用户名: 密码: 验证码:
SMAIP系统开发及其在村镇污水治理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国村镇经济技术基础薄弱,开发低投资、低成本、高效、维护简单的工艺是村镇污水治理的关键环节之一。课题组采用静态试验、野外自然生态净化试验和工业化生物强化试验,在超深厌氧塘区厌氧消化、固定化生物载体强化、人工浮岛吸收吸附以及悬浮式移动曝气系统多级A/O的基础上,开发悬浮式移动曝气综合塘强化生态技术(简称SMAIP系统),并对其性能及机理进行研究。
     研究表明:SMAIP系统培养过程简单、启动快。悬浮式移动曝气采用微孔膜式移动曝气,充氧性能优于机械移动式表面曝气,溶解氧可方便控制。悬浮式移动曝气用于生态塘强化试验,污染物COD_(Cr)、氨氮、TP净化效率分别为81%、80%和55%以上。比对照样净化效率分别提高37.5%、30%、12.5%。源水TN浓度过高,C/N值低,系统对TN净化效率影响不明显。固定化生物载体提供较大的生物接触表面积和更强的表面吸附性,提供更多的硝化菌、反硝化细菌数量,提高脱氮效率;并通过载体的过滤、吸附与沉淀强化除磷。固定化生物载体用作生态塘强化手段对COD_(Cr)、氨氮、TN、TP平均净化效率分别达87.69%、72.65%、41%、83.98%,比对照样分别提高22.15%、15.33%、8.65%、34.41%。人工浮岛水生植物净化能力与生长特征表现一致。试验浮岛水生植物中千屈菜生长快,水生黄鸢尾茎叶繁茂。根系泌氧能力:水生黄鸢尾>千屈菜。经4d稳定运行后,水生黄鸢尾、千屈菜浮岛对COD_(Cr)、氨氮、TN和TP平均净化效率分别达50%、50%、15%和70%以上。
     针对不同气候条件,SMAIP系统分别采用无动力自然生态净化模式和工业化生物强化模式。无动力模式SMAIP系统对COD_(Cr)、氨氮、TN和TP的平均净化效率为60.89%、31.20%、19.7%和21%。净化效率与水温相关系数R2分别为0.6928、0.8544、0.6796和0.8519,相关性显著;与HRT相关系数R2分别为0.8975、0.8558、0.5372和0.9023,除TN外呈显著性相关,用完全混合CSTR模型COD一级反应动力学模型描述SMAIP系统的净化过程,并用Arrhenius定律描述温度对反应速率的关系,得出数学模型公式为:Ce=C0(1+1.38×1.23(T-20)×Tm)。实测值与模型计算值之间的相关系数为0.7814。工业化模式COD_(Cr)、氨氮、TN、TP平均净化效率为90.28%、92.78%、60%、52.43%,冰冻期水温维持在9~15℃,出水低于城镇污水处理一级排放标准,净化效率与水温相关性不明显,较低温度下的除磷效果比较高温度下反而高。工业化模式系统主要利用微生物对有机基质的利用,采用Monod一级反应动力学模型来描述生化降解过程,得出数学模型公式为:S SOe. .TX。实测值与模型计算值之间的相关系数为0.9553。以1000人大型村庄为案例,SMAIP系统投资约15万元,占地600m2,运行费用0.662万元/年,装机1.5KW。
The level of economic and technological is relatively low in our country, andDeveloping low investment cost, high efficiency, simple maintenance processaccording to the local conditions is a key link in our village sewage treatment. Ourresearch group carried enhanced means experiment on traditional natural ecologicalpurification system based on the towns and villages sewage characteristics, duringwhich, static tests, natural field ecological experiment, and industrialized-assistedbiological mode of operation were applied respectively. Our researches strengthenedthe means of suspended mobile artificial aeration, artificial floating island andimmobilized biological carrier, together with the ultra anaerobic digestion in theexperiment, developed the Suspended Mobile Aeration Integrated Process (short asSMAIP) , and preliminary study and research its properties and mechanism. The mainconcussions of the paper are as follow:
     The SMAIP system is simple cultured and fast started, professionals are notnecessary in the starting period.Suspended mobile aeration applies a microporousmembrane, which is better than the artificial aeration. Dissolved oxygen can be easilycontrolled. The purifying effect of suspended mobile aeration on COD_(Cr),NH3-N,TP issignificant, the removal efficiency reaches over 81%, 80%, and 55%, respectively.The purification efficiency was improved by 37.5%, 30% and 12.5% higher than theexperimental samples. During the trial period, the ratio of C/N in the source water istoo low, no significant effect on the TN purification efficiency.The immobilizedbiocarrier has bigger contact surface area and enhanced surface adsorption, containinga large number of nitrifying bacteria, denitrifying bacteria, which accelerates thedegradation of nitrogen. The immobilized biocarrier had significant purifying effecton the removal of COD_(Cr), NH3-N,TN and TP, up to 87.69%, 72.65%, 41% and83.98% , respectively. The purification efficiency was improved by 22.15%, 15.33%,8.65% and 34.41%.The purtrification capacity of the artificial floating islands appearconsisitance with the growth characteristics of the aquatic plants. During the trialperiod, the Lythrum grows fastest; aquatic yellow iris has the most luxuriant stemsand leaves. During 4 days stable operation, the Lythrum and aquatic yellow islandshad significant purifying effect on the removal of COD_(Cr), NH3-N,TN and TP, up to50%, 50%, 15% and 70%, respectively. Reed floating islands grew downward with less fibrous roots. During the trial period, the adsorption capacity was weak, and theremoval of COD_(Cr), NH3-N,TN and TP, up to 50%, 20%, 6% and 45%, respectively.
     SMAIP system apply the natural ecological non-powered mode or theindustrialized biological mode on different season, water temperature, llluminationand different growing season of the aquatic plants.
     In the natural ecological non-powered mode, the average purification efficiencyof COD_(Cr), NH3-N,TN and TP was 60.89%, 31.20%,19.7% and 21%, respectively. Thecorrelation coefficient between the purification efficiency and the water temperaturewas 0.6928, 0.8544, 0.6796 and 0.8519, respectively, and the correlation coefficientbetween the purification efficiency and the HRT was 0.8975, 0.8558, 0.5372, and0.9023, respectively. the SMAIP system consistent with total mixed CSTR model.Using Arrhenius law to describes the relationship of temperature on reaction rate, themathematical model formula was derived as: Ce=C0(1+1.38×1.23(T-20)×Tm). Thecorrelation coefficient between the measured values and calculated values was0.7814.
     Supplemented by the industrialized biological mode, the system purificationefficiency of COD_(Cr)、NH3-N、TN and TP was significantly improved till 90.28%,92.78%, 60% and 52.43%, respectively. For most of the time the effluent waterquality was lower than 1A emissions standard (GB1898-2002). The correlationcoefficient between the purification efficiency and the water temperature is lower, thephosphorus removal under lower temperature was relatively better than that in highertemperature. SMAIP system use of microbial utilization of organic substrate, theMonod kinetic model was applied to describe the biochemical degradation processand the mathematical model was derived formula as: S STOe. .X.The correlation coefficient between the measured values and calculated values was0.9553.
     In the case of large village with population of 1000, the investment of SMAIPsystem is about RMB 150,000 yuan, covers an area of 600m2, the operating cost is6620 yuan per year and the total installed capacity is 1.5kw.
引文
[1]中华人民共和国建设部,国家质量监督检验检疫总局,中华人民共和国国家标准《:镇规划标准》(GB50188-2007) [R].北京:北京科文图书业信息技术有限公司,2007
    [2]王俊华,陈俊敏.付永胜等.四川省重点流域农村生活污水排放现状调查. [J].广东农业科学. 2010年第5期,150-152.
    [3]尹洁,郑玉涛,王晓燕.密云水库水源保护区不同类型村庄生活污水排放特征. [J]农业环境科学学报2009,28(6):1200-1207.
    [4]何少林.高效藻类塘处理农村生活污水氮磷去除机理及工艺研究.[博士学位论文].上海:同济大学,2006.
    [5]刘超翔.提高人工湿地处理生活污水效能的研究. [博士学位论文].北京.清华大学.2003年.
    [6]中华人民共和国住房和城乡建设部:农村生活污水处理技术指南(试行). [J].给水排水2011年第9期.
    [7]郭运功,林逢春,吕永鹏等.上海市新农村生活污水处理现状分析及对策.[J].中国给水排水.2008,24(10). 7-10.
    [8]杨林林,王成志,杨胜敏.北京地区农村污水处理系统研究.[J].北京农业职业学院学报.2010,24(4).39-42.
    [9]上海市建设和交通委员会,上海市水务局、环保局、市容环境卫生管理局:上海市农村生活污水处理技术指南。[R].2008年7月.
    [10]中华人民共和国住房和城乡建设部:镇(乡)村排水工程技术规程(CJJ124-2008) [R].中国建筑工业出版社,2008.
    [11]中华人民共和国住房和城乡建设部,国家质量监督检验检疫总局:村庄整治技术规范(GB50445-2008) [R].中国建筑工业出版社,2008.
    [12]谢良林,黄翔峰,刘佳等.北方地区农村污水治理技术评述[J].安徽农业科学,2008,36(19):8267-8269.
    [13]李颖,季帅,蔡妍.北京农村污水处理模式研究[C]. 2010年农村生活污水处理实用技术高级研讨会论文集.北京建筑工程学院.2010.208-214.
    [14]鲍振博,靳登超,刘玉乐等.无动力组合型人工湿地处理农村生活污水工程实践. [J].中国给水排水, 2009,25(20).47-48.
    [15]季冰.生态塘一湿地藕合系统处理上海崇明地表水研究. [博士学位论文].东华大学,2010.
    [16]张增胜.农村分散式污水处理适用技术及机理研究. [博士学位论文].东华大学,2010.
    [17]冯华军.分散式生活污水处理工艺开发及机理研究. [博士学位论文].杭州:浙江大学,2008.
    [18]杨彬彬.集镇污水组合交替式曝气塘工艺开发研究. [硕士学位论文].上海:同济大学,2009.
    [19]冉全.生物生态组合技术处理乡村生活污水的应用研究. [硕士学位论文].南京:东南大学,2008.
    [20]尹建锋,文科军,吴丽萍.绿化带下的生态复合塘污水处理工艺设计[J].环境科学与技术,2010, 33 (9):146-149.
    [21]翟鸿飞,邹仲勋,杜华明.内置渗透墙型生态塘处理农村生活污水的研究[J].环境科学与管理, 2009, 34 (1),89~92.
    [22]王桂芳,王大义,章志元.人工湿地+生态塘处理农村生活污水工程实例[J]环境工程2010,28 (4),6-8.
    [23]段慧源,赵树兰,多立安.生态塘组合工艺在天津滨海新区城市污水处理中的应用策略.[J].天津师范大学学报(自然科学版),2010,30(2):62-66.
    [24]张娅婷,杨桂芳,李飞飞.无根萍对污水塘的净化.[J].信阳师范学院学报(自然科学版),2011, 24(4):474-475.
    [25]武琳慧,吴林林,黄民生等.人工浮床及其在污染水体治理中应用进展[J].净水技术,2006, 25(4):8-10.
    [26]张婉璐,刘君寒,李力,李福利等,人工浮岛技术在污水生态修复中的应用.[J].环境与可持续发展, 2010, 4:48-50.
    [27]武琳慧,吴林林,黄民生等.人工浮床及其在污染水体治理中应用进展.[J].净水技术,2006,25 (4) : 8-10.
    [28] Sun L, Liu Y, Jin H. Sitrogen removal from polluted river by enhanced floating-bed frowncanna[J]. Ecological Engineering,2009, 35:135-140.
    [29]李军,杨秀山.微生物与水处理工程[M].北京:化学与工业出版社,2002.
    [30]贺延龄.编著.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    [31] Becer Stein Teichmann著.现代德国除磷脱氮技术[M].袁国文译.青岛中德城市污水处理培训中心.
    [32] Alvarez, J A, Becares E. The effect of plant harvesting performance of a free water surfaceconstructed wetland [J] Journal of Environmental Engineering and Science, 2008,8: 1115-1122.
    [33]S.Hoeger.Germany’S artifieial floating island [J].Journal of Soil and WaterConservation,1988, 43(4):25-27.
    [34]Li X N, Song H L, L W,etal. An integrated ecological floating-bed employing plantfreshwater clam and biofilm carrier for purification of eutropbic water [J].EcologicalEngineering,2010,36:382-390.
    [35]Stewart, F. M., Mulholland, T., Cunningham, A.B., Kania, B. G., T. Osterlund, M., Floatingislands as analtern ative to constructed wetlands for treatment of excess nutrients from agriculturaland municipalwastes–results of laboratory scale tests [J]. Land Contamination & Reclamation2008,1(16): 25~33.
    [36]Li S, Li H, Liang X, etal. Rural wastewater irrigation and nitrogen removal by the paddywetland system in the Tai Lake region of China [J]., Journal of Soils and Sediments, 2009,9:433-442.
    [37] Tanner,C.C., Tom, H. , Floating treatment wetlands–an innovative solution to enhanceremoval offine particulates,copper and inc [C]. InStorm water Conference, NationalInstitute of Water & Atmospheric Research, 2008.
    [38] Lasber C,Dvszvnski G, Everett K, etal. The diverse bacterial anaerobic sediments at SapeloIsland, Georgia Mierobiol Eecology, 2009, 58:244-261.
    [39] Bereschenoko L A, Heilig G H J, Nederlof M M, etal. Molecular characterization of thebacterial communities in the different compartments of a full-scale reverser-osmosis waterpurification plant[J].Applied and Environmental Microbiology,2008,74:5297-5304.
    [40] Xia S Q, Li. J X, He S Y, etal. The effect of organic loading on bacteria of memhrane biofilmsin a submerged polyvinyl chloride memberane bioreactor[J], Bioresourece Technology 2009,17:6601-6609.
    [41] Huang L N, De Wever H, Diels L. Diverse and distinct bacterial communities inducedbiofilm fouling in membrane bioreactors operated under different conditions [J]. EnvironmentalScience and Technology,2008,22:8360-8366.
    [42] Tien C J, Wu W H, Chuang T L, etal. Development of river biofilms on artificialsubstrates and their potential for biomonitoring Water quality[J].Chemosphere, 2009,9:1288-1295
    [43]相洪旭,李田,陆斌,曹玉梅.漂浮植物塘协同处理农村分散生活污水研究[J].环境工程学报, 2009,3(12):2143-2147.
    [44]孙连鹏,冯晨,刘阳,金辉.强化生态浮床对珠江水中氮污染物去除研究[J].中山大学学报(自然科学版学报),2009,48(1):93-97.
    [45]郭杏妹,刘素娥,张秋云等.三种人工湿地植物处理农村生活污水的净化效果[J].华南师范大学学报(自然科学版),2010,1:105-109.
    [46] Qin B. Lake eutrophication:control countermeasures and recycling exploitation [J].EcologicalEngineering, 2009, 35:1569-1573.
    [47]王磊,刘智,陈晓东.北方人工湿地植物选择与调控的实验与应用研究[J].环境科学导刊2008,27(3):8-10.
    [48]马立珊,骆永明,吴龙华等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究[J].土壤,2000,2:99-101.
    [49]黄田,周振兴,张劲,李兆华.富营养化水体的水芹菜浮床栽培试验.[J].污染防治技术,2007年第20卷第3期.
    [50]韩潇源,宋志文,李培英.高效净化氮磷污水的湿地水生植物筛选与组合.[J].湖泊科学,2008,20(6):741-747.
    [51]付融冰,朱宜平,杨海真,顾国维.连续流湿地中DO, ORP状况及与植物根系分布的关系.[J].环境科学学报,2008,28(10):2036-2041.
    [52]戴波,胡小兵.水生经济植物净化水质研究.[J].安徽工业大学学报,2006,23(1):47-49.
    [53]张敏,梅凯,张睿等.组合植物型人工浮岛连续净化生活污水研究. [J].安徽农业科学,2011,39( 9) :5199-5200,5202.
    [54]Tian Xin-yuan, LI Yan,GUO Xiao. Water Quality Purifying Effect of Five Kinds of AquaticPlants in Winter.[J].Agricultural Science&Technology,2010,11(7):53-55.
    [55]徐功娣,张增胜,韩丽媛,陈季华.强化生态浮床与普通浮床对污染物净化效果对比研究.[J]水处理技术,2010,36(4):93-96.
    [56]马强,高明瑜,谭伟.新型生态浮岛在改善水质中的作用及生物膜载体微生物特征研究.[J].环境科学2011,32(6):1596-1601.
    [57]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    [58]李今,吴振斌,贺峰.生物膜活性测定中TTC-脱氢酶活性测定法的改进[J]吉首大学学报(自然科学版),2005.26( 1): 37-39.
    [59]中国科学院南京土壤研究所微生物室土壤微生物研究法[M].北京:科学出版社,1985.
    [60]布坎南R E,吉本斯N E,伯杰氏细菌鉴定手册(第9版)[M].北京:科学出版社,1994.
    [61] Wu Z.B., Qiu D.R. Studies on eutrophicated water quality improvement by means of aquaticmacrophytes. J Wuhan Bot Res., 2001, 19(4):299-303(in Chinese)
    [62]李海,孙瑞征,陈振选等.城市污水处理技术及工程实例[M].北京:化学工业出版社,2002
    [63]曹奎贤,袁辅恩,安勇平.井灌区土质渠道水温变化规律的探讨.[J].黑龙江水利科技,2007,35(2).
    [64]刘眷光,金相灿,孙凌等.水体pH和曝气方式对藻类生长的影响.[J].环境污染与防治2006,28(3).161-163.
    [65]张文艺,姚立荣,王立岩等.植物浮岛湿地处理太湖流域农村生活污水效果.[J].2010,26(8),279-284.
    [66]北京市市政工程设计研究总院.《给水排水设计手册》,第5册,城镇排水(第二版)[M].北京:中国建筑工业出版社,2009,336-337.
    [67]潘继征.人工增氧型复合湿地净化村镇污水[D],中科院南京地理所,2009,53-54.
    [68]朱雅兰.污水生物脱氮除磷处理工艺的研究:[硕士学位论文].武汉:华中师范大学,2002.
    [69]张自杰.排水工程下册(第四版)[M].北京:中国建筑工业出版社,2000.
    [ 70 ]陆轶峰.城市污水生物脱氮除磷常规工艺分析[J].云南环境科学,2002,21(1):47~49.
    [71]王韬. MSBR脱氮除磷特性及影响因素研究:[硕士学位论文].西安:西安建筑科技大学,2004.
    [72]许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社,2000.
    [73]李勇智.短程生物脱氮和反硝化除磷的基础研究:[硕士学位论文].哈尔滨:哈尔滨工业大学市政工程环境学院,2003.
    [74]张小玲,王志盈,彭党聪等.低溶解氧下活性污泥法的短程硝化研究[J].中国给水排水,2003,19(7):1~4.
    [75]邓贤山,周恭明.硝化反应及其控制因素[J].能源环境保护,2003,17(2):46~48.
    [76]高大文,彭永臻,王淑莹.短程硝化生物脱氮工艺的稳定性[J].环境科学,2005,26(1):63~67.
    [77]唐光临.焦化废水亚硝化反硝化生物脱氮的研究:[博士学位论文].重庆:重庆大学,2002.
    [78]高大文,彭永臻,王淑莹.不同控制模式下SBR的短程硝化反硝化[J].中国给水排水,2004,20(6):9~11.
    [79]高大文,彭永臻,郑庆柱. SBR工艺中短程硝化反硝化的过程控制[J].中国给水排水,2002,18(11):13~18.
    [80]杨庆,彭永臻.中试规模的城市污水常、低温短程硝化反硝化[J].中国给水排水,2007,23(15):1~3.
    [81]周毅,杨开,杨德勇.污水生物处理过程中的同步硝化反硝化研究概况[J].环境科学与技术. 2001,24(6):6~8.
    [ 82 ]梁刘艳,汪萍.废水脱氮中好氧反硝化现象的研究[J].工业用水与废水,2004,35(2):33~35.
    [83]张小玲,李斌,杨永哲等.低DO下的短程硝化及同步硝化反硝化[J].中国给水排水,2004, 20(5):13~16.
    [84]贾呈玉,李道棠,杨虹.低碳氮比废水生物脱氮新技术[J].上海环境科学,2003, 22(5):349~352.
    [ 85 ]李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究[J].给水排水,2001,27(1):22~24.
    [86]高守有,彭永臻,王淑莹等. Orbal氧化沟生物脱氮的中试研究[J].中国给水排水,2005,21(8):5~9.
    [87]杨麒,李小明,曾光明等.同步硝化反硝化的形成机理及影响因素.环境科学与技术,2004,27(3):102~104.
    [88]邹联沛,张立秋,王宝贞等. MBR中DO对同步硝化反硝化的影响[J].中国给水排水,2001,17(6):11~14.
    [89]Olley Kaempfer Steller. Simultaneous nitrification and denitrification in activatedsludge floc:[Thesis for the doctor degree]. University of Missouri-Rolla,U.S.A. 2003.
    [90]Garcia, J., Mujeriego, R. and Hernández-Mariné, M. High rate algal pond operating strategiesfor urban wastewater nitrogen removal [J]. Journal of Applied Phycology, 2000,12(35): 331-339.
    [91]北京市市政工程设计研究总院.给水排水设计手册.第5册.城镇排水[M].第2版.北京:中国建筑工业出版社,2003.
    [ 92 ]Sun, C.J., Zhang, M.X. Application of aeration technique in river pollution control.Environmental Protection. 2001, 4:12-14, 20.
    [93]解艳萃,尹军,周爱丽等.污水生物除磷系统内微生物群体平衡对除磷效果的影响[J].吉林建筑工程学院学报, 2008,(1):8~12.
    [94]沈耀良,王宝贞.废水生物处理新技术[M].北京:中国环境科学出版社:1999.
    [95]William P B, Stuckey D C. Nitrogen removal in a modified anaerobic baffled reactor (ABR):denitrification[J]. Water Res., 2000, 34(9):2413-2422.
    [96]郑平,冯孝善.废水生物处理理论与技术[M].杭州:浙江教育出版社,1997.
    [ 97 ]Zart D, Schmidt I, Bock E. Significance of gaseous NO for ammonia oxidation byNitrosomonas eutropha[J]. Antonie van Leeuvenhoek, 2000, 77:49-55.
    [ 98 ]Hyungseok Yoo, Kyu-Hong Ahn. Nitrogen removal from synthetic wastewater bysimultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aeratedreactor[J]. Wat Res, 1999, 33(1):145-154.
    [99]王国祥,成小英,濮培民;湖泊藻型富营养化控制-技术、理论及应用[J];湖泊科学; 2002年03期.
    [100]胡绵好.水生经济植物浮床技术改善富营养化水体水质的研究:[博士论文].上海:上海交通大学,2008.
    [101]蒋跃平,葛滢,岳春雷,常杰.人工湿地植物对观赏水中氮磷去除的贡献[J],生态学报,2004年第24卷第8期.1720-1725.
    [102]李军,杨秀山.微生物与水处理工程[M].北京:化学与工业出版社, 2002.
    [103]曹蓉.东营生态塘中生物及污染物去除的机理:[博士论文].哈尔滨工业大学,2005.
    [104]Liesje De Schamphelaire, Leen Van Den Bossche, Hai Sondang, et al. Microbial fuel cellsgenerating electricity from rhizodeposites of rice plants [J]. Environ. Sci.Technol, 2008,42(8):3053-3058.
    [105]国家环境保护总局,国家质量监督检验检疫总局.中华人民共和国国家标准:城镇污水处理厂污染物排放标准(GB 18918-2002 ) [R].北京:中国环境出版社,2003
    [106]国家环保总局.农田灌溉水质标准(GB5084-92)[R].中国:中国国家标准.1992.
    [107]付融冰,杨海真,顾国维,张政.人工湿地基质微生物状况与净化效果相关分析. [J],环境科学研究, 2007年03期.
    [108]Hamlin, R.L., Mills, H.A., Randle W.M. Growth and nutrition of pansy as influenced byN-form ratio and temperature. Journal of Plant Nutrition. 1999, 22(10):1637-1650.
    [109]Grafts-Brander, S.J. and Salvucci, M.E., