用户名: 密码: 验证码:
高效生物除臭滴滤塔的构建及微生态学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用立式和分期布液式两种结构形式的生物反应器进行了净化H_2S废气的研究。生物滴滤塔闲置后,采用生物强化的方法进行了立式生物滴滤塔的再启动实验。以稳态运行的生物滴滤塔中的优势菌群作为菌源,采用包埋方式进行微生物固定化研究,探索制备固定化小球的最佳工艺条件,并考察固定化小球的H_2S降解性能。采用PCR-DGGE技术进行了生物滴滤反应器的微生态学研究,并建立了基于“累积效应”的生物动力学模型。
     采用高营养刺激生长和液相降解底物“优胜劣汰”的复合挂膜方法启动反应器,仅需3天。立式生物滴滤塔在进气浓度为50~300mg·m~(-3)时,其最佳营养液喷淋量为6L·h~(-1),停留时间高于15s时,滴滤塔保持90%以上的净化效率。最佳体积去除负荷为89.15g·(m~3·h)~(-1),最大体积去除负荷为135g·(m~3·h)~(-1)。
     通过优化反应器布液布气,设计了气液两相呈错流接触的分期布液生物滴滤床。采用气液联合驯化方式,分期布液式生物滴滤床能够在3d内完成挂膜启动。与立式相比,其运行所需营养液喷淋量减少,为3L·h~(-1),能够达到的最佳停留时间为20s。生物滴滤床的最佳体积去除负荷提高到171g·(m~3·h)~(-1),最高体积去除负荷为216g·(m~3·h)~(-1)。生物滴滤床压降在整个实验周期内保持在200Pa以内,没有出现生物膜阻塞的问题。
     以生物强化的方法将细菌和真菌挂膜到立式生物滴滤塔进行闲置后的再启动研究。生物滴滤塔中的土著微生物和接种微生物能够共存,对H_2S降解率能够达到85%以上。立式生物滴滤塔的最佳去除负荷由最初的110g·(m~3·h)~(-1)提高到129g·(m~3·h)~(-1),最大去除负荷由最初的152g·(m~3·h)~(-1)提高到170g·(m~3·h)~(-1)。对生物强化后的立式生物滴滤塔进行了饥饿实验,生物滴滤塔净化性能能够快速恢复。采用SEM对恢复前后陶粒表面的微生物进行对比分析,菌落结构没有明显的改变。
     富集培养稳定运行的生物滴滤塔中填料表面的生物膜,进行了微生物的固定化研究。以机械强度和溶胀率为评价参数,确定以活性炭作为固定化实验添加剂。通过正交试验,确定影响固定化的条件因素主次顺序为:菌量>海藻酸钠浓度>添加剂含量>氯化钙浓度。微生物固定化小球的最佳制备参数为:海藻酸钠浓度5%,氯化钙2.5%,活性炭含量0.3%,固定化时间12h。制备的固定化小球平均溶胀率为8.61%,培养12h后培养液浊度增加值为0.236,性能稳定。
     对制备的固定化活性炭小球进行了生长条件测试,最佳S~(2-)浓度45~50mg·L~(-1),最佳pH值6,最适生长温度25-30℃,最佳摇床转速为120r·min-1。将活性炭固定化小球装填与生物滴滤塔进行了H_2S降解性能的实验研究,其能够实现对H_2S生物降解的快速响应,启动初期净化效率达到90%,并保持稳定。在进口浓度50~200mg·m~(-3)范围时,最佳停留时间为11s,净化效率能够维持在80%~95%之间。
     采用PCR-DGGE技术分析了两个生物反应器在稳定运行阶段各自的微生态结构。两个生物反应器中共有6条DGGE条带,但两个反应器中也存在各自特有的种属。立式生物滴滤塔对应的多样性指数为2.12±0.08,分期布液式生物滴滤床对应的多样性指数为2.85±0.13。分期布液式生物滴滤塔的微生物多样性优于立式生物滴滤塔。
     在上述实验的基础上,以米-门方程、Monod方程和质量守恒为基础,建立了微观和宏观尺度上数学模型。修正后的数学模型与实验数据具有较好的拟合性。
Two different types of trickling filters were adopted to investigate H_2S removalperformances by biological method. The vertical bio-trickling filter after starvationoperation could be re-started with bioaugmentation method. The optimaltechnological condition and H_2S removal performance of immobilized beads havebeen conducted by adopting the dominant microfloras in the bio-trickling filter asbacteria source. Micro eco-structures in bio-trickling filters were tested using PCR-DGGE technology. Biodegradation dynamic model, which considered the cumulativeeffect of H_2S in bio-trickling filter, has been constructed and verified.
     The overall start up period of the traditional vertical bio-trickling filter was only3days by adopting the “stimulate biofilm growth by high concentration of nutrientsand improve degradation ability by competition” method. The vertical bio-tricklingfilter could achieve high removal efficiency more than90%when the empty bedresident time was longer than15s, the optimal trickling rate was6L·h~(-1). In theprocess of elimination capacity test, the best volumetric elimination capacity was89.15g·(m~3·h)~(-1), and the maximum value was135g·(m~3·h)~(-1).
     Running parameters of grading bio-trickling filter in which gas and liquid werecontacted with a cross flow pattern. The immobilization period was still3days.Compared with the vertical one, the liquid trickling amount was lower, about3L·h~(-1).Elimination capacity of grading bio-trickling filter has been improved. The bestelimination capacity was171g·(m~3·h)~(-1), and the maximum value was216g·(m~3·h)~(-1).Pressure loss was not more than200Pa in the whole experimental period.
     The application of bioaugmentation to re-start up the vertical bio-trickling filterafter it was shut down for some days was conducted. Results showed that significantremoval performance was achieved: indigenous microorganisms and immobilizedmicroorganisms could exist in the same reactor; the removal efficiency was more than85%at starting stage. The best elimination capacity was improved from110g·(m~3·h)~(-1)to129g·(m~3·h)~(-1), while the maximum elimination capacity increased up to170g·(m~3·h)~(-1). Biofilm structures have not been changed when the ceramic pellets wereobserved by SEM.
     In the microorganisms’ immobilization test, active carbon was chosen as additiveto improve immobilized beads’ intensity. The sequences of factors influencingoptimum medium for immobilized beads production was obtained according toorthogonal experiments and the result was: microbe amount> sodium alginate>additive amount>CaCl_2. The optimal preparation parameters was sodium alginate5%,CaCl_22.5%, active carbon0.3%, and immobilized time12h. The optimal growth conditions of immobilized beads was S~(2-)concentration45~50mg·L~(-1), pH6, optimaltemperature5-30℃, rotation speed120r·min-1. Bio-trickling filter packed withimmobilized beads coud start up quickly, with removal efficiency more than90%.The optimal empty bed resident time was11s at inlet H_2S concentration rangebetween50~200mg·m~3.
     Micro eco-structures in two bio-trickling filters were compared by PCR-DGGEtechnology. There were6same DGGE bands in the two reactors. The coexistencemicrobial species had different dominant position in their respective ecosystem. TheShannon-Weaver index of the vertical bio-trickling filter was2.12±0.08. That of thegrading bio-trickling filter was2.85±0.13. Microbial diversity of grading bio-trickling filter was higher than the vertical one.
     On the basis of the above data, biodegradation dynamic model was established,which considered the cumulative effect of H_2S in bio-trickling filter. The microscopicmodel could predict H_2S concentration in the biofilm. For the biodegradation processwas controlled by biochemical reaction, macroscopic model was established on thebasis of Michaelis-Menten equation. The model had a good relevance withexperimental data after modified.
引文
[1] ESTRADA J M,KRAAKMAN N,MUNOZ R,et al.A Comparative Analysis of OdourTreatment Technologies in Wastewater Treatment Plants[J]. Environmental Science&Technology,2011,45(3):1100-1106.
    [2] RENE E R,MONTES M,VEIGA M C,et al.Styrene removal from polluted air in oneand two-liquid phase biotrickling filter:Steady and transient-state performance and pressuredrop control[J].Bioresource Technology,2011,102(13):6791-6800.
    [3] LI J J,YE G Y,SUN D F,et al.Performance of a biotrickling filter in the removal ofwaste gases containing low concentrations of mixed VOCs from a paint and coatingplant[J].Biodegradation,2012,23(1):177-187.
    [4]王亘,耿静,冯本利,等.天津市恶臭投诉现状与对策建议[J].环境科学与管理,2008,33(09):49-63.
    [5] CHEMEL C,RIESENMEY C,BATTON-HUBERT M,et al.Odour impact assessmentaround a landfill site from weather-type classification,complaint inventory and numericalsimulation[J].Journal of Environmental Management,2012,93(1):85-94.
    [6] BIANCHI G,CELESTE G,PALMIOTTO M,et al.Source identification of odours andVOCs from a composting plant by multivariate analysis of trace volatile organiccompounds[C]. In Nose2010: International Conference on Environmental OdourMonitoring and Control,DelRosso,2010,23:279-284.
    [7] SANTOS C M D,PIMENTA C A D,NOBRE M R C.A Systematic Review of TopicalTreatments to Control the Odor of Malignant Fungating Wounds[J].Journal of Pain andSymptom Management,2010,39(6):1065-1076.
    [8] BRABAZON E, DONOHUE F, CROWLEY D, et al. The health effects ofenxironmental odours-a discussion paper[J].Irish Journal of Medical Science,2010,179:S307-S308.
    [9] IRANPOUR R,COXA H H J,DESHUSSES M A,et al.Literature review of airpollution control biofilters and biotrickling filters for odor and volatile organic compoundremoval[J].Environmental Progress,2005,24(3):254-267.
    [10]石磊.恶臭污染测试与控制技术[M].北京2004,化学工业出版社.
    [11] EDWARDS-BRANDT J,SHORNEY-DARBY H,NEEMANN J,et al.Use of ozone fordisinfection and taste and odor control at proposed membrane facility[J].Ozone-Science&Engineering,2007,29(4):281-286.
    [12] SIOUKRI E,BANDOSZ T J.Enhancement of the performance of activated carbons asmunicipal odor removal media by addition of a sewage-sludge-derivedphase[J].Environmental Science&Technology,2005,39(16):6225-6230.
    [13] SOMEKAWA S,HAGIWARA T,FUJII K,et al.Mineralization of volatile organiccompounds (VOCs) over the catalyst CuO-Co3O4-CeO2and its applications in industrial odorcontrol[J].Applied Catalysis a-General,2011,409:209-214.
    [14] WAN S G,LI G Y,AN T C,et al.Co-treatment of single,binary and ternary mixturegas of ethanethiol,dimethyl disulfide and thioanisole in a biotrickling filter seeded withLysinibacillus sphaericus RG-1[J].Journal of Hazardous Materials,2011,186(2-3):1050-1057.
    [15] HAN Y Q,ZHANG W J,XU J.A simplified mathematical model of multi-speciesbiofilm for simultaneous removal of sulfur dioxide (SO2) and nitric oxide (NO) using abiotrickling-filter[J].African Journal of Microbiology Research,2011,5(5):541-550.
    [16] YANG Y L,HUANG S B,LIANG W,et al.Microbial removal of NOX at hightemperature by a novel aerobic strain Chelatococcus daeguensis TAD1in a biotricklingfilter[J].Journal of Hazardous Materials,2012,203:326-332.
    [17] DOBSLAW D,WOISKI C,ENGESSER K H.Implementation of TA Luft2002inExisting Plants: A Bioscrubber for Combined Waste Air and Waste WaterTreatment[J].Chemie Ingenieur Technik,2010,82(12):2161-2170.
    [18] U. S. Environmental Protection Agency. Using bioreactors to control air pollution[EB/OL].http://www.epa.gov/ttncatc1/dir1/fbiorect.pdf.
    [19]郝吉明,马广大.大气污染控制工程(第二版)[M].高等教育出版社,2002:416-429.
    [20] NIELSEN D R,DAUGULIS A J,MCLELLAN P J.Dynamic simulation of benzenevapor treatment by a two-phase partitioning bioscrubber.Part II:Model calibration,validation,and predictions[J].Biochemical Engineering Journal,2007,36(3):250-261.
    [21] NIELSEN D R,DAUGULIS A J,MCLELLAN P J.Dynamic simulation of benzenevapor treatment by a two-phase partitioning bioscrubber.Part1:Model development,parameter estimation,and parametric sensitivity[J].Biochemical Engineering Journal,2007,36(3):239-249.
    [22] VERGARA-FERNANDEZ A,SOTO-SANCHEZ O,VASQUEZ J.Effects of PackingMaterial Type on n-Pentane/Biomass Partition Coefficient for Use in FungalBiofilters[J].Chemical and Biochemical Engineering Quarterly,2011,25(4):439-444.
    [23] DING Y, HAN Z Y, WU W X, et al. Performance evaluation of biofilters andbiotrickling filters in odor control of n-butyric acid[J].Journal of Environmental Scienceand Health Part a-Toxic/Hazardous Substances&Environmental Engineering,2011,46(5):441-452.
    [24] NISOLA G M,CHO E,ORATA J D,et al.NH3gas absorption and bio-oxidation in asingle bioscrubber system[J].Process Biochemistry,2009,44(2):161-167.
    [25] KUMAR A,CHILONGO T,DEWULF J,et al.Gaseous dimethyl sulphide removal in amembrane biofilm reactor:Effect of methanol on reactor performance[J].BioresourceTechnology,2010,101(23):8955-8959.
    [26] YANG C P,YU G L,ZENG G M,et al.Performance of biotrickling filters packed withstructured or cubic polyurethane sponges for VOC removal[J].Journal of EnvironmentalSciences-China,2011,23(8):1325-1333.
    [27] MOUSSAVI G,KHAVANIN A,SHARIFI A.Ammonia removal from a waste air streamusing a biotrickling filter packed with polyurethane foam through the SNDprocess[J].Bioresource Technology,2011,102(3):2517-2522.
    [28]孙珮石,杨显万,黄若华,等.生物膜填料塔对低浓度甲苯废气的净化性能研究[J].环境污染与防治,1997,(03):8-11.
    [29]侯长军,饶佳家,霍丹群,等.生物滴滤塔降解甲苯废气的操作特性[J].中国给水排水,2005,(12):50-52.
    [30]何坚,羌宁,季学李.控制挥发性有机污染物的革新方法——生物滴滤池法[J].污染防治技术,1999,(04):197-199.
    [31]廖强,田鑫,朱恂,et al.有机废气处理生物膜滴滤塔操作方式研究[J].工程热物理学报,2006,(01):136-138.
    [32]李坚,张书景,金毓峑,等.一种处理挥发性有机废气的生物滴滤装置及方法[P].发明专利2006,专利号:ZL200610165557.6.
    [33]章小军,李坚,刘佳,等.扩体错流式生物滴滤床净化甲苯废气[J].环境污染与防治2009,31(11):62-64.
    [34]张京,李坚,孙莉,等.错流式生物滴滤床净化甲苯废气[J].环境工程学报2008,(01):59-63.
    [35]李坚,彭淑婧,刘佳,等.一种处理气态污染物的错流生物滴滤装置[P].发明专利,2009,专利号:ZL200910244430.7.
    [36] LIAO Q,TIAN X,CHEN R,et al.Mathematical model for gas-liquid two-phase flowand biodegradation of a low concentration volatile organic compound (VOC) in a tricklingbiofilter[J].International Journal of Heat and Mass Transfer,2008,51(7-8):1780-1792.
    [37] RAMIREZ M,GOMEZ J M,AROCA G,et al.Removal of hydrogen sulfide byimmobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethanefoam[J].Bioresource Technology,2009,100(21):4989-4995.
    [38] QIU G L,LI Y L,ZHAO K.Thiobacillus thioparus immobilized by magnetic porousbeads:Preparation and characteristic[J].Enzyme and Microbial Technology,2006,39(4):770-777.
    [39] WOERTZ J R,KINNEY K A,SZANISZLO P J.A fungal vapor-phase bioreactor for theremoval of nitric oxide from waste gas streams[J].Journal of the Air&Waste ManagementAssociation,2001,51(6):895-902.
    [40] HE Z,ZHOU L C,LI G Y,et al.Comparative study of the eliminating of waste gascontaining toluene in twin biotrickling filters packed with molecular sieve and polyurethanefoam[J].Journal of Hazardous Materials,2009,167(1-3):275-281.
    [41]卢琴芳,郭兵兵.固定床活性炭吸附法治理炼厂表曝池恶臭污染的工艺[J].环境工程,2006,02:37-40.
    [42]刘玲,郭兵兵.生物脱臭填料的研究现状及发展趋势[J].当代化工,2009,38(02):169-172.
    [43] SORIAL G A, SMITH F L, SUIDAN M T, et al. Removal of ammonia fromcontaminated air by trickle bed air biofilters[J].Journal of the Air&Waste ManagementAssociation,2001,51(5):756-765.
    [44]邵立明,何品晶,傅钟,等.固定化微生物处理含H2S气体的试验研究[J].环境科学1999,01:20-23.
    [45] CHEN X Y,WANG Z H,MA S L,et al.Microstructure and tribological properties ofternary BCN thin films with different carbon contents[J].Diamond and Related Materials,2010,19(10):1225-1229.
    [46] ATKINSON B,ABDELRAHMANALI M E.Wetted Area,Slime Thickness and Liquid-Phase Mass-Transfer in Packed-Bed Biological Film Reactors (TricklingFilters)[J].Transactions of the Institution of Chemical Engineers,1976,54(4):239-250.
    [47] CHUNG Y C,HUANG C P,TSENG C P.Kinetics of hydrogen sulfide oxidation byimmobilized autotrophic and heterotrophic bacteria in bioreactors[J]. BiotechnologyTechniques,1996,10(10):743-748.
    [48] KIM J H,RENE E R,PARK H S.Biological oxidation of hydrogen sulfide under steadyand transient state conditions in an immobilized cell biofilter[J].Bioresource Technology,2008,99(3):583-588.
    [49] GIRO M E A, GARCIA O, ZAIAT M. Immobilized cells of Acidithiobacillusferrooxidans in PVC strands and sulfide removal in a pilot-scale bioreactor (vol28,pg201,2006)[J].Biochemical Engineering Journal,2006,30(1):114-114.
    [50] PARK D H, CHA J M, RYU H W, et al. Hydrogen sulfide removal utilizingimmobilized Thiobacillus sp IW with Ca-alginate bead[J]. Biochemical EngineeringJournal,2002,11(2-3):167-173.
    [51] LI Y H,ZHAO S H,WANG Y Q.Microbial desulfurization of ground tire rubber byThiobacillus ferrooxidans[J].Polymer Degradation and Stability,2011,96(9):1662-1668.
    [52] GU W J,ZHANG F B,XU P Z,et al.Effects of sulphur and Thiobacillus thioparus oncow manure aerobic composting[J].Bioresource Technology,2011,102(11):6529-6535.
    [53] ABDEHAGH N, NNMINI M T, HEYDARIAN S M, et al. Performance of abiotrickling filter employing Thiobacillus Thioparus immobilized on polyurethane foam forhydrogen sulfide removal[J]. Iranian Journal of Environmental Health Science&Engineering,2011,8(3):245-254.
    [54] VALDEBENITO-ROLACK E H,ARAYA T C,ABARZUA L E,et al.Thiosulphateoxidation by Thiobacillus thioparus and Halothiobacillus neapolitanus strains isolated fromthe petrochemical industry[J].Electronic Journal of Biotechnology,2011,14(1).
    [55] CACERES M,MORALES M,MARTIN R S,et al.Oxidation of volatile reducedsulphur compounds in biotrickling filter inoculated with Thiobacillusthioparus[J].Electronic Journal of Biotechnology,2010,13(5).
    [56] LI D,LI D W,LIANG Z R,et al.Bioleaching Study of Chalcopyrite Mineral ProcessingSolid Waste by Thiobacillus ferrooxidans and Thiobacillus thiooxidans[J]. DisasterAdvances,2010,3(4):517-520.
    [57] MA Y L, YANG B L, ZHAO J L. Removal of H2S by Thiobacillus denitrificansimmobilized on different matrices[J].Bioresource Technology,2006,97(16):2041-2046.
    [58]张雅旎.生物滴滤塔处理乙硫醇恶臭气体的研究[D].北京,北京化工大学,2007.
    [59]王晓艳.错流式生物滴滤塔净化含硫化氢废气的高效降解菌筛选实验研究[D].西安,西安建筑科技大学,2007.
    [60]刘波,姜安玺,程养学,等.两级滴滤去除硫化氢和甲硫醇混合恶臭气体[J].中国环境科学,2003,(06):59-62.
    [61] AROCA G,URRUTIA H,NUNEZ D,et al.Comparison on the removal of hydrogensulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillusthiooxidans[J].Electronic Journal of Biotechnology,2007,10(4):514-520.
    [62] RAMIREZ M,GOMEZ J M,AROCA G,et al.Removal of hydrogen sulfide andammonia from gas mixtures by co-immobilized cells using a new configuration of twobiotrickling filters[J].Water Science and Technology,2009,59(7):1353-1359.
    [63] ARELLANO-GARCIA L, REVAH S, RAMIREZ M, et al. Dimethyl sulphidedegradation using immobilized Thiobacillus thioparus in a biotricklingfilter[J].Environmental Technology,2009,30(12):1273-1279.
    [64] ADOKI A.Influence of divalent metal ions on degradation of dimethylsulphide by intactcells of Thiobacillus thioparus TK-m[J].African Journal of Biotechnology,2007,6(11):1343-1347.
