用户名: 密码: 验证码:
生物湿地床处理富营养化水体的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于太湖流域各行政区域的发展和污染程度不同,导致了各区域的差异,为更好的开展环太湖流域水质调查研究及后续污染控制方案的制定,综合考虑环保部门、水利部门等对太湖流域的划分,结合行政区划,将与太湖直接相连的河流所在区域划分为4个污染控制区。本文针对太湖流域4个污染控制区域内20条出入河流进行水质时空分布特点调查并以代表性目标河流——横塘河为研究对象,研究河流水质年际变化规律,以期为湖泊保护提供数据支持。为了达到消除富营养化威胁、净化水源地的目的,在了解河流水质变化规律的基础上,首次开展生物湿地床技术处理富营养化水体的试验研究,论文分别就生物湿地床植物筛选、植物根系微生物多样性、工艺参数优化、与传统湿地系统长期运行效果比较及污染物动力学模型分析进行了研究。
     论文的主要内容与结论如下:
     1)2009年8月及2010年1月,分别对环太湖20条主要出入湖河流进行了全程监测。调查结果表明,除CODMn外,在冬夏两季内,各污染物指标变化显著,冬季整体出现增大的趋势;从不同区域营养成份含量看,流域河流污染整体呈现出北部重污染控制区>湖西重污染控制区>浙西污染控制区>东部污染控制区的趋势,方差分析结果表明,北部重污染控制区氮磷含量显著(p<0.05)高于浙西污染控制区和东部污染控制区,而与湖西重污染控制区无显著差别。
     2)2009年6月至2010年5月间,采集宜兴市周铁镇洋溪村附近横塘河河段的水样,对河道水质的年变化规律进行了定点分析。结果表明:(1)除8月份外,全年总氮(TN)含量劣于Ⅴ类,其他水质指标在Ⅲ类和Ⅴ类水质之间;(2)河水中TN以溶解态为主,NH3-N含量与TN有相同的变化趋势,总磷(TP)则以颗粒态为主。CODMn在6-8月间,浓度较高,叶绿素a在8月达到最大,CODMn和叶绿素a表现为高温季节高于低温季节,与水体中TN浓度呈相反趋势。(3)除TP外,各水质指标间显著相关。
     3)分别采用再力花、菖蒲、茭白和鸢尾构建湿地床,以考察生物湿地床中不同植物对污染河水的净化效果,研究结果表明:生物湿地床对总氮、氨氮、总磷去除率显著高于空白系统,对CODMn去除率无显著差别。再力花湿地床与其它湿地床相比,具有较高的营养物去除率,P的去除效果尤其显著(p<0.01)。营养物去除率与植物细根生物量(d≤3mm)相关,与出水DO含量负相关,与植物生物量无相关性,COD_(Mn)去除率与生物量不相关。氮磷平衡结果表明,在试验过程中,四个湿地床对氮磷去除量分别在61.03-73.27g/m~2和4.14-5.20g/m~2之间,植物氮磷吸收量分别占去除总量的34.9%–43.81%和62.05%–74.81%。硝化反硝化和植物吸收是去除氮的主要途径,而植物吸收是去除磷的有效手段。
     4)2010年10月,当再力花湿地床系统稳定后,随机选取再力花幼根、黄根、黑根若干,进行微生物多样性分析,研究结果表明,三种根系中,细菌种类、数量和多样性都存在明显差别,对微生物群落的中部分优势种群进行了细菌16SrDNA V3区特征片段DGGE分离、条带收割、克隆、测序后,BLAST比对结果表明,幼根中优势菌种与假交替单胞菌属(Pseudoalteromonas sp.)同源性较高,而在黄根和黑根中多为Tolumonas sp.属、链霉菌属(Streptomyces sp.)、密执安棍状杆菌属(Clavibacter sp.)、斯蒂克兰德梭菌属(Clostridium sp.)、Mesoflavibacter属、缺陷短波单胞菌属(Brevundimonas sp.)、紫色色杆菌属(Chromobacterium sp.)。这些优势微生物在生物湿地床系统去除污染物的过程中起到了重要的作用。
     5)构建五组生物湿地床系统,采用再力花为试验植物,在自然条件下,利用连续进水方式,对生物湿地床工艺参数进行优化,研究结果表明:当水力负荷0.54m~3/m~2·d、水深40cm,植物种植密度100株/m~2的条件下,生物湿地床可有效削减污染物含量。
     6)在2011年3月—2012年2月间,以再力花为试验植物,分别构建生物湿地床与传统人工湿地,以对比研究两类型人工湿地净化富营养化水体中的效果。研究结果表明:在生物湿地床系统中,再力花能够适应无土栽培的环境,且冬季收割后,在次年温度适宜时,仍然能够生长,无需更换植物。生物湿地床与传统湿地污染物质月均去除率分别为TN:27.09%-59.10%和37.64%-48.45%;NH_3-N:37.37%-59.70%和29.53%-46.43%;TP:61.01%-75.87%和57.31%-82.15%;COD_(Mn):9.39%-25.48%和22.39%-46.80%,除7、8月份外,生物湿地床营养物去除率显著(p<0.05)高于传统人工湿地,而CODMn去除率显著(p<0.05)低于传统湿地。同时,生物湿地床出水溶解氧含量显著(P<0.05)高于传统湿地。
     7)针对生物湿地床系统对污染物的去除速率具有随着运行时间变化的特点,根据反应器动力学理论研究得出生物湿地床系统的COD_(Mn)、TN、NH_3-N和TP去除动力学方程。由动力学方程可知,四种污染物的去除反应表现得较为复杂。
The development of the different administrative regions of the Taihu Lake Basin,and the degree of pollution, lead to a different approach to the various regions. Takinginto account the division of the Taihu Lake Basin by the environmental protectiondepartment and the department of water resources, as well as a combination ofadministrative divisions, the rivers, which are directly connected with the Taihu Lake,flowing through the region is divided into four pollution control districts. It is for thebetter development in Taihu Lake Basin water quality survey research and subsequentpollution control plan formulation. In this paper, the water quality spatial andtemporal distribution characteristics of20rivers in the four pollution control area ofthe Taihu Lake Basin were investigated. And it takes the representation of the targetrivers-the Hengtang River as the research object to study river water qualityinter-annual variation,so as to provide data to support lake protection. In order toachieve the purpose of the elimination of the threat of eutrophication and purify thewater source, this is the first to carry out biological wetland bed technology to dealwith eutrophication of water test according to the basis of the variation of river waterquality. In this paper, Biological wetland bed plants screened, Optimization ofProcess Parameters, Comparison of long-term operating results with the traditionalwetland system, Analysis of the dynamic model of pollutants and Microbial diversityof plant rootsr, espectively, were carried out.
