用户名: 密码: 验证码:
人类—自然耦合系统中生产和分解子系统功能强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类进入农业文明特别是工业文明以来,对自然的开发利用逐渐打破自然生态系统原有的对称状态、使其结构破缺。破缺就是减弱或消除原生态系统不符合人类要求的结构并强化人类需要的结构,最终形成为人类需求服务的功能单元,如农田、牧场、种植园、城市、污水处理厂和垃圾处理厂等。近一百多年来,随着城市化增强,这些在结构上破缺的单元相互耦合,自组织形成更大尺度的以城市为中心的新系统——人类-自然耦合系统(Coupled human and natural systems, CHANS).新形成的CHANS极大地提高了生产力,加速了能量流动和物质循环,加强了从城市到地区和国家、甚至全球多重尺度的调控,使得世界上一半以上的人口终于不再为食物、居住问题担忧并且拥有超出其基本生存所需的物质享受。在CHANS中,两个最基本的生态过程——生产和分解与自然生态系统大致相同,但不同点是:自然生态系统中个体和种群构成的生产者和分解者在CHANS中上升到了人类组织的具有多组分复杂结构的功能单元——“生态器”(如农田和污水处理厂),它们拥有比自然生态系统更高效的单一目标的功能。目前,CHANS的结构还刚刚形成,功能还不完善,甚至存在着很大问题。一方面,生产的不足使世界上约12亿人口还处在饥饿贫困状态。另一方面,分解不足甚至比生产不足更加严重,因为分解生态器的规模远小于生产生态器,造成废弃物积累,使生命支持系统(如水体、土壤、大气等)受到污染。
     本文选择CHANS的生产器、分解器为对象,研究如何强化其效率进而强化整个CHANS功能;具体研究以中国作为主要研究区域,同时辅以国际上其他国家的数据作为参照;选择退化问题日益突出但以往人们关注不足的草地为案例研究如何通过人工草地生产器加强其生产功能;以新兴的人工湿地作为分解器的案例,并与污水处理厂作参照对比探讨强化CHANS的分解效率。本研究通过实验测定和文献数据收集相结合编译了数据集。利用物质平衡法、生命周期法、情景分析法研究了如何强化两类生态器功能以满足人类的需求。内容包括:中国人民对草食畜产品需求的快速增长进而造成的对草料的巨大需求;天然草地和人工草地生产现状及强化潜力分析;中国的污水产量、污水处理厂及人工湿地的污水去除效率的优化;通过人工湿地利用废氮(N)生产生物质能源的潜力。本文还评估了人工草地和人工湿地生态系统碳(c)、N流,以及C、N耦合下系统的功能强化,探讨了通过人工构建生态器功能单元从而提高CHANS生产力的途径,并建立与生产力相平衡的分解器。本文主要结论有以下6点:
     1)在过去的60年里中国的总人口增长了1.4倍。随着人口和人均消费水平的提高,人均牛羊肉、奶类的消费水平也提高了3倍和6倍。其中城镇人口增长了10倍,城镇人均牛羊肉、奶类的消费增长了3-36倍。按照中国人口、城镇化以及经济发展速度预计,未来草食畜产品的消费需求还将迅速增加。畜产品需求的增长对草料需求量已远超过天然草地产草量,使过去50年已因过度利用而退化的草地的产草量(平均911kg ha-1,低值122kg ha-1)进一步降低。即便考虑到通过恢复天然草地,并利用冬、夏闲田(1560万ha,可产草23400万吨)和秸秆(29.1万吨),到2050年全国草料缺口仍然高达1595.5Tg。
     2)人工草地是缓解草料缺口的重要途径。中国各区人工草地产草量平均为17275kgha-。,最高可达45000kg ha-1,是天然草地的5-32倍。但是,中国目前人工草地面积仅占全国草地总面积的2%,如果在2030年达到国家规划目标,即人工草地面积占天然草地面积10%(40M ha),同时饲草转化率达到世界平均水平,则仅再需使用27%的全国草地面积用做天然牧场,在考虑未来对畜产品高需求的情况下全国草料的供。需总量也能够达到平衡。这样一来,其余63%面积的位于生态脆弱地带的草地可基本以保护为主。不仅保护了生物多样性,而且还可以减少沙尘暴的发生,改善区域乃至全球环境。
     3)虽然人工草地的生物多样性低于天然草地,并且人工草地施肥还会引起水体污染,但是人工草地还可以提供更多的生态系统服务。我们计算出,中国人工草地每年可提供净生态系统服务3327亿元。而优化利用后全国除人工草地以外的天然草地每年可提供生态系统服务8322.79亿元。综合地,中国全部草地的生态系统服务功能价值将高达每年1.16万亿元,略低于全国森林的生态系统服务功能价值(每年1.40万亿元)。
     4)作为CNANS中主要的分解生态器,中国的污水处理厂的数量由80年代的266座发展到2008年的937座,污水日处理能力增长了5倍多,污水处理率由80年代的仅10-3%提高到2008年的57.4%。但是仍低于发达国家水平(90%以上),特别是对N、P的去除远未达到使地表水健康的标准。其中很重要的原因就是污水处理厂的建造和运行费用高:每去除1kg N建造花费37.5-135元,运行管理花费13.8-37.5元,这在中国目前的经济状况下不可行。
     5)人工湿地作为新的CHANS的污水处理器,较污水处理厂有明显优势。对于铵态氮(NH4+-N)、总氮(TN)、总磷(TP)、化学需氧量(COD)、生物需氧量(BOD5)中国的人工湿地平均去除率分别为59.8%,44.3%,62.1%,73.4%和81.8%。此外,人工湿地的温室气体(GHG)的净排放量是每处理立方米污水排放18.5g C02当量,仅为污水处理厂的0.1%。去除1kgN人工湿地的建造运行费用13.6-70元,仅是污水处理厂的1/3。1/2,运行费用0.5-5元,仅是污水处理厂的1/7-1/27。然而,人工湿地也有占地面积大的劣势:去除同样质量的污水,人工湿地占地面积是污水处理厂的5-10倍。人工湿地的污水去除率依据流型不同而有差异:对于NH4+-N、TN、TP、COD,垂直流人工湿地处理效果高于表面流、水平流人工湿地;对于BOD5,水平流的处理效果高于垂直流和表面流人工湿地。复合垂直潜流人工湿地,主要是基于垂直潜流和水平潜流的结构,其结合了垂直潜流型里促进了硝化作用的需氧过程以及水平潜流中提高反硝化厌氧过程这两者的优势,是所有类型中效率最高的。
     6)人工湿地在处理污水之外还可提供其他生态系统服务。包括C02固定、释放02、水量调节、生物多样性保护、提供洁净水源、美学、科普、教育、娱乐及生态旅游价值等。此外,通过人工湿地还可利用废N生产生物能源,从而再加强其生态系统服务。根据物质平衡法和生命周期法计算,人工湿地生物能源生产系统的能量产出、净能量平衡(NEB)是分别是182.3,105.4GJ ha-1year-1。人工湿地单位面积生物能源能量的产出是目前世界上4个主要的生物能源生产体系系统(玉米、大豆、柳枝稷、LIHD草地)的2-8倍。计算以上各项服务,本文以浙江省为例,得出人工湿地净生态系统服务价值为7840667.3元ha。yr-1,高于本地区森林的生态系统服务价值(59178元ha-1yr-1)
     综上,在CHANS中,利用人工草地使中国草地生产功能提高1倍;利用人工湿地处理污水比起传统的污水处理厂的NH4+-N去除率提高1倍,TN和TP提高了50%左右。这意味着生产器和分解器的强化可强化CHANS的生态功能。生产器和分解器强化功能的同时,还可改善生命支持组分的状态:63%的天然草地可得到恢复保护,90%以上的废水得到彻底治理,从而提高整个CHANS的生物多样性、美学、教育、娱乐价值。本研究通过人工湿地和人工草地提高生产器和分解器功能的范式还可以推广至其他生态器,直至使所有生态器的功能都得到强化从而优化整个CHANS的结构和功能,达到经济-生态-社会三赢的可持续发展模式。
With the development from agricultural civilization to industrial civilization, human activity has changed natural ecosystems, resulting in breaking original structural features, forming new fracturing production units or decomposition units, such as cropland, rangeland, plantation, city, wastewater treatment plant (WTP) and so on. In recent one hundred years, with the development of urbanization, these fracturing units coupled together to build a new coupled system:coupled human and natural systems (CHANS). In CHANS, productivity is improved, energy flow and material circulation were accelerated, multi-scale regulation from urban to regional and even global scale was strengthen. More than half of the population in the world finally have no longer concerns for food, housing problems and have the basic need to survive beyond its material comforts. In CHANS, the basic processes of production and decomposition are roughly the same with those in the natural ecosystems. Nevertheless, the producers and decomposers have changed from individual species in natural ecosystems to the complex structure with multiple function units--"organeco" in CHANS. The organeco has higher productivity than its counterparts in the natural ecosystem and has more enhanced efficient features. Currently, the structure of CHANS has just been formed; function process is not perfect, even existing big problems. On one hand, the function process of production is not enough. About12million world's people are still in hunger poverty. On the other hand, the number of decomposition organeco is far less than the number of production organeco, resulting in the accumulation of waste, making life-support systems (such as water, soil, atmosphere, etc.) contamination.