    [65] OPRIME M,GARCIA O, CARDOSO A A.Oxidation of H2S in acid solution byThiobacillus ferrooxidans and Thiobacillus thiooxidans[J].Process Biochemistry,2001,37(2):111-114.
    [66] OTTENGRAF S P P,VANDENOEVER A H C.Kinetics of organic-compound removalfrom waste gases with a biological filter[J].Biotechnology and Bioengineering,1983,25(12):3089-3102.
    [67] HUISMAN J W,VANDENHEUVEL J C,OTTENGRAF S P P.Enhancement of externalmass-transfer by gaseous end-products[J].Biotechnology Progress,1990,6(6):425-429.
    [68] SHAREEFDEEN Z,BALTZIS B C.Biofiltration of toluene vapor under steady-state andtransient conditions-theory and experimental results-a[J].Chemical Engineering Science,1995,50(17):2843-2843.
    [69] SHAREEFDEEN Z,BALTZIS B C.Biofiltration of toluene vapor under steady-state andtransient conditions-theory and experimental results-b[J].Chemical Engineering Science,1994,49(24):4347-4360.
    [70] SHAREEFDEEN Z,BALTZIS B C.Biological removal of hydrophobic solvent vaporsfrom airstreams[J].Advances in Bioprocess Engineering,1994,12:397–404.
    [71] OH Y S,SHAREEFDEEN Z,BALTZIS B C,et al.Interactions between benzene,toluene and P-xylene (BTX) during their biodegradation[J]. Biotechnology andBioengineering,1994,44(4):533-538.
    [72] DESHUSSES M A, HAMER G, DUAN I J. Behavior of biofilters for waste airbiotreatment.1. Dynamic-model development[J]. Environmental Science&Technology,1995,29(4):1048-1058.
    [73] BALTZIS B C, MPANIAS C J, Bhattacharya, S. Modeling the removal of VOCmixtures in biotrickling filters[J].Biotechnology and Bioengineering,2001,72(4):389-401.
    [74] SUN A K, HONG J, WOOD T K. Modeling trichloroethylene degradation by arecombinant pseudomonad expressing toluene ortho-monooxygenase in a fixed-filmbioreactor[J].Biotechnology and Bioengineering,1998,59(1):40-51.
    [75] ALONSO C,ZHU Y,SUIDAN M T,et al.Mathematical model for the biodegradationof VOCs in trickle bed biofilters[J].Water Science and Technology,1999,39(7):139-146.
    [76] OKKERSE W J H, OTTENGRAF S P P, OSINGA-KUIPERS B, et al. Biomassaccumulation and clogging in biotrickling filters for waste gas treatment.Evaluation of adynamic model using dichloromethane as a model pollutant[J]. Biotechnology andBioengineering,1999,63(4):418-430.
    [77]李国文,胡洪营,郝吉明,等.生物滴滤塔中挥发性有机物降解模型及应用[J].中国环境科学,2001,01:81-84.
    [78]孙佩石,黄若华,杨海燕.生物膜填料塔净化低浓度有机废气的动力学模型研究[J].云南化工,1996,03:23-27.
    [79] KHAMMAR N, MALHAUTIER L, DEGRANGE V, et al. Link between spatialstructure of microbial communities and degradation of a complex mixture of volatile organiccompounds in peat biofilters[J].Journal of Applied Microbiology,2005,98(2):476-490.
    [80] LEE T H,KIM J,KIM M J,et al.Degradation characteristics of methyl ethyl ketone byPseudomonas sp KT-3in liquid culture and biofilter[J].Chemosphere,2006,63(2):315-322.
    [81] FRIEDRICH U,NAISMITH M M,ALTENDORF K,et al.Community analysis ofbiofilters using fluorescence in situ hybridization including a new probe for the Xanthomonasbranch of the class Proteobacteria[J].Applied and Environmental Microbiology,1999,65(8):3547-3554.
    [82] GAO M,LI L,LIU J X.Simultaneous removal of hydrogen sulfide and toluene in abioreactor: Performance and characteristics of microbial community[J]. Journal ofEnvironmental Sciences-China,2011,23(3):353-359.
    [83] PEDERSEN A R, MOLLER S, MOLIN S, et al. Activity of toluene-degradingPseudomonas putida in the early growth phase of a biofilm for waste gas treatment[J].Biotechnology and Bioengineering,1997,54(2):131-141.
    [84] SONG J H,KINNEY K A.Microbial response and elimination capacity in biofilterssubjected to high toluene loadings[J].Applied Microbiology and Biotechnology,2005,68(4):554-559.
    [85]周卿伟,润晔,胡俊,等.生物滴滤降解氯苯废气的实验研究[J].环境科学,2011,32(12):3673-3679.
    [86] FRIEDRICH U, VAN LANGENHOVE H, ALTENDORF K, et al. Microbialcommunity and physicochemical analysis of an industrial waste gas biofilter and design of16S rRNA-targeting oligonucleotide probes[J].Environmental Microbiology,2003,5(3):183-201.
    [87] KHAMMAR N, MALHAUTIER L, DEGRANGE V, et al. Link between spatialstructure of microbial communities and degradation of a complex mixture of volatile organiccompounds in peat biofilters[J]. Journal of Applied Microbiology,2005,98(2):476-490.
    [88]陈桐生,李建军,岑英华,等.DG-DGGE分析除臭生物滤池微生物多样性[J].应用与环境生物学报,2006,01:113-117.
    [89]陈桐生,李建军,岑英华,等.不同pH条件下除臭生物滤池微生物种群结构的分子生态分析[J].微生物学报,2005,03:446-450.
    [90] SERCU B,NUNEZ D,Van LANGENHOVE H,et al.Operational and microbiologicalaspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide anddimethyl sulfide[J].Biotechnology and Bioengineering,2005,90(2):259-269.
    [91] RADERAKER J L W,HOOLWERF J D,WAGENDORP A A,et al.Assessment ofmicrobial population dynamics during yoghurt and hard cheese fermentation and ripening byDNA population fingerprinting[J].International Dairy Journal,2006,16(5):457-466.
    [92] CAI Z,KIM D,SORIAL G A,et al.Performance and microbial diversity of a trickle-bed air biofilter under interchanging contaminants[J]. Engineering in Life Sciences,2006,6(1):37-42.
    [93]殷峻,陈英旭,刘和,等.应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微生物多样性[J].环境科学,2004,06:11-15.
    [94] SAKANO Y,KERKHOF L.Assessment of changes in microbial community structureduring operation of an ammonia biofilter with molecular tools[J]. Applied andEnvironmental Microbiology,1998,64(12):4877-4882.
    [95] STOFFELS M,AMANN R,LUDWIG W,et al.Bacterial community dynamics duringstart-up of a trickle-bed bioreactor degrading aromatic compounds[J]. Applied andEnvironmental Microbiology,1998,64(3):930-939.
    [96]洪庆华,石璐,孙井梅,等.革兰氏染色三步法应用试验探讨[J].实验室研究与探索,2010,29(11):15-17.
    [97]李爱华,岳思君,马海滨.真菌孢子三种计数方法相关性的探讨[J].微生物学杂志,2006,26(2):107-111.
    [98]肖凡,顾国维.ASM1中废水和污泥组分浓度的测定方法研究[J].环境科学与技术,2003,26(12):1-4.
    [99]孙静,朱艳.亚甲基兰分光光度法测定气态硫化氢方法研究[J].环境科学与技术,2004,27(12):52-54.
    [100]宋健男,方小芳,滕成君,等.铬酸钡分光光度法(热法)测定水中硫酸盐不确定度评定[J].中国卫生检验杂志,2009,19(02):440-441.
    [101]许新艳,张承中.在NH3存在的条件下生物滴滤塔处理含H2S气体实验研究[D].西安,西安建筑科技大学,2011.
    [102]吕景,高运川.生物滴滤池除臭工艺特性及数学模型研究[D].上海,上海师范大学,2008.
    [103]田鑫,廖强.净化低浓度有机废气生物膜滴滤塔传输及降解特性[D].重庆,重庆大学,2006.
    [104] ZAGUSTINA N A,KRIKUNOVA N I,KULIKOVA A K,et al.Composition of theair emission from a tobacco factory and development of the biocatalyst for odourcontrol[J].Journal of Chemical Technology and Biotechnology,2010,85(3):320-327.
    [105] MCLELLAN S L, HUSE S M, MUELLER-SPITZ S R, et al. Diversity andpopulation structure of sewage-derived microorganisms in wastewater treatment plantinfluent[J].Environmental Microbiology,2010,12(2):378-392.
    [106] HE F, LI X. Treatment for woolscouring effluent through bioacidification byacidithiobacillus thiooxidans[J]. International Journal of Environment and Pollution,2010,40(4):391-401.
    [107]倪红,熊哲,张珊,等.多孔陶粒固定化微生物效果及扫描电镜观察[J].湖北大学学报,2011,33(02).
    [108]钱东升,房俊逸,陈东之.板式生物滴滤塔高效净化硫化氢废气的研究[J].环境科学,2011,32(09):2786-2793.
    [109] KRAAKMAN N J R,ROCHA-RIOS J,VAN LOOSDRECHT M C M.Review ofmass transfer aspects for biological gas treatment[J]. Applied Microbiology andBiotechnology,2011,91(4):873-886.
    [110] DORADO A D,RODRIGUEZG,RIBERA G.Evaluation of mass transfer coefficientsin biotrickling filters: experimental determination and comparison to correlations[J].Chemical Engineering&Technology,2009,32(12):1941-1950.
    [111]葛洁,张承中.生物滴滤塔净化H2S气体的菌种筛选、填料改性及反应动力学分析
    [D].西安,西安建筑科技大学,2011.
    [112]杜永林,黄兵,孙佩石.生物膜法净化低浓度硫化氢气体的试验研究[J].云南化工,1998,04:79-83.
    [113] TAKASHIMA T, FUKUNISHI N, NISHIKI T, et al. Anaerobic oxidation ofdissolved hydrogen sulfide in continuous culture of the chemoautotrophic bacteriumThiobacillus denitrificans[J].Kagaku Kogaku Ronbunshu,2002,28(1):25-30.
    [114]万顺刚,李桂英,安太成.固定化微生物技术在大气恶臭污染物处理中应用研究进展[J].生态环境学报2011,20(10):1575-1584.
    [115] CASANOVAS-MASSANA A,BLANCH A R.Diversity of the heterotrophic microbialpopulations for distinguishing natural mineral waters[J]. International Journal of FoodMicrobiology,2012,153(1-2):38-44.
    [116] DENECKE M, EILMUS S, RODER N, et al. Molecular identification of themicrobial diversity in two sequencing batch reactors with activated sludge[J].AppliedMicrobiology and Biotechnology,2012,93(4):1725-1734.
    [117] LYNCH J M,BENEDETTI A,INSAM H,et al.Microbial diversity in soil:ecological theories,the contribution of molecular techniques and the impact of transgenicplants and transgenic microorganisms[J].Biology and Fertility of Soils,2004,40(6):363-385.
    [118] DAIGGER G T,BOLTZ J P.Trickling Filter and Trickling Filter-Suspended GrowthProcess Design and Operation: A State-of-the-Art Review[J]. Water EnvironmentResearch,2011,83(5):388-404.
    [119]宋琳玲,曾光明.农业废物堆肥中微生物总DNA提取方法的研究及其应用[D].长沙,湖南大学,2008.
    [120] JIANG Y M,CHEN C R,XU Z H,et al.Effects of single and mixed species forestecosystems on diversity and function of soil microbial community in subtropicalChina[J].Journal of Soils and Sediments,2012,12(2):228-240.
    [121]尹玲,张雅丽,卢江.葡萄霜霉菌基因组DNA不同提取方法的比较[J].试验研究,2010,3(6):1-9.
    [122] PEDERSEN A R,ARVIN E.Effect of biofilm growth on the gas-liquid mass transfer ina trickling filter for waste gas treatment[J].Water Research,1997,31(8):1963-1968.
    [123] OKKERSE W J H,OTTENGRAF S P P,OSINGA-KUIPERS B.Biofilm thicknessvariability investigated with a laser triangulation sensor[J]. Biotechnology andBioengineering,2000,70(6):619-629.
    [124] BEULING E E, VAN DEN HEUVEL J C, OTTENGRAF S P P. Diffusioncoefficients of metabolites in active biofilms[J]. Biotechnology and Bioengineering,2000,67(1):53-60.
    [125]孙珮石,杨显万,黄若华,等.生物膜填料塔净化有机废气研究[J].中国环境科学,1996,16(02):92-95.
    [126] DOAN H D,WU J,EYVAZI M J.Effect of liquid distribution on the organic removalin a trickle bed filter[J].Chemical Engineering Journal,2008,139(3):495-502.
    [127] VANHOOREN H,VERBRUGGE T,BOEIJE G,et al.Adequate model complexityfor scenario analysis of VOC stripping in a trickling filter[J]. Water Science andTechnology,2001,43(7):29-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700