania [C]. In: Proceedings, 1995 National Meeting of the American Society for Surface Mining and Reclamation, Gillette, WY. p. 159-171.
    [72] Younger, P.L. The Longevity of Minewater Pollution: a Basis for Decision-making [J]. Science of the Total Environment, 1997, 194/195: 457-466.
    [73] Kleinmannn R.L.P., T.O.Tiernan, J.G.Solch, R.L.Harris.A Low-Cost,Low-Maintenance Treatment System for Acid Mine Drainage Using Sphagnum Moss and Limestone [C].Paper in Proceedings of the 1983 Symposium on Surface Mining, Hydrology,Sedimentelogy and Reclamation,Univ.KY,Lexington,KY,ed.by S.B.Carpenter and R.W.Devore,1983,pp.241-245.
    [74] Mcintire P.E., H.M.Edenborn.The Use of Bacterial Sulfate Reduction in the Treatment of Draninage from Coal Mines [C]. Paper in the Proceedings of the 1990 Mining and Reclamation Conference and Exhibition,WV Univ.,Morgantown,WV,ed.by J.Skousen,J.Sencindiver,D.Samuel,1990,pp.409-415.
    [75] Stone R.W, B. J. Pwsavento. Micro- and Macro-Biological Characteristics of Wetlands Removing Iron and Manganese [C].Abstract in Proceedings of Wetlands and Water Management on Mined Lands,Oct.23-24,1985, PA State Univ.,University Park,PA,1985,p373.
    [76] Weider R.K, G. E. Lang, A.E.Whitehouse. Metal Removal in Sphagnum-Dominated Wetlands: Experience with a Man-Made Wetland System. Wetland and Water Management on Mined Lands, PA State Univ [R]. University Park, PA, 1985, PP.353-364.
    [77] Wieder R.K. A Survey of Constructed Wetlands for Acid Coal Mine Drainage Treatment in the Eastern United States [J].Wetlands,v.9,No.2,1989,pp.299-315.
    [78] Weider R.K., M.N.Linton, K.P.Heston. Laboratory Mrsorrsm Studies of Fe, Al, Mn, Ca and Mg Dynamics in Wetlands [J]. Water, Air, and Soil Pollution, v.51, 1990, pp.181-196.
    [79] Girts M. A, R. L. P. Kleinmann, P. M. Erickson. Performance Data on Typha and Sphafnum Wetlands Constructed to Treat Coal Mine Drainage [C].Paper in Proceedings of the 8th Annual Surface Mine Drainage Task Force Symposium, WV Univ., 1987.
    [80] Brodie,G.A. Treatment of Acid Drainage Using Constructed Wetlands Experiences of the Tennessee Valley Authority [C].Paper in Proceedings of the 1990 Nationl Symposium on Mining,Lexington,KY, ed.by D.H.Graves and R.W.Devore,OES Publ.,1990,pp.77-83.
    [81] Hammer D. A., R. K. Bastian.Wetland Ecosystems: Natural Water Purifers Constructed Wetlands for Wastewater Treatment [M]. Ed by D. Hammer. Lewis Publ., 1989, pp5-20.
    [82] Hellier W. W, R. S. Hedin. The Mechanism of Iron Removal From Mine Drainages by Artificial Wetlands at Circumneutual Ph [C].INTECOL’SⅣInternational Wetlans Conference Abstracts,Columbus,OH,1992,p.13.
    [83] Sencindiver J.C., D.K.Bhumbla. Effects of Cattails(Typha) on Metal Removal From Mine Drainage[C].Paper in 1988 Mine Drainage and Surface Mine Reclamation,VolumeⅠ:Mine Water and Mine Waste.BuMines IC 9183, 1988, pp.359-369.
    [84] Kepler D. A., E. C. McCleary. Successive Alkalinity Producing System(SAP’s) for the Treatment of Acidic Mine Drainge [C].Proceedings of the 1994 International Land Reclamation and Mine Drainage Conference, Pittsburgh, PA, U. S. Bureau of Mines SP GA-94,pp.195-204
    [85] Younger P. L., T. P. Curtis, A. P. Jarvis, R. Pennell. Effective Passive Treatment of Aluminum-rich, Acidic Colliery Spoil Drainage Using a Composted Wetland at Quaking Houses County Durham [J]. Journal of the Institution of Water and Environmental Management, 1997(11): 200-208.