     In this paper, we chose production organeco and decomposition organeco as the object. We studied how to strengthen their efficiency and thus strengthen the function of the CHANS. We took China as a major research object, supplemented by data from other countries in the world as a reference. We selected grassland since its degradation had become increasingly prominent, but people in the past had insufficient attention to how to use artificial grassland to enhance its production function. Also we chose constructed wetland (CW) as a case of decomposition organeco, and with the wastewater treatment plant as a comparison reference, to study enhancing decomposition efficiency in CHANS. We compiled data-sets by both experimental data and literature data. We use material balance method, life cycle analysis, scenario analysis together to study how these two types of organeco to meet human needs. The research's content include:people's increasing livestock need for grass demanding, the current and future potential productivity of natural grassland and artificial grassland, volume of wastewater discharge in China, treatment efficient of WTP and CW, using waste nitrogen (N) for biofuel production via CW. This paper also discusses carbon (C), N flow, and C, N coupled function of the artificial grassland and CW to improve productivity in CHANS. The main conclusions are as following:
     1) China's population has increased1.4-fold in the past60years. Per capita consumption of beef, mutton, and milk has increased3-fold,6-fold, respectively, with the increasing development of population and consumption capability. Urbanization has led to population has increased10-fold in urban area. Per capita consumption of beef, mutton, and milk in urban has increased3-36fold. If China's population, urbanization and economic development continue to increase according to the current speed, livestock product will be needed more. The increasing livestock demand had led to lead to grassland degradation, desertification. Thus, grass supply (averagely911kg ha-1, lowest122kg ha-1) decreases, cannot satisfy total grass supply. Restoring natural grassland and utilizing available1560ha winter and summer fallow fields (could provide0.234billion tons grass), plus available0.291million tons of straw, there still exist1595.5Tg grass supply gap according to our analysis in2050.
     2) Artificial grassland is an important way to ease the grass gap between grass supply and demanding. Aboveground grass production in artificial grassland was averagely17275kg ha-1(highest45000kg ha-1). This number is5-32fold that of the grass production in natural grassland in China. However, the area of artificial grassland occupies only2%of China's total grassland area. If artificial grassland area will cover10%of China's total grassland (40M ha), together with forage conversion rate improving to average world level, and there only need27%of China's total grassland area for natural grassland, the balance between total grass supply and total grass demanding would be reached. Thus, the remaining63%of the grassland area, located in ecologically fragile zones will be basically to be protected, which can reduce the incidence of dust storms and improve regional and global environment.
     3) Biodiversity in artificial grassland is lower than that of natural grassland. Fertilizer application causes water pollution problems in artificial grassland. However, artificial grassland can supply other regulation and supporting services, such as carbon sequestration and soil fertility retention. We calculated that artificial grassland can supply net ecosystem service as high as332.7billion yuan. If63%of grassland is put under protection and restoration, those natural grassland would provide ecosystem service832.2billion yuan. Together, China's total grassland would provide1160billion yuan ecosystem service, slightly lower than ecosystem service of forest in China (1406billion yuan).
     4) As an important decomposition organeco in CHANS, the number of WTP has increased rapidly from266in1980s to937in2008. Wastewater treatment capability has increased more than5-fold. Wastewater treatment ratio has increased from10.3%in1980s to57.4%in2008, still lower than that in developed countries (90%). Treatment ratio for N and P can not reach the standard for surface water. Reasons are the construction and operation cost very high in China. The cost of removing1kg N was37.5to135yuan RMB, operating and maintenance costs are~0.5yuan to5.0yuan RMB removing per kg N for WTP in China.
     5) Recently a new wastewater treatment approach-CWs was introduced to China, as a new decomposition organeco in CHANS. The average removal rates of NH4+-N (ammonium nitrogen), TN (total nitrogen), TP (total phosphorus), COD (chemical oxygen demand), and BOD5(five day biochemical oxygen demand) are59.8%,44.3%,62.1%,73.4%, and81.8%, respectively. In addition, greenhouse gas (GHG) emission was18.5g CO2equivalent when CW treating per cubic wastewater, the number was only0.1%that of WTP. The cost of removing1kg N in a CW (13.6to70yuan RMB) was only one-third to one-half the cost of a WTP, operating and maintenance costs are~0.5yuan to5.0yuan RMB per kg N,1/7-1/27that of WTPs. Nevertheless, CWs also has disadvantages. CWs require5-10times larger land area than WTPs to remove same amount of waste N. CW treatment efficiency differs according to different hydraulic wetland types. As for NH4+-N、TN、TP、COD, vertical flow CWs are more efficient than horizontal flow and surface flow CWs. As for BOD5, horizontal flow CWs are more efficient than vertical flow and surface flow CWs. The newly developed integrated vertical flow CWs, based mainly on subsurface flow CWs, combine the advantages of vertical flow aerobic processes that stimulate nitrification with the subsurface flow anaerobic processes that promote denitrification. Thus, integrated vertical flow CWs are the most effective CW type.
     6) CWs can provide additional ecosystem service benefits, such as biomass production, carbon sequestration, oxygen release, reusable water supply, regional climate regulation, habitat conservation, educational and recreational usage. Moreover, biofuel production via CWs can strengthen ecosystem services. We use mass balance approach and life cycle analysis, showing the energy output, net energy balance of biomass energy yield of CWs at present reached182.3,105.4GJ ha-1. Energy output is2-8folds higher than the four current biofuel production systems (corn, soybean, switchgrass, LIHD grassland). In sum, taking Zhejiang Province as case, the total ecosystem services for CW are7840667.3yuan ha-1yr-1, much higher than forest ecosystem services (36130yuan ha-1yr-1) in this region.
     To sum up,using artificial grassland has improved one fold productivity, using CW can increaset the NH4+-N treatment ratio one fold higher, TN and TP treatment ratio50%higher, thus, reducing the ecological footprint in CHANS. Enhancing decomposition organeco and production organeco could improve the status of life support components.63%of natural grassland can be recovered under protection. More than90%of the wastewater treatment are thoroughly be treated. Biodiversity, amenity, educational value could be improved in total CHANS. The paradigm of using artificial grassland and CW for the improvement of ecosystem function can be impleted in other organeco. Thus, all the organeco functions in CHANS can be improved in a economic-ecological-social sustainable mode.