     1) Based on four defined polluted regions of Taihu Lake basin, different waterquality indexes of20rivers around Taihu Lake were measured between June2009toMay2010, and the characteristics of the spatial-temporal variation were analyzed. Theresults showed that the rivers in the northern heavily polluted control region werepolluted more serious than those in other polluted regions. The overall pollutionintensity order was: northern heavily polluted control region> western heavilypolluted control region> polluted control region of western Zhejiang Province>eastern polluted control region. And northern heavily polluted control region wassignificantly higher (p<0.05) the pollution level than the polluted control region of western Zhejiang Province and eastern polluted control region, and no significantlydifference with western heavily polluted control region. The nutrient concentration ofriver water had significantly difference between winter and summer except COD_(Mn).
     2) From June2010to May2011, the water samples of Hengtanghe River werecollected in Zhoutie town near the village of Yangxi, Yixing. The variation of riverwater quality was analyzed throughout the whole year. The results showed that:(1)the annual total nitrogen (TN) concentration was inferior to Class V water qualityexcept in August, while other indexes were superior to Class V water quality.(2)Dissolved total nitrogen (DTN) accounted for the main form in TN in the river, andNH_3-N concentration had similar tendency with TN concentration, while TP wasmainly in the form of particulate phosphorus (PP). Permanganate index (COD_(Mn)) hada higher concentration during June and August compared to other months, and themaximum chlorophyll a (Chla) concentration was monitored in August. There weresignificantly higher COD_(Mn)and Chla concentrations in the hot season than that in thecold season, while the TN concentration exhibited the opposite tendency with COD_(Mn)and Chla.(3) There was a significant correlation among the water quality indexesexcept TP.
     3) A comparative study of the efficiency of contaminant removal between fourplant species in the bio-rack wetlands and between bio-rack system and controlsystem to evaluate the decontamination effects of four different wetland plants. Therewas generally a significant difference in the removal of total nitrogen (TN), ammonianitrogen (NH_3-N) and total phosphorus (TP), but no significant difference in theremoval of permanganate index (COD_(Mn)) between bio-rack wetland and controlsystem. Bio-rack wetlands planted with Thalia dealbata had higher nutrient removalrates than wetlands planted with other species, and removal of TP was significanthigher (p<0.01) than others. Plant fine root (root diameter≤3mm) biomass rather thantotal plant biomass was related to nutrient removal efficiency. The study suggestedthat the nutrient removal rates are influenced by plant species, and high fine rootbiomass is an important factor in selecting highly effective wetland plants for thebio-rack system. According to the mass balance, the TN and TP removal were in therange of61.03--73.27g/m~2and4.14--5.20g/m~2in four bio-rack wetlands during the whole operational period. The N and P removal by plants uptake constituted34.9%--43.81%of the mass N removal and62.05%--74.81%the mass P removal,respectively. The study showed that nitrification/denitrification process and plantuptake process are major removal pathways for TN, while plant uptake is an effectiveremoval pathway for TP.
     4) The different roots were selected randomly from the bio-rack wetland planted withThalia dealbata in October2011, and the microbial diversity was analyzed. Theresults showed that there were obvious different in bacterial species, number andpopulation diversity among the different roots. Part of the microbial community ofdominant bacteria was analyzed through cloning, sequencing and phylogeneticanalysis, Pseudoalteromonas sp., Flavobacteria sp., Tolumonas sp., Streptomyces sp.,Clavibacter sp., Clostridium sp., Mesoflavibacter, Brevundimonas sp., andChromobacterium sp. were included in different roots and these dominantmicroorganisms planted key roles in the removal of pollutants in bio-rack wetlands.
     5) Bio-rack wetland was used to pretreat eutrophicated source water for the firsttime. Five bio-rack wetlands were conducted in the natural conditions. The optimalHLR is0.54m3/(m~2·d) and the optimal water surface level is40cm, as well as thedensity of plants was100plant/m~2when bio-rack wetland used as source waterpretreatment process, in which the contaminants were removed effectively.
     6) A comparative study of the efficiency of contaminant removal was conductedbetween the bio-rack wetland and the conventional constructed wetland from March2011to February2012. The results showed that the plants could be adaptable to givencircumstance with the low pollution loads and higher plant density. The monthly averageremoval rates in the bio-rack wetland and the constructed wetland were:27.09%-59.10%and37.64%-48.45%for total nitrogen (TN),37.37%-59.70%and29.53%-46.43%for ammonia nitrogen (NH3-N),61.01%-75.87%and57.31%-82.15%for total phosphorus (TP), and9.39%-25.48%and22.39%-46.80%for permanganate index (COD_(Mn)), respectively. The nutrient removal rates andeffluent DO concentration were significantly higher (p<0.05) in bio-rack wetland thanin constructed wetland during the operational period except in July and August,whileCOD_(Mn)removal rates were significantly lower(p<0.01) in bio-rack wetland than in constructed wetland.
     7) According to the actual instance,pollutants removal rate of bio-rack wetlandsystem was not steady。Based on reactor kinetics theory, the relation between CODMn,TN, NH_3-N, TP removal rate of bio-rack wetland system and effluent concentrationwas studied, the results showed that degradation reaction of CODMn, TN, NH_3-N, Twas complicated.
引文
[1]刘光钊.水体富营养及其澡害[M].北京:中国环境科学出版社,2005.
    [2]2010中国环境状况公报[M].北京:中国环境可续出版社,2010
    [3]谯华,周从直,谢有奎,等.湖泊富营养化的形成机理与防治对策[J].环境科学导刊,2007,26(6):45-48.
    [4]顾启华.富营养化水体中藻类水华成因分析与研究[D].天津:天津大学,2007.
    [5]宋海亮.水生植物虑床技术改善富营养化水体水质的研究[D].南京:东南大学,2005.
    [6]黄萌.富营养化对水生生态系统的污染生态效应[J].科学情报开发与经济,2006,16(20):137-138.
    [7]鞠振树.我国脱硝产业的国产化[J].科技情报开发与经济,2006,16(20):135-137.
    [8]郭培章,宋群.中外水体富营养化治理案例研究[M].北京:中国计划出版社,2003.
    [9]韩志国,武宝,郑解生,等.淡水水体中的蓝藻毒素研究进展(综述)[J].暨南大学学报(自然科学版),2001,22(3):130-135.
    [10]梁文艳.杀灭和降解水中藻细胞与藻毒素的电磁效应[D].北京:北京林业大学,2005.
    [11]POURIAS,DEANDRADEA,BARBOSAJ, et al. Fatal microcystin intoxication inhaemodialysis unit in Caruaru, Brazil[J].Lancet,1998,352:21-26.
    [12]Ganf G G and Oliver R L. Vertical separation of light and available nutrients as afacor causing replacement of green algae in the plankton of stratified. J.Ecol.,1982,70:829-844.
    [13]黄道孝,肖军华.鱼腥藻毒素(Anatoxins)研究进展[J].中国海洋药物.2004,23(23):47-52.
    [14]刘永梅,刘永定,李敦海,等.滇池束丝藻水华毒性生物检测[J].水生生物学报.2004,28(2):216-218.
    [15]徐海滨,严卫星.淡水湖泊微囊藻毒素的污染和毒理学研究[J].卫生研究.2002,31(6):477-480.
    [16]Hoeger S.SCHWIMMKAMPEN Germany artificial floating islands[J].Journal of soiland water conservation,1988,43(4):63-69.
    [17]Y lnamori, M Mizuochi, K Xu.Countermeasures for lake Eutrophication inJapan-Manual of lake Eutrophication Control[J].National Institute for EnvironmentalStudies, Japan,2002:374-376.
    [18]李英杰,年跃刚,胡社荣,等.生态浮床对河口水质的净化效果研究[J].中国给水排水,2008,24,(11):60-67
    [19]丁则平.日本湿地净化技术人工浮岛介绍[J].海河水利,2007,2:63-65.
    [20]吴芳,王晟.富营养化湖泊原位生物治理技术研究进展[J].环境科学导刊,2010,29(1):49-52.
    [21]况琪军,夏宜,吴振斌.综合生物塘中的藻类研究[J].水生生物学报,1994,18(2):97-106
    [22]Tam N F Y, Wong Y s, Liong E. Algal growth and nutrient removal in Hong Kongdomestic wastewater[J]. Environ Pollut,1989,58:19-34.
    [23]Matusiak K, Przytocka-Jusiak M, Leszczynsk-Gerula K, et al. studies on thepurification of wasterwater from the nitrogen fertlizer industry by intensive algalcultures.Ⅱ. Removal of nitrogen from wastewater[J]. Acta Microbiol Pul,1976,25:361-374.
    [24]Przytocka-Jusialk M Duszota M, Matusiak K, et al. Intensive culture of Chlorellavulgaris/AA as the second stage of biological purification of nitrogen industrywastewaters [J]. Wat Res,1984,18:1-7.
    [25]况琪军,马沛明,刘国祥,等.大型丝状绿藻对N、P去除效果研究[J].水生生物学报,2004,28(3):323-326.
    [26]陈汉辉.冬季水网藻对源水水质的净化作用[J].上海环境科学,2000,19(2):76-78.
    [27]赵坤,傅海燕,柴天,等.水网藻对铜绿微囊藻的化感作用及对氮磷去除能力研究[J].环境科学,2011,32(8):2267-2272.
    [28]刘德启,由文辉,李敏,等.利用水网藻对微藻的抑制作用净化源水[J].中国给水排水,2004,20(10):14-17.
    [29]刘德启,由文辉,李敏,等.微藻对水网藻在水体修复中的胁迫作用研究[J].环境科学与技术,2005,28(4):18-20.
    [30]王朝晖,江天久,杞桑,等.水网藻(Hydrodictyon reticulatum)对富营养化水样中氮磷去除能力的研究[J].环境科学学报,1999,19(4):448-452.
    [31]李兴得,颜宏亮,马静,等.污染河流生态修复研究进展[J].水利科技与经济,2011,17(8):4-6.
    [32]Li Zhengkui, Zhang Bosen. Study on immobilized yeast cells with hytropilic polymercarrier by radiation-induced copolymerization[J]. Nuclrear Sci Tech,1993,4:235-240.
    [33]高艳峰,王红禹.污水微生物治理技术研究[J].科技向导,2010,4,141-142.
    [34]李正魁,濮培民.净化湖泊水体氮污染的固定化硝化-反硝化菌研究[J].湖泊科学,2000,12(2):119-123.
    [35]李佐容.微生物在湖泊富营养化治理中的应用[J].安徽农学通报,2007,13(9):35-38.
    [36]李雪梅,杨中艺,简曙光,等.有效微生物群控制富营养化湖泊蓝藻的效应[J].中山大学学报,2000,39(1):81-85.
    [37]刘守杰.水力自控翻版匣技术应用研究[J].森林工程,2002,18(1):33-36.
    [38]徐祖信.河流污染治理技术与实践[M].北京:中国水利水电出版社,2003.
    [39]Scheffer M, Hosper H, Meijer M L, et al. Ahemative equilibria in shallow lakes[J].Trends Evol,1993,8:275-279.
    [40]Scheffer M, Carpenter S R, Foley J A, et al. Catastrophic shifts in ecosystems[J].Nature,2001,413:591-596.
    [41]Wetzel R G. Struture and productivity of aquatic ecosystems. Limnology[M].2nded.New York: Saunders College Publishing,1983.
    [42]Nogueira F, de Assis Esteves F, Prast A E. Nitrogen and phosphorus concentration ofdifferent structures of the aquatic macrophytes Eichhornia azurea Kunth and Scirpuscubensis Poepp&Kunth in relation to water level variation in Lagoa Infernao(SaoPaulo, Brazil)[J]. Hydrobiologia,1996,328:199-205.
    [43]Canfield D E J, Bachmann R W, Hoyer M V A. Management alternative for LakeApopka[J]. Lake and Reservoir Manage,2000,16:205-221.
    [44]张萌,曹特,过龙根,等.武汉东湖水生植被重建及水质改善试验研究[J].环境科学与技术,2010,33(6):154-159.
    [45]高吉喜,叶春,杜娟,等.水生植物对面源污水净化效率研究[J].中国环境科学,1997,17(3):157-151.
    [46]李文朝.富营养水体中常绿水生植被组建及净化效果研究[J].中国环境科学,1997,17(1):53-57.
    [47]童昌华,杨肖娥,濮培民.富营养化水体的水生植物净化试验研究[J].应用生态学报,2004,15(8):1447-1450.
    [48]Jingsong Yan and Ma Shijun.Ecological Engineering for Wastewater Treatment.
    [M]New York: Bok Skogen Publishers,1991,80-94.
    [49]Gusterstam B.Ecological Engineering for Wastewter Treatment[M].New Yoke: BokSkogen Publishers,1991,38-54.
    [50]Hrbacek J.Demonstration of the effect of the fish stock on the species composition ofzooplankton and the intensity of metabolism of the whole planktonassociation[J].Verh Int Ver Limnol,1961,14:192–195.
    [51]Brooks J L.Predation,body size and composition of plankton[J]. Science,1965,150:28–35.
    [52]Shapiro J,Wright D I.Lake restoration by biomanipulation:Round Lake,Minnesota,thefirst two years[J].Freshwat Biol,1984,14:371–383.
    [53]阮景荣,陈受忠,俞家禄.富营养中型生态系统的生物操纵治理.见:刘建康.东湖生态学研究(二)[M].北京:科学出版社,1995.392–404.
    [54]陈少莲.鲢鳙对鱼粪消化利用的研究[J].水生生物学报,1989,13(3):250–258.
    [55]Northcote T G.Fish in the structure and function of freshwater ecosystem:a“top-down”view[J]. Can J Fish Aqua Sci,1988,45:361–379.
    [56]Andersson G.Effects of planktivorous and benthivorous fish on organisms and waterchemistry in eutrophic lakes[J]. Hydrobiologia,1978,59:9–15.
    [57]董双林.鲢鱼的放养对水质影响的研究进展[J].生态学杂志,1994,13(2):66–68.
    [58]Sheng Z, Masaaki H. Nitrogen transformations and balance in a constructed wetlandfor nutrient-polluted river water treatment using forage rice in Japan [J]. EcologicalEngineering,2008,32(2):147–155.
    [59]Robert R L, Hassan S, Mashriqui G, et al. Potential nitrate removal from a riverdiversion into a Mississippi delta forested wetland [J]. Ecological Engineering,2003,20(3):237–249.
    [60]Jing S R, Lin Y F, Lee D Y, et al. Nutrient removal from polluted river water by usingconstructed wetlands [J]. Bioresource Technology,2001,76(2):131–135.
    [61]Jing S R, Lin Y F, Lee D Y, et al. Using constructed wetland systems to remove solidsfrom highly polluted river water [J]. Water Science Technology-Water Supply,2001b,1(1):89–96.
    [62]He S B, Li Y, Kong H N, et al. Treatment Efficiencies of Constructed Wetlands forEutrophic Landscape River Water [J]. Soil Science Society of china,2007,17(4):522–528.
    [63]王晟,徐祖信,李怀正.潜流湿地处理不同浓度有机污水的差异分析[J].环境科学,2006,11(27):2194-2200.
    [64]Vymazal J. The use of sub-surface constructed wetlands for wastewater treatment inthe Czech Republic:10years experience[J]. Ecological Engineering,2002,18(5):633-646.
    [65]Usepa. Guiding principles for constructed treatment wetlands: providing for waterquality and wildlife habit[M]. Washington DC: U S EPA, Office of Wetlands, O-ceansand Watershed,2000.
    [66]Mantovi P, Marmiroli M, Maestri E, et al. Application of a horizontal subsurface flowconstructed wetland on treatment of dairy parlor wastewater[J]. BioresourceTechnology,2003,88(2):85-94.
    [67]Verhoeven J T A, Meuleman A F M. Wetlands for wastewater treatment:Opportunities and limitations[J]. Ecological Engineering,1999,12(1-2):5-12.
    [68]卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报,2006,26(08):2670-2677.
    [69]Faulwetter J L, Gagnon V, Sundberg C, et al. Microbial processes influencingperformance of treatment wetlands: A review[C].2009.987-1004.
    [70]Gerberg R M,Elkins B V, Lyon S R,et al. Role of aquatic plants in wastewatertreatment by artificial wetlands[J]. Wat Res,1986,20(3):363-368.
    [71]Adcock P W, Ganf G G. Growth-characteristics of three macrophyte species growingin a natrual and constructed wetland system[J]. Water Sci Technol,1994,29(4):95-102.
    [72]成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184.
    [73]Xiu-Yun Cheng, Ming-Qiu Liang, Wen-Yin Chen, et al. Growth and ContaminantRemoval Effect of Several Plant in Constructed Wetlands[J]. Journal of integrativeplant biology2009,51(3):325-335.
    [74]Qiong Yang, Zhang-He Chen,Jian-Gang Zhap,et al. Contaminant Removal ofDomestic Wastewater by Constructed Wetlands: Effects of Plant Species[J]. Journal ofintegrative plant biology2007,49(4):437-446.
    [75]Chris C.Tanner. Plants for constructed wetland treatment systems-A conparison of thegrowth and nutrient uptake of eight emergent species[J].Ecological Engineering1996,7:59-83.
    [76]Breen P F.A mass balance method for assessing the potential of artificial wetlands forwastewater treatment[J].Wat Res,1990,24:689-697.
    [77]成水平,夏宜琤.香蒲、灯芯草人工湿地的研究Ⅲ.净化污水的机理[J].湖泊科学,1998,10(2):66–71.
    [78]Ellis J B, Revitt D,Shutes R B E, et al. The performance of vegetated biofilters forhighway runoff control [J]. Sci Total Environ,1994,146:543–550.
    [79]Hosokawa Y, Horie T. Flow and particulate nutrient removal by wetland withemergent macrophyte [J]. Sci Total Environ,1992, suppl:1271–1282.
    [80]Fennessy M S, Cronk J K, Mitsch W J. Macrophyte productivity and communitydevelopment in created freshwater wetlands under experimental hydrologicalconditions [J]. Ecol Eng,1994,3(4):469–484.
    [81]Brix H. Treatment of wastewater in the rhizosphere of wetland plants-The root-zonemethod [J].1987.
    [82]Beven K and Germann P. Macropores and water flow in soils [J]. Wat Resources Res,1982,18:1311–1325.
    [83]Brix H. Gas exchange through the soil-atmosphere interphase and through dead culmsof Phragmites australis in a constructed reed bed receiving domestic sewage [J].Wat.Res,1990,24:259–266.
    [84]Brix H.Do Macrophytes play a role in constructed treatment wetlands?[J].Wat SciTech,1997,35(5):11-17.
    [85]李林锋,年跃刚,蒋高明.植物吸收在人工湿地脱氮除磷中的贡献[J].环境科学研究,2009,22(03):337-342.
    [86]黄德锋.人工湿地净化富营养化景观水的效果及机理研究[D].上海:同济大学,2007.
    [87]张兵之,吴振斌,徐光来.人工湿地的发展概况和面临的问题[J].环境科学与技术,2003:87-90.
    [88]杨昌风,夏盛林.土壤类型与人工湿地污水处理功能的关系[J].环境保护科学,1993,19(1):46-49.
    [89]袁东海,景丽洁,张孟群,等.几种人工湿地基质净化磷索的机理[J].中国环境科学,2004.24(5):614-617.
    [90]Yeoman S, Stephenson T, Lester J N, et al. The removal of phosphorus duringwastewater treatment: A review[J]. Environmental Pollution,1988,49(3):183-233.
    [91]徐和盛,付融冰,褚衍洋.芦苇人工湿地对农村生活污水磷素的去除及途径[J].生态环境,2007,16(5):1372-1375.
    [92]Blaze jew ski R, M ura-Blaze jew ska S. Soil clogging phenomena in constructedwetlands with subsurface-flow[J]. Water Sci Tech,1997,35(5):83-88.
    [93]Langergraber G,Haberl R, Laber J, er al. Evaluation of substrate clogging processes invertical flow constructed wetlands[J]. Water Sci Tech,2003,48(5):25-34.
    [94]朱彤,许振成,胡康萍,等.人工湿地污水处理系统应用研究[J].环境科学研究,1991,4(5):17-22.
    [95]Sistani K R.Development of natural conditions in constructed wetlands:biological andchemical changes[J].Ecol Eng,1999,12:125-131.
    [96]邓征宇,杨春平,曾光明,等.曝气生物滤池技术进展[J].环境科学与技术,2010,33(8):88-93.
    [97]孙跃平.城市小型河流水质直接净化的方法[J].上海水务,2005,21(3):22-23.
    [98]黄晓东,曹天洪,谭为民,等.生物陶粒处理深圳水库水的试验研究[J].环境科学,1998,6(19)60-62.
    [99]相崎守弘,中里広幸.富栄養化湖水の浄化のための水耕生物沪過法を用いた人工湿地の開発[J].水環境学会誌,1997,20(9):622-628.
    [100]相崎守弘,中里広幸.植物水耕栽培系における根圈生物の変化と栄養塩の除去[J].水環境学会誌,1995,18(8):624-627.
    [101]琵琶湖·淀川水質保全機搆.4.浅池型植生浄化実験(その2)[C].琵琶湖·淀川水質浄化共同実験セソター年報第2号.財団法人琵琶湖·淀川水質保全機搆,2000,65-89.
    [102]中里広幸,猪狩俶将.生態系を活用した低コスト水浄化法(有機水耕栽培)[J].産業公害,1992,28(3):34-41.
    [103]中里広幸.“生物园”の植物生産而實現汚水の活用と浄化[C].第二届中日上海环境保护决策和技术交流会论文集,1998.
    [104]Valipour A, Raman V K, Ghole V S. A new approach in wetland systems for domesticwastewater treatment using Phragmites sp [J]. Ecological Engineering,2009,35:1797–1803.
    [105]安乐生.地表水水质评价方法和水质预测模型的综合研究[D].青岛:青岛大学.2009.
    [106]秦伯强,吴庆龙,高俊峰,等.太湖地区的水资源与水环境─问题、原因与管理[J].自然资源学报,2002,17(2):221-228.
    [107]刘兆德,虞孝感,王志宪.太湖流域水环境污染现状与治理的新建议[J].自然资源学报,2003.18(4):467-474.
    [108]宋海亮,吕锡武,李先宁.太湖西段入湖河流水质模糊综合评价[J].安全与环境学报,2006,6(1):87-90.
    [109]于文金,邹欣庆.基于产业调整的太湖流域生态环境优化探讨[J].环境科学研究,2008,21(5):124-128.
    [110]XU H, YANG L Z, ZHAO G M, et al. Anthropogenic impact on surface water qualityin Taihu Lake region, China [J]. Pedosphere,2009,19(6):765-778.
    [111]肖清芳.太湖水质富营养化问题探讨[J].江苏水利,1998(S1):44-46.
    [112]马倩,刘俊杰,高明远.江苏省入湖污染量分析[J].湖泊科学,2010,22(1):29-34.
    [113]翟淑华,张红举.环太湖河流进出湖水量及污染负荷(2000—2002年)[J].湖泊科学,2006,18(3):225-230.
    [114]张利民,孙卫红,程炜,等.太湖入湖河流水环境综合治理[J].环境监测管理与技术,2009,21(5):1-5.
    [115]QIN B Q, ZHU G W, GAO G. A drinking water crisis in Lake Taihu, China: linkageto climatic variability and lake management [J]. Environmental Management,2010,45(1):105-112.
    [116]CAI Q M, GAO X Y, CHEN Y W. Dynamic variations of water quality in Taihu Lakeand multivariate analysis of its influential factors [J]. The Journal of ChineseGeography,1997,7(3):72-82.
    [117]CHENG X Y, LI S J. An analysis on the evolvement processes of lake eutrophicationand their characteristics of the typical lakes in the middle and lower reaches ofYangtze River [J]. Chinese Science Bulletin,2006,12(13):77-87.
    [118]许梅,任瑞丽,刘茂松.太湖入湖河流水质指标的年变化规律[J].南京林业大学学报.2007,31(6):121-124.
    [119]何本茂,韦蔓新.铁山港湾水体自净能力及其与环境因子的关系初探[J].海洋湖沼通报,2006,3:21-26.
    [120]田自强,韩梅,张雷,等.西太湖河网区恢复与退化河岸带湿地生态及水环境功能比较[J].生态学报,2007,7(27):2812-2822.
    [121]江苏省统计局.江苏统计年鉴[Z].北京:中国统计出版社,2008.
    [122]许梅,任瑞丽,刘茂松.太湖入湖河流水质指标的年变化规律[J].南京林业大学学报:自然科学版,2007,31(6):121-124.
    [123]陈雷,远野,卢少勇,等.环太湖主要河流入出湖口表层沉积物污染特征研究[J].中国农学通报,2011,27(1):294-299.
    [124]庄志伟,万荣荣,董雅文.对近年太湖出湖河道断面的水质评价[J].污染防治技术,2008,21(3):34-36.
    [125]浙江省统计局.浙江统计年鉴[Z].北京:中国统计出版社,2008.
    [126]施稳萍,刘凌,王哲.太湖苕溪流域河流生态修复体系研究[J].水生态学杂志,2010,3(1):121-124.
    [127]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002.
    [128]Soda S, Ike M, Ogasawara Y. Effects of light intensity and water temperature onoxygen release from roots into water lettuce rhizosphere”[J].WaterResearch,pp.487-491,2007.