    [86] F. G. Bell, S. E. T. Bullock, T. F. J. Halbich, P. Lindsay. Environmental Impacts Associated With an Abandoned Mine in the Witbank Coalfield, South Africa [J]. International Journal of Coal Geollgy, 2001, 45, 195-216.
    [87]张伟,李铎,法蕾.矿山排水引发的环境问题及其调控[J].石家庄经济学院学报,2002,25(2):160-164.
    [88]王志荣,李铁强.煤矿采空区地下水的化学脱硫技术[J].郑州大学学报:工学版,2003,24(2):93-96.
    [89]毕大园,尹国勋.酸性矿井水防治现状与发展趋势[J].焦作工学院学报:自然科学版,2003,22(1):35-38.
    [90]冯启言,王华等.华东地区矿井水的水质特征与资源化技术[J].中国矿业大学学报,2004,32(2):193-196.
    [91]聂锦旭,肖贤明,陈忠正.纳滤对煤矿矿井水处理的试验研究[J].环境科学与技术,2006,29(6):22-23.
    [92]宫辉力.国内外地下水人工补给现状与前景[J].地下水,1988(3):129-131.
    [93]张学真.地下水人工补给研究现状与前瞻[J].地下水,2005,27(1):25-28.
    [94]张永波等.水工环研究的现状与趋势[M].北京:地质出版社,2001.3.
    [95] Alan Wright and Trene Do Toit. Artificial Recharge of Urban Waste-water, the Key Conponent in the Development of an Industrial Town on the Atifical West Coast of South[J].Hydrogeology Journal. 1996, Vol.4, No.1,118-129.
    [96] Lima and Roy F. Spalding. Effects of Artificial Recharge on Groundwater Quality and Aquifer Storage Recovery [J].Water Resources Bulletin.1997,Vol.33, No.3, 561-572.
    [97]韩再生.为可持续利用而管理含水层补给-第四届国际地下水人工补给会议综述[J].地质通报,2003,22(2):142-143.
    [98] Dillon P J. Management of Aquifer Recharge for Sustainability [C].A. A. Balkema Publishers, 2002.
    [99] Pyne R D G. Groundwater Recharge and Wells: A Guide to Aquifer Storage Recovery [M]. Lewis Publishers, 1995.
    [100]孔颖,苗礼文.北京市深井人工回灌现状调查与前景分析[J].水文地质工程地质,2001(1):21-23.
    [101]云桂春,成徐州等编著.水资源管理的新战略:地下水人工回灌[M].北京:中国建筑工业出版社,2004.8.
    [102]赵中省.徐州市地下水降水入渗补给量预测[J].江苏地质,1994,18(4):185-188.
    [103]虎维岳,南生辉,柴建禄.大气降水对地下水补给的影响因素分析[J].地下水,1997,19(4):168-170.
    [104]李云峰.降雨补给潜水的滞后分配[J].勘察科学技术,1997(3):21-25.
    [105]王永义,王专翠,胡以高.降雨入渗补给规律分析[J].地下水,1998,20(2):74-75.
    [106]肖起模,邹连文,刘江.降雨入渗补给系数与地层的相关分析与应用[J].水利学报,1998(10):32-35.
    [107]张平,李日运.降雨入渗补给地下水的影响因素[J].辽宁大学学报,1999,26(2):118-122.
    [108]丁立国,刘玉珍.辽宁省中部平原降雨入渗补给系数分析[J].东北水利水电,1999(11):25-25.
    [109]齐仁贵.用地下水动态资料分析降雨入渗对地下水的补给[J].武汉水利电力大学学报,1999,32(3):58-62.
    [110]于玲.淮北平原区降雨入渗补给量研究[J].地下水,2001,23(1):36-38.
    [111]韩国才等.降雨入渗补给模型研究[J].河北水利科技,2001,22(2):10-14.
    [112]周玉醴,郑晖等.求算平原地下水大埋深区降雨补给系数的探讨[J].水文水资源,2001,22(2):16-20.