引文
1.曹仲华,魏军,杨富裕,曹社会。2007。人工草地在西藏的地位与发展前景。草业与畜牧,4:49-52。
    2.曹晔,王钟建。1999。中国草地资源可持续利用问题研究。中国农村经济,7:19-22。
    3.常杰,葛滢。统合生物学纲要。北京:高等教育出版社,2005。
    4.常杰,葛滢。生态学。杭州:高等教育出版社,2010。
    5.陈一鹗,刘康。1990。渭北旱塬紫花苜蓿的蒸腾强度与水量平衡研究。水土保持通报,10(6):108-112。
    6.陈中颖,刘爱萍,刘永,许振成。2009。中国城镇污水处理厂运行状况调查分析。环境污染与防治,31(9):99-102。
    7.陈槐,周舜,吴宁,等,2006。湿地甲烷的产生,氧化及排放通量研究进展。应用于环境生物学报,12(5):1-8。
    8.陈佐忠,汪诗平。2002。中国典型草原生态系统。北京:科学出版社。
    9.陈仲新,张新时。2000。中国生态系统效益的价值。科学通报,45(1):17-22。
    10.成水平,况琦军,夏宜峥。1997。香蒲、灯心草人工湿地的研究:1、冶化污水的效果。湖泊科学,9(4):351-358。
    11. Chapin, FS, Matson PA, Mooney HA.陆地生态系统生态学原理.李博,赵斌,彭容豪,译。北京:高等教育出版社,2005。
    12.戴全裕,蔡述伟。1998。水芹菜对黄金废水的净化与富集作用研究。应用生态学报,9(1):107-109。
    13.樊江文,钟华平,陈立波,张文彦。2007。我国北方干旱和半干旱区草地退化的若干科学问题。中国草地学报,29(5):95-101。
    14.戈峰。现代生态学。北京:科学出版社,2002。
    15.高敬。2006。我国人工湿地研究文献统计分析。农业图书情报学刊,18:125-127。
    16.葛滢,王晓玥,常杰。1999。不同程度富营养化水中植物净化能力比较研究.环境科学学报,19(6):690-692。
    17.葛滢,常杰,王晓玥。2000。两种程度富营养化水中不同植物生理生态特性与净化能力的关系.生态学报,20(6):1051-1055。
    18.关保华,葛滢,常杰。2002。富营养化水体中植物的元素吸收与净化能力的关系。 浙江大学学报(理学版),29(2):190-197。
    19.郭继敏,马江飞,李海,王高峰,贪静,娄水清。2007。退化蚁包草地变为人工草地的试验分析。新疆农业科学,44:209-211。
    20.郭克贞,余国英。1998。内蒙古草地生产力现状与可持续开发利用对策,2-3:58-62。
    21.韩清芳,贾志宽,王俊鹏。2005。国内外苜蓿产业发展现状与前景分析。草业科学,22(3):22-25。
    22.何峰,李向林,万里强,白静仁。2006。四川低山丘陵地区多年生冷季型优良牧草引种试验。中国草地学报,28(6):106-109。
    23.胡自治。草原分类学概论。北京:中国农业出版社,1997。
    24.胡自治。2000。人工草地在我国21世纪草业发展和环境治理中的重要意义。草原与草坪,88:12-15。
    25.胡筱敏,1996。水网地区绿化好品种-芦竹。江苏绿化,1:31-31。
    26.洪绂曾,王元素。2006。中国南方人工草地畜牧业回顾与思考。中国草地学报,28(2):71-75。
    27.黄时达,杨有仪,冷冰。1995。人工湿地植物处理污水的试验研究。四川环境,14(3):5-7。
    28.黄国宏,李玉祥,陈冠雄。2001。环境因素对芦苇湿地CH4排放的影响。环境科学,22(1):1-5。
    29.贾宇,徐炳成,王晓凌,孙国均,徐进章,李凤民。2007。半干旱黄土丘陵区垄沟集雨对紫花苜蓿人工草地土壤水分和产草量的影响。植物生态学报,31(3):470-475。
    30.贾宇,徐炳成,李凤民,王晓凌。2007半干旱黄土丘陵区苜蓿人工草地土壤磷素有效性及对生产力的响应。生态学报,27(1):42-47
    31.蒋跃平,葛滢,岳春雷,戴洁琼,王华胜,唐宇力,常杰。2005。轻度富营养化水人工湿地处理系统中植物的特性。浙江大学学报(理学版),32(3):309-313。
    32.蒋跃平,葛滢,岳春雷,常杰。2004。人工湿地植物对观赏水中氮磷去除的贡献.生态学报,24(8):1718-1723。
    33.靖元孝,杨丹菁。2002。风车草对生活污水的净化效果及其在人工湿地的应用。应用与环境生物学报,8(6):614-617。
    34.赖力,黄贤金,王辉,董元华,肖思思。2009。中国化肥施用的环境成本估算。土壤学报,46(1):63-69。
    35.李细元,陈国良。1996。人工草地土壤水系统动力学模型与过耗恢复预测。水土保持研究,3(1):166-178。
    36.李淼,宋孝玉,沈冰,李怀有,孟彩霞。2006。黄土沟壑区不同植被对产流产沙的影响。西北农林科技大学学报(自然科学版),34(1):117-120。
    37.李裕元,邵明安,郑纪勇,李秋芳。2007。黄土高原北部草地的恢复与重建对土壤有机碳的影响。生态学报,27(6):2279-2287。
    38.李博。1997。我国草地资源现况、问题及对策。中国科学院院刊,1:49。51。
    39.李博。生态学。北京:高等教育出版社,1999。
    40.廖新俤。2002。香根草和风车草人工湿地对猪场废水氮磷处理效果的研究。应用生态学报。13(6):719-722。
    41.刘安钦,王艳,许彬,杨武,葛滢,吴旭,彭长辉,常杰。2010。中国温室农业生态系统服务价值评估——华北区和长江中下游区案例分析。生态学报,30(20):5677-5686。
    42.刘安钦。2010。人工生态系统的生态系统服务研究(硕士学位论文,导师:常杰、葛滢)。
    43.刘红,刘学燕,欧阳威,代明利,刘培斌。2004。人工湿地植物系统优化管理研究。农业环境科学学报,23(5):1003-1008。
    44.刘黎明,张凤荣,赵英伟。2002。2000-2050年中国草地资源综合生产能力预测分析。草业学报,11:76-83。
    45.刘钟龄,王炜,郝敦元,梁存柱。2002。内蒙古草原退化与恢复演替机理的探讨。干旱区资源与环境,16(1):84-91
    46.刘丽娜,赵建刚。2006。人工湿地技术及其应用概述。生物学教学,31:9-11。
    47.刘振乾,吕宪国,2001。三江平原沼泽湿地污水处理的实地模拟研究。环境科学学报,21(2):157-161。
    48.卢宗凡,张兴昌,苏敏,林和平。1995。黄土高原人工草地的土壤水分动态及水土保持效益研究。干旱区资源与环境,9(1):40-49。
    49. Mainzer K.对称与复杂——非线性科学的魂与美(影印版)。科学出版社,2007。
    50.牛书丽,蒋高明。2004。人工草地在退化草地恢复中的作用及其研究现状。应用生态学报,15(9):1662-1666。
    51.牛晓音。2001。人工湿地生态工程净化原理及应用研究(硕士学位论文,导师:常杰、葛滢)。
    52.欧阳克蕙,王堃。2007。南方丘陵地区人工草地和旱作农田能量物质利用率。草地学报,15(1):35-38。
    53.潘成忠,上官周平,刘国彬。2006。黄土丘陵沟壑区退耕草地土壤质量演变.生态学报,26(3):690-696。
    54.彭建,王仰麟,景娟,宋治清,韩荡。2005。城市景观功能的区域协调规划——以深圳市为例。生态学报,25(7):1714-1719。
    55.覃志洪,吴顺康。2005。川I西南山原地区高产人工草地建植技术研究。草原与草坪,65-68。
    56.任继周。2002。藏粮于草施行草地农业系统。草业学报,11(1):1-3
    57.任继周,林惠龙,侯向阳。2007。发展草地农业确保中国食物安全。中国农业科学,40(3):614-621。
    58. Samuelson PA and WD Nordhaus(萧琛等译)。经济学(第十六版)。北京:华夏出版社,1999。
    59.水质监测和废水监测分析方法。国家环境保护总局主编。北京:中国环境科学出版社,2009。
    60.石雷,王宝贞,曹向东,王进,刘正应,吕炳南,2005。沙田人工湿地植物生长特性及除污能力的研究。农业环境科学学报,24(1):98-103。
    61. Smith A.国富论。郭大力,王亚南译。上海:上海三联书店,2009。
    62.唐龙飞,黄秀声,冯德庆,郑仲登。山地人工草场的建立与山羊载畜量的初步估算。2003。福建农业科技,49-51。
    63.田刚.蔡博峰。2004。北京地区人工景观生态服务价值估算。环境科学,25(5):25-31。
    64.王德利,杨利民。草地生态与管理利用。化学工业出版社。2004。
    65.王礼先.2000。植被生态建设与生态用水一以西北地区为例。水土保持研究,7(3):5-7。
    66.魏永胜,梁宗锁,山仑。2004。草地退化的水分因素。草业科学,21(10):13-18。
    67.万本太,1999。中国水资源的问题和对策。生态与自然保护,7:30-32。
    68.吴振斌,梁威,邱东茹。2002。复合垂直流构建湿地基质酶活性与污水净化效果。生态学报,22(7):1012-1017。
    69.吴振斌,徐光来,周培疆,贺锋,成水平,付贵萍,马剑敏,2004。复合垂直流人工湿地对不同氮污水的净化。环境科学与技术,27:30-33。
    70.吴振斌等。 复合垂直流人工湿地。北京:科学出版社,2008。
    71.乌力吉。中国重点牧区草地资源及畜草平衡的分析研究。1996。内蒙古畜牧科学,3:17-20。
    72.王雁,苏雪痕,彭镇华。2002。植物耐阴性研究进展。林业科学研究,15(3):349-355。
    73.王涵,于卫平,何连,赵萍。2005。宁夏地区种植苜蓿、青贮玉米的效益分析。草业科学,22(2):52-54。
    74.萧运峰,王锐,1995。五节芒生态-生物学特性的研究。四川草原,1:25-29。
    75.徐中民,张志强,程国栋。2003。生态经济学理论方法与应用。郑州:黄河水利出版社。
    76.徐丽花,周琪。2002。不同填料人工湿地处理系统的净化能力研究。上海环境科学,21(10):603-605。
    77.徐俏,何孟常,杨志峰,鱼京善,毛显强。2003。广州市生态系统服务功能价值评估。北京师范大学学报,39(2):29-34。
    78.谢高地,张钇锂,鲁春霞等。2001。中国自然草地生态系统服务价值。自然资源学报,16(1):47-53。
    79.杨汝荣。南方红壤丘陵地区草地资源开发潜力分析。2000。江西农业大学学报,22(2): 192-198。
    80.阳承胜等,2002。重金属在宽叶香蒲人工湿地系统中的分布与积累。水处理技术,28(2): 101-104。
    81.杨志焕,葛滢,沈琪,蒋跃平,唐宇力,王华胜,常杰。2005。亚热带人工湿地中配置植物与迁入植物多样性的季节变化。生物多样性,13(6):527-534。
    82.杨志新,郑大玮,文化。2005。北京郊区农田生态系统服务功能价值的评估研究。 自然资源学报,20(4):564-571。
    83.叶志鸿,1992。宽叶香蒲净化塘系统净化铅/锌矿废水效应的研究。应用生态学报.3(2): 190-194。
    84.岳春雷,常杰,葛滢,俞建德,朱荫湄。2003。利用复合垂直流人工湿地处理生活污水。中国给水排水,19(7):84-85。
    85.张彩霞,谢高地,杨勤科,李士美。2008。人类活动对生态系统服务价值的影响一以纸坊沟流域为例。资源科学,30(12):1910-1915。
    86.张甲耀。1999。潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究.环境科学学报,19(3):323-327。
    87.张文婷,来航线,王延平,张海,杨婷,吕家珑。2008。黄土高原不同植被坡地土壤微生物区系特征。生态学报,28(9):4228-4234。
    88.张学洲,兰吉勇。2007。山地草原带旱作人工草地建植技术研究。草食家畜,12(4):42-44。
    89.张立中,辛国昌。2008。澳大利亚、新西兰草原畜牧业的发展经验。世界农业,4:22-24。
    90.张明华。1989世界草地资源开发利用模式。国外畜牧学:草原与牧草,3:1-4。
    91.张志强,徐中民,程国栋。2001。生态系统服务与自然资本价值评估。生态学报,21(11):1918-1926。
    92.张兴昌,邵明安,黄占斌,卢宗凡。2000。不同植被对土壤侵蚀和氮素流失的影响.生态学报,20(6):1038-1044。
    93.张鸿,吴振斌。1999。两种人工湿地中氮磷净化率与细菌分布关系的初步研究。华中师范大学学报:自然科学版,33(4):575-578。
    94.张光斗。1999。面临21世纪的中国水资源问题。地球科学进展,14(1):16-17。
    95.赵建刚,杨琼,陈章和,黄正光。2003。几种湿地植物根系生物量研究。中国环境科学,23(3):290-294。
    96.赵同谦,欧阳志云,贾良清,郑华。2004。中国草地生态系统服务功能间接价值评价。生态学报,24(6):1101-1110。
    97.赵同谦,欧阳志云,王效科,苗鸿,魏彦昌。2004。中国地表水生态系统服务功能及其生态经济价值评价.自然资源学报,18(4):443-452。
    98。赵同谦,欧阳志云,郑华,王效科,苗鸿。2004。中国森林生态系统服务功能及其价值评价。自然资源学报,19(4):480-491。
    99.郑华,欧阳志云,赵同谦,李振新,徐卫华。 2003。人类活动对生态系统服务功能的影响。自然资源学报,]8(1):118-126。
    100.赵士洞,赖鹏飞(译)。2005。生态系统与人类福祉-荒漠化综合报告。
    101.中国草地资源。中华人民共和国农业部畜牧兽医司和全国畜牧兽医总站主编。北京:中国科学技术出版社,1996。
    102.中华人民共和国农业部综合计划司。全国草地生态建设规划(2000-2050年)。北京:中国农业出版社,2000。
    103.中国物价年鉴编辑部。中国物价年鉴。北京:中国市场出版社,2005,423-428。
    104. Alberti M, Marzluff J, Shulenberger E, Bradley G, Ryan C, Zumbrunnen C.2003. Integrated human into ecology:opportunities and challenges for urban ecology. Bioscience,53:1169-1179.
    105. Allen TFH and Starr TB.1982. Hierarchy:Perspectives for Ecological Complexity. University of Chicago Press, Chicago,328 pp.
    106. Arrow KG, Dasgupta P and Maler KG.2003. Evaluating projects and assessing sustainable development in imperfect economies. Environment Resource Economics,26, 647-685.
    107. Bachand PAM, Horne AJ.2000. Denitrification in constructed free-water surface wetlands:I. Very high nitrate removal rates in a macrocosm study. Ecological Engineering,14:9-15.
    108. Bann C.2002. An overview of valuation techniques:advantages and limitations. Asean Biodiversity,2,8-16.
    109. Bian JG.2006. The progress of the technique using the constructed wetlands to purify the water in China. Jounal of Fujian Science and Technology,33:175-179 (In Chinese).
    110. Borjesson P, Berndes G.2006. The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenerg 30:428-438.
    111. Brix H.1994. Use of constructed wetlands in water pollution control:historical development, present status and future perspective. Water Science and Technology, 30(8):209-223.