    [129]Blindow I, Andersson G, Haregy A, et al. Long term pattern of alternative stablestates in two shallow eutrophic lakes[J]. Freshwater Biol,1993,30:159-167.
    [130]Phillips G L, Eminson D, Moss B. A mechanism to account for macrophyte decline inprogressively entrophicated freshwaters [J].Aqua Bot,1978,4:103-126.
    [131]杨龙元,秦伯强,胡维平,等.太湖大气氮磷营养元素干湿沉降率研究[J].海洋与湖沼,2007,38(2):104-110.
    [132]宋玉芝,秦伯强,杨龙元,等.大气湿沉降向太湖水生生态系统输送氮的初步研究[J].湖泊科学,2005,17(3):226-230.
    [133]李兆福,杨桂山.太湖流域非点源污染特征与控制[J].湖泊科学,2004,16(s):83-88.
    [134]张孝飞,林玉锁,卢萍,等.太湖流域上游典型水体中氮磷动态变化特征研究[J].四川环境,2006,25(6):64-67.
    [135]王德建,林静慧,夏立忠.太湖地区稻麦轮作农田氮素淋洗特点[J].中国生态农业学报,2001,9(1):16-18.
    [136]孙宏发,刘占波,谢安.湿地磷的生物地球化学循环及影响因素[J].内蒙古农业大学学报,2006,27(1):148-152.
    [137]Eisenreich S J, Armstrong D E. Association of organic matter, iron and inorganicphosphorus in the lake waters [J].Environment international,1992,3(6):485-490.
    [138]尹炜.植物吸收在人工湿地去除氮、磷中的贡献[J].生态学杂志,2006,25(2):218-221.
    [139]Reynolds C S.The ecology of freshwater phytoplankton[M]. London: CambridgeUniv Press,1984.
    [140]阮晓红,石晓丹,赵振华,等.苏州平原河网区浅水湖泊叶绿素a与环境因子的相关关系[J].湖泊科学,2008,20(5):556-562.
    [141]范成新,王春霞.长江中下游湖泊环境地球化学与富营养化[M].北京:科学出版社,2007:300-370.
    [142]蔡启铭.太湖环境生态研究(一)[M].北京:气象出版社,1998.98-108.
    [143]Bohm W. Methods of studying root systems[J]. Beijing, China: Science Press,1985.6,175.
    [144]罗固源,郑剑峰,许晓毅,等.4种浮床栽培植物生长特性及吸收氮磷能力的比较[J].环境科学学报,2009,29(2):285–290.
    [145]Jing S R, Lin Y F. Seasonal effect on ammonia nitrogen removal by constructedwetlands treating polluted river water in southern Taiwan. Environmental Pollution[J].2004,127:291–301.
    [146]Peterson S B and Teal J M. The role of plants in ecologically engineered wastewatertreatment systems [J]. Ecological Engineering,199,6(1-3):137-148.
    [147]Lu S Y, Zhang P Y, Jin X C, et al. Nitrogen removal from agricultural runoff byfull-scale constructed wetland in China. Hydrobiologia,2009,62(1):115-126.
    [148]Poach, M. E, P. G. Hunt, G. B. Reddy, K. C. et al. Swine wastewater treatment bymarsh-pond-marsh constructed wetlands under varying nitrogen loads [J]. EcologicalEngineering,2004,23(3):165–175.
    [149]Reddy, G. B., P. G. Hunt, R. Phillips, K, et al. Treatment of swine wastewater inmarsh-pond-marsh constructed wetlands[J]. Water Science and Technology,2001,44(11–12):545–550.
    [150]Volokita M, Belkins, Abeliovicha, et al. Biological denitrification of drinking watersuing newspaper [J]. Water Research,1996,30(4):965-971.
    [151]Chung A K C, Wu Y, Tam N F Y. Nitrogen and Phosphate mass balance in asub-surface flow constructed wetland for treating municipal wastewater [J].Ecological Engineering,2008,32:81–89.
    [152]LU S Y. Technological and Engineering Demonstration Research on ConstructedWetland for Agricultural Irrigation and Drainage Wastewater Treatment [D]. Beijing:Qinghua University,2004.
    [153]Arias, C.A, Bubba, M.D., Brix, H. Phosphorus removal by sands for use as media insubsurface flow constructed reed beds[J]. Water Res,2001,35,1159–1168.
    [154]葛铜岗,罗固源,许晓毅,等.串联式菖蒲浮床去除污染河水氮磷的试验研究[J].三峡环境与生态,2010,3(1):5–12.
    [155]蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏性水中氮磷去除的贡献[J].生态学报,2004,24(8):1720–1725.
    [156]卢少勇,金相灿,余刚等.人工湿地的磷去除机理[J].生态环境.2006,15(2):391-396.
    [157]Cronk J K.Constructed wetlands to treat wastewater from dairy and swine operations:a review [J]. Agriculture, Ecosystems and Environment,1996,58(2–3):97–114.
    [158]Weiss J V, Emerson D, Megonigal J P. Geochemical control of microbial Fe(Ⅲ)reduction potential in wetlands: comparison of the rhizosphere to non-rhizospheresoil[J]. FEMS Microbiology Ecology,2004,48(1):89–100.
    [159]Moorhead K K, Reddy K R.“Oxygen transport through selected aquaticmacrophytes”[J]. Environment Quality, pp.138–142,1988.
    [160]Chen W Y, Chen Z H, He Q F, ea al. Root growth of wetland plants with different roottypes[J]. Acta ecologica sinica,2007,27(2):450-458.
    [161]Stein O R, Hook P B5. Temperature, plants and oxygen: how does season affectconstructed wetland performance?[J]. Environment Science Health,2004,0:1331-1342.
    [162]Stottmeister U, Wieβner A, Kuschk P, et al. Effects of plants and microorganisms inconstructed wetlands for wastewater treatment [J]. Biotechnol. Adv,2002,22,99–117.
    [163]黄德锋,李田,陆斌.复合垂直流人工湿地污染物去除及微生物群落结构的PCR-DGGE分析[J].环境科学研究,2007,20(6):137-141.
    [164]赵继红,何淑英,李继香,等. PCR-DGGE分析啤酒废水生物处理工艺的微生物区系[J].环境科学,2008,29(10):2950-2955.
    [165]朱阳玲.采用PCR-DGGE方法研究浙江玫瑰醋酿造过程中的微生物多样性[D].浙江:浙江工商大学,2009.
    [166]王丽平,郑丙辉.天津新港区潮间带沉积物细菌群落结构[J].应用与环境生物学报,2011,17(3):303-306.
    [167]Armstrong W. Aeration in higher plants, Advances in Botanical Research [M].London: Academic Press,1979:225-332.
    [168]Lynch J M, Whipps J M. Growth and cell wall changes in rich roots duringspaceflight[J]. Plant Soil,1990,129:1-10.
    [169]Baudoin E, Benizri E, Guckert A. Impact of artificial rot exudates on the bacterialcommunity structure in buck soil and maize rhizophere[J]. Soil BiolBiochem,2003,35:1183-1192.
    [170]涂书新,孙锦荷,郭智芬,等.根系分泌物与根际营养关系评述[J].土壤与环境,2000,9(1):64-67.
    [171]迟明磊,阚光锋,史翠娟,等.一株南极细菌(Pseudoalteromonas sp.)对模拟海水养殖水体的净化作用[J].极地研究,2010,22(3):313-320.
    [172]蔡晶晶.链霉菌的筛选及其降解水中含氮杂环化合物的特性研究[D].浙江:浙江工商大学.
    [173]http://biobar.hbhcgz.cn/Article/ShowArticle.asp?ArticleID=5471.[DB/OL].
    [174]http://www.touching.cn/index.php?act=product&code=view&ids=86582.[DB/OL].
    [175]吴常量,王鑫,邵宗泽.印度洋表层海水石油降解菌的多样性分析[J].微生物学报,2010,50(9):1218-1225.
    [176]林姚连等.四柳岸游生物附悴巾自形成过程.全国海洋湖泊生态学术讨论会论文汇编.1983.
    [177]吴为中,邢传宏,王占生.生物陶粒滤池预处理富营养化水库水源的净化效果与工艺参数[J].北京大学学报(自然科学版),2003,39(2):262-269.
    [178]Kadlec, R.H., Wallace, S, D. Treatment Wetlands, second ed [M]. CRC Press,2009.Boca Raton, USA,1016pp.
    [179]Wu H M, Zhang J, Li P Z, et al. Nutrient removal in constructed microcosm wetlandsfor treating polluted river water in northern China [J]. Ecological Engineering2011,37:560-568.
    [180]赵联芳,朱伟,赵建.人工湿地处理低碳氮比污染河水时的脱氮机理[J].环境科学学报,2006,26(11):1821–1827.
    [181]魏星,朱伟,赵联芳,等.植物秸秆作补充碳源对人工湿地脱氮效果的影响[J].湖泊科学,2010,22(6):916-922.
    [182]成水平,夏宜睁.香蒲、灯心草人工湿地的研究—Ⅲ.净化污水的机理[J].湖泊科学,1998,10(2):66-71.
    [183]梁威,吴振斌,詹发萃,等.人工湿地植物根区微生物与净化效果的季节变化[J].湖泊科学,2004,16(4):312-317.
    [184]郑少奎,张燕燕,杨志峰,等.低温下表面流人工湿地中氨氮型富营养化水体净化研究[J].环境科学,2006,27(10):2014-2018.
    [185]Valipour A, Raman V K, Ghole, V S. A new approach in wetland systems for domesticwastewater treatment using phragmites sp. Ecological Engineering[J].2009,35:1797-1803.
    [186]Jing S R, Lin Y F. Seasonal effect on ammonia nitrogen removal by constructedwetlands treating polluted river water in southern Taiwan. Environmental Pollution[J].2004,127:291–301.
    [187]武俊梅,王荣,徐栋,等.垂直流人工湿地不同填料长期运行效果研究[J].中国环境科学,2010,30(5):633-638.
    [188]KADLEC R H, KNIGHT R L. Treatmeat Wetlands[M]. Florida: CRC Press,1996.
    [189]龚秦红,田光明.垂直流湿地对生活污水中磷的去除效果研究[J].农业环境科学学报,2004,23(6):1046-1049.
    [190]聂志丹,年跃刚,金相灿,等.3种类型人工湿地处理富营养化水体中试比较研究[J].环境科学,2007,28(8):1675-1680.
    [191]张建,何苗,邵文生,等.人工湿地处理污染河水的持续性运行研究[J].环境科学,2006,27(9):1760-1764.
    [192]Armstong J, Armstong W, Beckett P M. Phragmites austalis: venturi-andhuimidity-induced pressure flows enhance rhizome aeration and rhizosphereoxidation[J]. New Phytologist,1992,120:197-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700