    [113]梁文彪.应用回归分析方法推求降水入渗补给系数[J].地下水,2002,24(2):72-73.
    [114]刘廷玺,朱仲元等.通辽地区次降雨入渗补给系数的分析确定[J].内蒙古农业大学学报,2002,23(2):34-39.
    [115]刘廷玺,朝伦巴根等.通辽地区次降雨入渗补给系数和地下水位埋深及次降雨量关系的分析与研究[J].内蒙古农业大学学报,2002,23(2):40-43.
    [116]牛振红.降水入渗补给系数的实验研究与分析计算[J].地下水,2003,25(3):152-154.
    [117]王政友.降雨入渗补给地下水机理探讨[J].水文,2003,23(3):34-36.
    [118]许昆.降水量与地下水补给量的关系分析[J].地下水,2004,26(4):272-274.
    [119]金光炎.降雨对地下水补给的规律性分析[J].安徽水利科技,2004(4):10-11.
    [120]季加强,齐仁贵.平岩地区浅层地下水降雨入渗补给研究[J].地下水,2004,26(2):78-81,128.
    [121]高奇.系统科学概论[M].济南:山东大学出版社,2001:12-18.
    [122] [奥]路德维希.冯.贝塔朗菲.一般系统论——基础、发展、应用[M].北京:社会科学文献出版社,1987:46.
    [123]邹珊刚等.系统科学[M].上海:上海人民出版社,1987:46.
    [124] [美]R.M.克朗.系统分析和政策科学[M].北京:商务印书馆,1985:20.
    [125]王浣尘.系统的基本特征[J].系统工程理论与实践,1986 (2):73-76.
    [126]周建中.系统概念的起源、发展和含义[J].浙江万里学院学报,2001,14(2):86-89.
    [127]钱学森,许国志,王寿云.组织管理的技术——系统工程[N].文汇报,1978-09-27.
    [128]陈江中.地下水资源系统分析[M].徐州:中国矿业大学出版社,1992:1-5.
    [129]仵彦卿.地下水系统的基本概念与组成[J],西安地质学院学报,1990,12(4):88-91.
    [130]陈雨孙,边际.系统工程和地下水系统[J].工程勘察,1994(1):26-31.
    [131]徐恒力.地下水系统的进化[J].水文地质工程地质,1992,19(1):58-60.
    [132]高云福.从地下水动态看地下水系统的自组织现象[J].城市勘察,1997(1):11-14.
    [133]邵爱军等.煤矿地下水与底板突水[M].北京:地震出版社,2001:1-6.
    [134]黄德发等.河南矿井地下水的防治与利用[M].北京:煤炭工业出版社,2006:1-3,10﹣53.
    [135]“地球表层动态机制与人地系统调控研究”项目建议书起草小组.地球表层动态机制与人地系统调控研究[J].地球科学进展,1992,7(1):28-33.
    [136]杨国安,甘国辉.人地系统复杂性思考[J].科技导报,2002(3):58-60.
    [137]马蔼乃.论地理科学的发展[M].载于马蔼乃编《地理科学与地理信息科学论》.武汉:武汉出版社,2000.
    [138]汪宝存,苗放,晏明星等.基于遥感技术的开滦煤矿地面塌陷积水动态监测[J].国土资源遥感,2007,73(3):94-98.
    [139]王景春.考虑施工扰动效应的基坑性状分析[D].杭州:浙江大学,2008.
    [140]范庆忠.岩石蠕变及其扰动效应试验研究[J].岩石力学与工程学报,2007,26(1).
    [141]赵玉春.热带扰动引发华南前汛期暴雨的机理研究[D].南京:南京信息工程大学,2007.
    [142]樊明月.初始扰动对对流云发生发展影响的数值模拟研究[M].南京:南京信息工程大学,2007.
    [143]尚社平.磁暴期间全球电离层扰动形态分析和理论研究[D].北京:中国科学院空间科学与应用研究中心,2000.
    [144]冯花平.基于多因素扰动的供应链应急协调研究[D].北京:北京邮电大学,2008.
    [145]高德欣.受扰非线性及时滞系统近似最优扰动抑制方法研究[D].青岛:中国海洋大学,2006.