    112. Carson RM, Bergstrom JC.2003. A review of ecosystem valuation techniques. Faculty Series,03-05.
    113. Cao HQ, Ge Y, Liu D, Cao QJ, Chang SX, Chang J, Song XL, Lin X.2011. Nitrate/Ammonium ratios affect ryegrass growth and nitrogen accumulation in a hydroponic system. Journal of Plant Nutrition,34:206-216
    114. Chang J, Liu D, Cao HQ, Chang SX., Wang XY, Huang CC, Ge Y.2010. NO3-/NH4+ ratios affect the growth and N removal ability of Acorus calamus and Iris pseudacorus in a hydroponic system. Aquatic Botany,93:216-220.
    115. Chang J, Yue CL, Ge Y, Zhu YM.2004. Treatment of polluted creek water by multifunctional constructed wetland in China's subtropical. Fresenius Environmental Bulletin,13:545-549.
    116. Chang J, Zhang XH, Perfler R, Xu QS, Niu XY, Ge Y.2007. Effect of hydraulic loading rate on the removal efficiency in a constructed wetland in subtropical China. Fresenius Environmental Bulletin,16:1082-1086.
    117. Chee YE.2004. An ecological perspective on the valuation of ecosystem services. Biological Conservation,120,549-565.
    118. Chen XQ, Ding X.2006. Discussion on constructed wetlands for treating the river-net pollution by preserved vegetable production. Sichuan Environment,25:64-66, 67 (In Chinese).
    119. Chapin FS, Matson PA, McCarthy J, Corell WR, Christensen L.2003. Science and technology for sustainable development special feature:illustrating the coupled human-environment system for vulnerability analysis:three case studies. Proceedings of the National Academy of Sciences of the United States of America,100:8080-8085.
    120. Ciria MP, Solano ML, Soriano P.2005. Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosystems Engineering,92,535-544.
    121. Coleman J.2001. Treatment of domestic wastewater by three plant species in constructed wetlands. Water, Air and Soil Pollution,128:283-295.
    122. Cooper PF and Green MB.1995. Reed bed treatment systems for sewage treatment in the United Kingdom:the first 10 years'experience. Water Science & Technology,32: 317-327.
    123. Corbitt RA, Bowen PT.1994. Constructed wetlands for wastewater treatment. In: Kent, D.M.(Eds.), Applied Wetlands Science and Technology. Lewis Publishers, BocaRaton, FL, USA, pp.221-241.
    124. Costanza R, d'Arge R, Groot R, Farber S, Grasso M, Harmon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M.1997. The value of the world's ecosystem services and natural capital. Nature,387,253-260.
    125. Cumming G, Cumming D, Redman C.2006. Scale mismatches in socialecological systems:causes, consequences, and solutions. Ecological society,11:14.
    126. Czepiel P, Crill P, Harriss R.1995. Nitrous oxide emissions from municipal wastewater treatment. Environmental Science & Technology,29:2352-2356.
    127. Daily GC.1997. Nature's services:societal dependence on natural systems. Washington DC:Island Press.
    128. Tilley DR, Ahmed M, Son JH, Badrinarayanan H.2003. Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecological Engineering,21:153-163.
    129. Deng FT, Sun PS, Li Q.2006. Constructed wetland treating sewage river. Environmental Engineering 24:90-92 (In Chinese).
    130. Ditomaso JM, Reaser JK, Dionigi CP, Doering OC, Chilton E, Schardt JD, Barney JN. 2010. Biofuel vs bioinvasion:seeding policy priorities. Environmental Science & Technology,44:6906-6910.
    131. Ding Y, Han ZY, Wu JY.2006. Seasonal performances of three vertical-flow constructed wetlands rifled with different packing materials for pigger wastewater treatment. Acta Science Circumstance 26:1093-1099 (In Chinese).
    132. El-Fadel M, Massoud M.2001. Methan emissions from wastewater management. Environmental pollution,114:177-185.
    133. Entwisle, B. and Stern, P. (eds).2005. Population, Land Use, and Environment: Research Directions. The National Academies Press, Washington, DC,344 pp.
    134. Fan RL, Su WC, Zhang ZJ.2006. Treatment technology and its development trend for urban domestic water. Guizhou Sciecve 24:56-59 (In Chinese).
    135. Farber SC, Costanza R, Wilson MA.2002. Economic and ecological concepts for valuing ecosystem services, Ecological Economics,41(3):375-392.
    136. Fey A, Benckiser G, Ottow JCG.1999. Emissions of nitrous oxide from a constructed wetland using a ground filter and macrophytes in waste-water purification of a dairy farm. Biology and Fertility of Soils,29:354-359.
    137. Fischer J, Brosi B, Daily GC, Ehrlich PR, Goldman R, Goldstein J, Lindenmayer DB, Manning AD, Mooney HA, Pejchar L, Ranganathan J, Tallis H.2008. Should agricultural policies encourage land sparing or wildlife-friendly farming? Frontiers in Ecology and the Environment,6:380-385.
    138. Fiore AM, West JJ, Horowitz LW, Naik V, and Schwarzkop MD.2008. Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. Journal of Geophysical Research,113:1-16.
    139. Fisher B, Turner RK, Morling P.2009. Defining and classifying ecosystem services for decision making. Ecological Economics,69 (3):643-653.
    140. Foley JA, DeFries R, Asner GP, Barford C, Gordon B, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC.2005. Global consequences of land use. Science, 309,570-574.
    141. Folke C, Jansson A, Larsson J, Costanza R.1997. Ecosystem appropriation by cities. Ambio,26,161-112.
    142. French NR(ed). Perspectives on grassland ecology.1979. Springer-Verlag.
    143. Gao B, Ge Y, Liu QX, Yang ZH, Zhang J, Chang J, Jiang YP, Min H.2006. Purifying Performance of constructed wetland treating light eutrophic water in an ornamental fishpond. Fresenius Environmental Bulletin,15:1563-1567.
    144. Gao SQ.2000. Prospects of using constructed wetland to treat aquaculture wastewater. Changchun Fishery,2:21-22 (In Chinese).
    145. Ge Y, Li SP, Niu XY, Yue CL, Xu QS, Chang J.2007. Sustainable growth and nutrient uptake of plants in a subtropical constructed wetland in southeast China. Fresenius Environmental Bulletin,16:1023-1029.
    146. Ge Y, Zhang CB, Jiang YP, Yue CL, Jiang QS, Min H, Fan H, Zeng Q, Chang J.2011. Soil microbial abundances and enzyme activities in different rhizospheres in an integrated vertical flow constructed wetland. Clean-Soil, Air, Water,39 (3):206-211.
    147. Gleick P.2003. Global freshwater resources:softpath solutions for the 21st Century. Science,302:1524-1528.
    148. Gordon L, Steffen W, Jonsson B, Folke C, Falkenmark M, Johannessen A.2005. Human modification of global water vapor flows from the land surface. Proceedings of the National Academy of Sciences of the United States of America,102,7612-7617.
    149. Greenway M.1997. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water Science & Technology,35(5): 135-142.
    150. Gren IM, Groth KH, Sylven.1995. Economic values of Danube floodplain. Jounal of Environmental Management,45 (4):333-345.
    151. Grimm NB, Foster D, Groffman P, Grove GM, Hopkinson CS.2008. The changing landscape:ecosystem responses to urbanization and pollution across climatic and societal gradients. Frontiers in Ecology and the Environment,6:264-272.
    152. Grosse W. Consolidated report-project in INCO-DC-Biotechnology-of the 4th framework programme of European commission. Brussels,1999.
    153. Gu BJ, Chang J, Ge Y, Ge HL, Yuan C, Peng CH, Jiang H.2009. Anthropogenic Modification of the NitrogenCycles within the Greater Hangzhou Area, China. Ecological Applications,19:974-988.
    154. Gui P, Xu, K, Mizuochi M, Inamori R, Tai P, Sun T, Inamori Y.2000. The emissions of greenhouse gases from constructed wetland for wastewater treatment. In:IWA Conferences 2000:Seventh International Conference on Wetland Systems for Water Pollution Control. November 11-16th. IWA Publishing, Lake Buena Vista, Florida, USA
    155. Gunderson, L.H. and Holling, C.S. (eds).2001. Panarchy:Understanding Transformation in Human and Natural Systems. Island Press, Washington, D.C.,508 pp.
    156. Guo YJ, Zhang Y.2006. Shanghai's first constructed wetlands technical processing 30 tons of sewage. China Constuction,9:54 (In Chinese).
    157. Haberl R, Perfler R, and Mayer H.1995. Constructed wetlands in Europe. Water Science & Technology,32:305-315.
    158. Hammer DA, Bastian RX.1989. Wetlands ecosystems:Natural water purifiers. In: Hammer D.A. (ed). Constructed wetlands for wastewater treatment:municipal, industrial, and agricultural. Chelsea, MI:Lewis Publishers,5-19.
    159. Hasselknippe H, Roine K.2006. Carbon 2006. London:Point Carbon Pubilish,2006: 1-7.
    160. Heath ME, Metealfe DS, Barnes RF. Forages:The Science of Grassland Agriculture. Third edition Iowa:The Iowa State University Press,1974,3-4.
    161. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D.2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences of the United States of America,10,11206-11210.
    162. Holling CS.1994. An ecologist's view of the Malthusian conflict. In:Population, Economic Development, and the Environment. Lindahl-Kiessling, K. and Landberg, H. (eds). Oxford University Press, Oxford, United Kingdom pp.79-103.
    163. (IPCC) Intergovernmental Panel on Climate Change:Synthesis Report. Cambridge University Press, Cambridge, UK (2007).
    164. Janssen M and Ostrom E.2006. Special issue on resilience, vulnerability, and adaptation:a cross-cutting theme of the human dimensions of global environmental change program. Global Environmental Change,16:237-239.
    165. Coleman J, Hench K, Garbutt K, Sexstone A, Bissonnette G, Skousen J.2001. Treatment of domestic wastewater by three plant and species in constructed wetlands. Water, Air, and Soil Pollution,128:283-290.
    166. Johansson AE, Gustavsson AM, Oquist MG, Svensson BH.2004. Methane emissions from a constructed wetland treating wastewater-seasonal and spatial distribution and dependence on edaphic factors. Water Research,38,3960-3970.
    167. Kang ES, Song ZL, Pang WJ.2006. Method of treating waste water by means of artificial wetland in Haizhou open-pit mine. Jounal of Liaoning Technology University 25:310-312 (In Chinese). 168. Kadlec RH, Knight RL.1996. Treatment wetlands. LewisPublishers, Boca Raton, FL.
    169. Kalle S.1992. Willingness to pay for environmental goods in Norway:a contingent valuation study with real payment. Environmental Resource Economics,2:91-106.
    170. Kampschreur MJ, Temmink H, Kleerbezem R, Jetten MSM.2009. Nitrous oxide emission during wastewater treatment. Water Research,43:4093-4103.
    171. Kaseva ME.2004. Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater—a tropical case study. Water Research,38:681-687.
    172. Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV.2006. A distinct urban biogeochemistry. Trends in Ecology and Evolution,21 (4):192-199.
    173. Kickuth R.1977. Degradation and incorporation of nutrients from rural wastewaters by plant rhizosphere under limnic conditions. In:Proceedings of the International Conference on Utilization of Manure by Land Spreading. London, UK:Commission of the European Community.
    174. Kinzig AP.2001. Bridging disciplinary divides to address environmental and intellectual challenges. Ecosystems,4:709-715.
    175. Kivaisi AK.2001. The potential for constructed wetlands for wastewater treatment and reuse in developing countries:a review. Ecological Engineering,16:545-60.
    176. Kowalik P, Obarska-Pempkowiak H.1998. Polish experience with sewage purification in constructed wetlands. In:J. Vymazal, H. Brix, PF, Cooper, MB. Green and R. Haberl, Editors, Constructed Wetlands for Wastewater Treatment in Europe, SPB Academic Publishing bv, The Netherlands, Amsterdam, pp.217-226 Chap. Poland.
    177. Koottatep T, Polpraserl C.1997. Role of plant uptake on nitrogen removal in constructed wetlands located in tropics. Water Science and Technology,36(12):1-8.
    178. Kremen CJ, O'Niles MG, Dalton M, Daily GC, Ehrlich PR, Fay JP, Grewal D, Guillery RP.2000. Economic incentives for rainforest conservation across scales. Science,288:1828-1832,38.
    179. Li SR and Zheng XH.1993. Studies on wastewater land treatment and utilization systems in Tianjin Municipality. China's SEPA:water pollution control and wastewater reclamation as resources. Collection of research achievements on environmental protection in the 7th Five Years Plan period. Beijing, China:Science Press.
    180. Li ZT.2006. Resource utilization artificial reed swamp for paper-making wastewater treatment. Technology Water Treatment,32:76-77 (In Chinese).
    181. Li YZ.2000. Reasearch on application of water hyacinth constructed wetland in treating recycled pulp paper wastewater. Environmental Engineering,18:15-16 (In Chinese).
    182. Liikanen A, Huttunen JT, Karjalainen SM, Heikkinen K, Vaisanen TS, Nykanen H, Martikainen PJ.2006. Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters. Ecological Engineering,26,241-251.
    183. Liao XD, Luo SM.2002. Treatment effect of constructed wetlands on organic matter in wastewater from pig farm. Chinese Jounal of Applied Ecology,13:113-117 (In Chinese).
    184. Lim PE.2001. Oxygen demand, nitrogen and copper removal by free water-surface and subsurface-flow constructed wetlands under tropical conditions. Environment International,26:425-431.
    185. Liu CC, Xia HP, Jian SG.2006. Sewage treatment in constructed wetland of multiplayer plants configuration. Ecological Environment,15:229-233 (In Chinese).
    186. Liu JH, Guo HG, Piao Y.2005. The waste produced in exploting oil treated with artificial marsh. Jounal of Beihua University (Nature Science) 6:269-271 (In Chinese).
    187. Liu X, Chen HB.2003. Ecological wastewater treatment in town and local county. China Water Wastewater,19:32-35 (In Chinese).
    188. Liu D, Ge Y, Chang J, Peng CH, Gu BH, Chan GYS, Wu XF.2009. Constructed wetlands in China:recent developments and future challenges. Frontiers in Ecology and Environment,7(5):261-268.
    189. Liu JG, Linderman M, Ouyang ZY, An L, Yang J, Zhang H.2001. Ecological degradation in protected areas:the case of Wolong Nature Reserve for giant pandas. Science,292:98-101.
    190. Liu JG, Daily G, Ehrlich P, Luck G.2003. Effects of household dynamics on resource consumption and biodiversity. Nature,421,530-533.
    191. Liu, JG and Diamond J.2005. China's environment in a globalizing world. Nature,435: 1179-1186.
    192. Liu JG, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, Pell AN, Deadman P, Kratz T, Lubchenco J, Ostrom E, Ouyang ZY, Provencher W, Redman CL, Schneider SH, Taylor WW.2007. Complexity of Coupled Human and Natural Systems. Science, 317:1513-1516.
    193. Low B, Costanza R, Ostrom E, Wilson J, Simon CP.1999. Human ecosystem interactions:a dynamic integrated model. Ecological Economics,31:227-242.
    194. Lu SY, Zhang PY, Yu G.2003. Design of constructed wetlands in treating agricultural irrigation runoff. China Water Wastewater,19:75-77 (In Chinese).
    195. Lu Y, Wang WY, Diao WL.2005. Study on furfural waste water treatment in artificial marsh. Water Resource Hydropower Northeast,23:39-41 (In Chinese).
    196. Lund HG.2005. Accounting for the world's rangelands. Rangelands,29(1):3-10.
    197. Ma Y, Hu BQ, Sun ZX.2006. A summary of studies on mine wastewater treatment. Uran Minerty Metal,25:199-203 (In Chinese).