    [146]胡文容.煤矿矿井水处理技术[M].上海:同济大学出版社,1996:1-4,20-32,38-39,88-135.
    [147]国家环保局监督管理司.环境影响评价技术原则和方法[M].北京:北京大学出版社,1990.
    [148]程胜高,张聪辰.环境影响评价与环境规划[M].北京:中国环境科学出版社,1999.
    [149]中国环境科学学会.中国环境科学合订本[M].北京:中国环境科学出版社,1984.
    [150]马倩如,程声通.环境质量评价[M].北京:中国环境科学出版社,1990.
    [151]刘怀忠.大屯矿区奥陶系地层特征及富水性研究[M].徐州:中国矿业大学资源与地球科学学院,2003.
    [152]刘启蒙.高承压水上采煤断层突水渗流转换机理研究[D].徐州:中国矿业大学资源与地球科学学院,2007.
    [153]薛禹群.地下水动力学[M].北京:地质出版社,2003.
    [154]齐跃明.矿区岩溶地下水动态的随机模拟及应用研究[D].徐州:中国矿业大学资源与地球科学学院,2009.
    [155]李壮等.华北平原(山东部分)地下水资源调查评价报告[R].2003.
    [156]赵宗壮等.华北平原(河北部分)地下水资源调查评价报告[R].2003.
    [157]付学功.衡水市深层地下水降落漏斗发展趋势分析[J].海河水利,1999(3):26-28.
    [158]张瑛,王亮等.辽宁省环境地质调查报告[R].2001.
    [159]黄光勇.盐城市地下水降落漏斗现状分析[J].江苏水资源,2002(2):36.
    [160]武强等.煤矿开采诱发的水环境问题研究[J].中国矿业大学学报,2002,31(1):19-22.
    [161]林学钰,陈梦熊等.松嫩盆地地下水资源与可持续发展研究[M].北京:地震出版社,2000.
    [162]孙亚军,张开玉等.韩桥矿特大涌水矿井安全经济排水技术[R].徐州:中国矿业大学,2006.
    [163]韩桥矿.韩桥矿夏桥井水文地质分类报告[R].徐州,1989.
    [164]徐州长城基础工程有限公司.韩桥煤矿闭坑地质报告[R].徐州,2008.
    [165]祝金峰,宁超.正村井田地下水赋存特征分析及矿井涌水量计算[J].中州煤炭,2008,(1):23-25.
    [166]徐龙,葛晓光.水文地质比拟法的系统处理模型[J].煤炭学报,1995,20(4):346-350.
    [167]凌成鹏.基于BP神经网络的孔隙充水矿井涌水量预测[J].水文地质工程地质,2007 (2):55-58.
    [168]汤琳,杨永国,徐忠杰.非线性时间序列分析及其在矿井涌水预测中的应用研究[J].工程勘察,2007 (5):28-31.
    [169]陈玉华,杨永国,彭高辉.矿井涌水量混沌时间序列分析与预测[J].煤田地质与勘探,2008,36(4):34-36.
    [170]李云峰,胥国富,左传明.梁花园矿井涌水量估算[J].中国煤田地质,2007 (5):38-40.
    [171]中国地质学会岩溶地质专业委员会.应用有限元法预测大水岩溶矿床矿坑涌水量--王凤矿矿坑涌水量的研究[M].中国北方岩溶和岩溶水.1982:167-176.
    [172]钱家忠,汪家权.中国北方裂隙岩溶水模拟及水环境质量评价[M].合肥:合肥工业大学出版社,2003.
    [173] George E. P. Box, Gwilym. Jenkins, Gregory C.Reinsel(顾岚等译).Time Series Analysis: Forecasting and Control[M].北京:中国统计出版社,1997.
    [174]王燕.应用时间序列分析[M].北京:中国人民大学出版社,2005:139-152.
    [175]易丹辉.数据分析与EViews应用[M].北京:中国统计出版社,2002.
    [176]安鸿志.时间序列分析[M].华东师范大学出版社,1989.
    [177]单明荣,薛恒新,林琳.基于季节ARIMA模型的公路交通量预测[J].公路交通科技,2008,25(1):124-128.
    [178]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700