    198. Ma, ZH.2002. Doctoral thesis, China Institute of Atomic Energy.
    199. Maltais-Landry G, Maranger R, Brisson J.2009. Effect of artificial aeration and macrophyte species on nitrogen cycling and gas flux in constructed wetlands. Ecological Engineering,35:221-229.
    200. Maehlum T, Jenssen PD, Warner WS.1995. Cold-climate constructed wetlands. Water Science & Technology,32,95-101.
    201. Mannucci A, Munz G, Mori G, Lubello C.2010. Anaerobic treatment of vegetable tannery wastewaters:A review. Desalination,264:1-8.
    202. Marsh GP. Man and Nature. Belknap Press of Harvard University Press, Cambridge, MA,1864,472 pp.
    203. Mander U, Kuusemets V, Lohmus K, Mauring T, Teiter S, Augustin J.2003. Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland. Water Science & Technology,48:135-142.
    204. Martin JR.2001. Ecological characteristics of a natural wetland receiving secondary effluent. Water Science & Technology,44 (11-12):317-324.
    205. Mays PA, Edwards GS.2001. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecological Engineering,16(4):487-500.
    206. McPeak JG, Lee DR, Barrett CB.2006. Introduction:The dynamics of coupled human and natural systems. Environment and Development Economics,11:9-13.
    207. Mer J L, Roger P.2001. Production, oxidation, emission and consumption of methane by soils:A review. European Journal of Soil Biology,37:25-50.
    208. Millennium Ecosystem Assessment,2005. Ecosystems and Human Well-being:A framework for assessment. World Resources Institute. Washington D.C.:Island Press, 2005:50-60.
    209. Min Y, Gong W, Jin XG, Chang J, Gu BJ, Han Z, Ge Y.2011. NCNA:Integrated platform for constructing, visualizing, analyzing and sharing human-mediated nitrogen biogeochemical networks. Environmental Modelling & Software, in press (doi:10.1016/j.envsoft.2010.11.002)
    210. Naeem S, Chapin III FS, Costanza R.1999. Biodiversity and ecosystem functioning: Maintaining natural life support processes. Issues in Ecological,4:1-14.
    211. Nan ZB.2005. The grassland farming system and sustainable agricultural development in China. Grassland Science 51:15-19.
    212. Nairn RW, Mitsch WJ,2000. Phosphorus removal in created wetland ponds receiving river overflow. Ecological Engineering,14:107-126.
    213. Naylor R, Steinfeld H, Falcon W, Galloway J, Smil V, Bradford E, Alder J, Mooney H. 2005. Losing the Links between livestock and land. Science,310:1621-1622.
    214. NRC:National Research Council.2000. Global change ecosystems research. National Academy Press, Washington, DC.
    215. O'Meara, M.1999. Reinventing Cities for People and the Planet. Worldwatch Paper No.147. Worldwatch Institute, Washington, DC,94 pp.
    216. Palmer M, Bernhardt E, Chornesky E, Collins S, Dobson A. Ecology for a Crowded Planet. Science,304:1251-1252.
    217. Patz, J, Campbell-Lendrum D, Holloway T, Foley J.2005. Impact of regional climate change on human health. Nature,438,303-310.
    218. Perbangkhem T, Polprasert C.2010. Biomass production of papyrus(Cyperus papyrus) in constructed wetland treating low-strength domestic wastewater. Bioresource Technology,10,833-835.
    219. Peng CH, Ouyang H, Gao Q, Jiang Y, Zhang F, Li j, Yu Q.2007. Building a "green" railway in China. Science,316:546-547.
    220. Philip AM, Alexander B, Home J.2000. Denitrification in constructed free-water surface wetlands:I.Very high nitrate removal rates in a macrocosm study. Ecological Engineering,14,9-15.
    221. Philip AM, Alexander B, Home J.2000. Denitrification in constructed free-water surface wetlands:II. Effects of vegetation and temperature. Ecological Engineering, 14:17-32.
    222. Pickett STA, Cadenasso ML, Grove JM.2006. Biocomplexity in coupled natural-human systems:a multidimensional framework. Ecosystems,8:225-232.
    223. Potere DE, Schneider A.2007. A critical look at representations of urban areas in global maps. GeoJournal,69,55-80.
    224. Prather MJ, and Hsu J.2010. Coupling of nitrous oxide and methane by global atmospheric chemistry. Science,330:952-954.
    225. Reed SC, Crites RW, Middlebrooks EJ.1995. Natural systems for waste management and treatment.2nd ed. McGraw-Hill Inc., New York, NY, Washington, DC. EPA-840-B-92-002.
    226. Redman CL.1999. Human dimensions of ecosystem studies. Ecosystems,2:296-298.
    227. Reich PB, Hungate BA, LuoYQ.2006. Carbon-Nitrogen Interactions in Terrestrial Ecosystems in Response to Rising Atmospheric Carbon Dioxide. Annual Review of Ecology and Systematics,37:611-636.
    228. Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernandez RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B.2007. Global desertification: building a science for dryland development. Science,316:847-851.
    229. Richter Jr. D. D. Jenkins DH, Karakash JT, Knight J, McCreery LR, Nemestothy KP. 2009. Woody energy in America. Science,323,1432-1433.
    230. Rogers KH, Breen AJ, Chick AJ.1991. Nitrogen removal in experimental wetland treatment systems:evidence for the role of aquatic plants. Research Journal of the Water Pollution Control Federation,63(7):934-941.
    231. Ruan HQ, Yang HZ.2004. Progresses in research of subsurface constructed wetland. Jiangsu Environment Science & Technology 17:35-37 (In Chinese).
    232. Scholz M and Lee BH.2005. Constructed wetlands:a review. International Journal of Environmental Stud ies,62:421-47.
    233. Seidel K.1976. Macrophages and water purification. In:Tourbier J and Pierson Jr RW (Eds). Biological control of water pollution. College Park, PA:University of Pennsylvania Press.
    234. Senzia MA, Mashauri DA, and Mayo AW.2003. Suitability of constructed wetlands and waste stabilisation ponds in wastewater treatment:nitrogen transformation and removal. Physics and Chemistry of the Earth,28:1117-1124.
    235. Shao M, Tang XY, Zhang YH, Li WJ.2006. City clusters in China:air and surface water pollution. Frontiers in Ecology and the Environment,4:353-361.
    236. Schmer MR, Vogel KP, Mitchell RB, Perrin RK.2008. Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences of the United States of America,105,464-469.
    237. Shi L, Wang BZ, Cao XD, Wang J, Lei ZH, Wang ZR, Liu ZY, Lu BN.2004. Performance of a subsurface flow constructed wetland in southern China. Journal of Environmental Science,16:476-81.
    238. Shutes RBE.2001. Artificial wetlands and water quality improvement. Environment International,26:441-447.
    239. Solano ML, Soriano P, Ciria MP. 2004. Constructed wetlands as a sustainable solution for wastewater treatment in small villages. Journal of Biosystems Engineering,87 (1):109-118.
    240. Somerville C, Youngs H, Taylor C, Davis S, Long SP.2010. Feedstocks for lignocellulosic biofuels. Science,329,790-792.
    241. S?vik, A.K, Kl?ve B.2007. Emission of N2O and CH4 from a constructed wetland in southeastern Norway. Science of the Total Environment,380,28-37.
    242. Steffen W, Sanderson A, Jager J, Tyson P, Moore B III, Oldfield F, Richardson K, Schellnhuber HJ.2004. Global change and the earth system:A planet under pressure. Springer Verlag, Heidelberg, Germany,332 pp.
    243. Strom L, Lamppa A, Christensen TR.2007. Greenhouse gas emissions from a constructed wetland in southern Sweden. Wetlands Ecology and Management,15: 43-50.
    244. Stottmeister U, Wieβner A, Kuschk A.2003. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances,22:93-117.
    245. Swintona SM, Lupi F, Robertson GP, Hamilton SK.2007.Ecosystem services and agriculture:Cultivating agricultural ecosystems for diverse benefits. Ecological Economics,245-252.
    246. Sundaravadivel M and Vigneswaran S.2001. Constructed wetlands for wastewater treatment. Critical Reviews in Environmental Science and Technology,31:351-409.
    247. Tanner CC.1996. Plants for constructed wetland treatment systems-A comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering,7, 59-83.
    248. Tanner CC, Adams DD, Downes MT.1997. Methane emissions from constructed wetlands treating agricultural wastewaters. Journal of environmental quality,26(4): 1056-1062.
    249. Tanner CC.2001. Growth and nutrient dynamics of soft-stem bulrush in constructed wetlands treating nutrient-rich wastewaters. Wetlands Ecology and Management,9: 49-73.
    250. Tanner CC, Sukias JPS.2002. Status of Wastewater Treatment Wetlands in New Zealand. EcoEng Newsletter 1.
    251. Teiter S, Mander U.2005. Emission of N2O, N2, CH4, and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones. Ecological Engineering,25:528-541.
    252. Thomas WL Jr. Man's role in changing the face of the earth. University of Chicago Press, Chicago,193 pp.
    253. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S.2002. Agricultural sustainability and intensive production practices. Nature,418:671-677'.
    254. Tilman D, Hill J, Lehman C.2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science,314,1598-1600.
    255. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R.2009. Beneficial biofuels-the food, energy, and environment trilemma. Science,325,270-271.
    256. Toprak H.1995. Temperature and organic loading dependency of methane and carbon dioxide emission rates of a full-scale anaerobic waste stabilization pond. Water Research, 29,1111-1119.
    257. Tylova E, Lorenzen B, Brix H.2005. The effects of NH4+and NO3 on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima. Aquatic Botany,81:326-342.
    258. UNEP. United Nations Environment Programme, http://hqweb.unep.org/
    259. Vale M, Nguyen C, Dambrine E.2005. Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations. Soil Biology & Biochemistry,37:2329-2333.
    260. Verhoeven JTA, Meuleman AFM.1998. Wetland for wastewater treatment: Opportunities and limitations. Ecological Engineering,12:5-12.
    261. Vymazal J.2005. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering,25:478-490.
    262. Vymazal J.2007. Removal of nutrients in various types of constructed wetlands. Science of the Total environment,380:48-65.
    263. Wallace KJ.2007. Classification of ecosystem services:problems and solutions. Biological Conservation,139 (3-4):235-246.
    264. Wang J, Zhang BP, Liu LX.2005. The research of the full-scale experiment on saponin wastewater with constructed wetland treatment. Safe Environment Engineering,12: 35-37 (In Chinese).
    265. Wang X, Fu X.2004. Sustainable management of alpine meadows on the Tibetan Plateau:Problems overlooked and suggestions for change. Ambio,33:153-154.
    266. Wang YH, Inamori R, Kong HN.2008. Influence of plant species and wastewater strength on constructed wetland methane emissions and associated microbial populations. Ecological Engineering,32:22-29.
    267. Watkinson AR, Ormerod SJ.2001. Grasslands, grazing and biodiversity:editors' introduction. Journal of applied ecology,38:233-237.
    268. Williams C, Biswas, TK, Black I, Heading S.2008. Pathways to prosperity:second generation biomass crops for biofuels using saline lands and wastewater. Agricultural Science,21:28-34.
    269. Wild U, Kamp T, Lenz A, Heinz S, Pfadenhauer J.2001. Cultivation of Typha spp. in constructed wetlands for peatland restoration. Ecological Engineering 17:49-54.
    270. Wrobel C, Coulman BE, Smith DL.2009. The potential use of reed canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agriculturae Scandinavica Section B-Soil and Plant Science,59:1-18.
    271. Wuebbles D J, Hayhoe K.2002. Atmospheric methane and global change. Earth-Science Reviews,57:177-210.
    272. Xia HP, Ke HH, Deng ZP.2003. Ecological effectiveness of constructed wetlands in treating oil refined wastewater. Acta Ecologica Sinica,23:1344-1355 (In Chinese).
    273. Xiang Z, Chen SJ, Wang LJ.2005. COD removal in dyeing wastewater with contact oxidation and artificial wetland. Technology Equipment Environmental Pollution Cont roll,6:65-67 (In Chinese).
    274. Xiong ZQ, Freney J R, Mosier AR, Zhu Z L, Lee Y, Yagi K. Impacts of population growth, changing food preferences and agricultural practices on the nitrogen cycle in East Asia.2007. Nutrient Cycling in Agroecosystems,80:189-198.
    275. Xu LH, Zhou Q.2002. Experimental study on artificial wetland for controlling stormwater runoff pollution. Shanghai Environmental Science,21:274-277 (In Chinese).
    276. Yan J, Xie XY, Cui LH.2006. Application of constructed wetland for treatment of sewage from public latrine of ecotype garden. China Water Wastewater,22:43-45 (In Chinese).
    277. Yang H, Gao J, Cui YF.2006. Dancing with the reed flower and listening to crane-application for a constructed wetland in Beijing Zoo. Beijing Landscape,22:11-16 (In Chinese).
    278. Yang L, Chang HT, Huang MNL.2001. Nutrient removal in gravel-and soil-based wetland microcosms with and without vegetation. Ecological Engineering,18(1): 91-105.
    279. Yang Y, Xu ZC, Hu KP, Wang JS, Wang GZ.1995. Removal efficienct of the constructed wetland wastewater treatment system at Bainikeng, Shenzhen. Water Science & Technology,32:31-40.
    280. Yang W, Chang J, Xu B, Peng CH, Ge Y.2008. Ecosystem service value assessment for constructed wetlands:A case study in Hangzhou, China. Ecological Economics,68, 116-125.
    281. Yao YX, Wang YJ.2005. Application of man-made wetland in the treatment of mine wastewater. Hunan Nonfertilizer Metal,21:26-29 (In Chinese).
    282. Ye ZH, Whiting SN, Lin ZQ, Lytle CM, Qian JH, Terry N.2001. Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate. Journal of Environmental Quality, 30:1464-1473.
    283. Ye ZH, Lin ZQ, Whiting SN, de Souza MP, Terry N.2003. Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater. Chemosphere,52:1571-1579.
    284. Yin W, Li PJ, Ye M.2006. Performance of hybrid subsurface constructed wetlands for treating urban runoff. China Water Wastewater,22:5-8 (In Chinese).
    285. Yue CL, Chang J, Ge Y, Zhu YM.2004. Treatment efficiency of domestic wastewater by vertical/reverse-vertical flow constructed wetlands. Fresenius EnvironmentalBulletin,13: 505-507.
    286. Yue CL, Chan YG.2006. The application of modified underflow manpower swamped land technology on the treatment for the town river sewage. Industrial Safe Environment Protectction,32:35-36 (In Chinese).
    287. Zhang QG, Wang TY, Wei LA.2000. New technology of paper making wastewater treatment constructed wetland system. China Pulp Paper Industry,24:52-54 (In Chinese).
    288. Zhang QH, Wang XC, Xiong JQ, Chen R, Cao B.2010. Application of life cycle assessment for an evaluation of wastewater treatment and reuse project-case study of Xi'an, China. Bioresource Technology,101:1421-1425.
    289. Zhou HK, Zhao XQ, Tang YH. Gu S, Zhou L.2005. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassland Science,51:191-203.
    290. Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM.2007. Ecosystem services and dis-services to agriculture. Ecological Economics,64 (2):253-260.
    291. Zhang QH, Wang XC, Xiong JQ, Chen R, Cao CB.2010. Application of life cycle assessment for an evaluation of wastewater treatment and reuse project-Case study of Xi'an, China. Bioresource Technology,101:1421-1425.
    292. Zhu SX, Ge HL, Ge Y, Cao HQ, Liu D, Chang J, Zhan CB, Gu BJ, Chang SX.2010. Effects of plant diversity on biomass production and substrate nitrogen in a subsurface vertical flow constructed wetland. Ecological Engineering,36:1307-1313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700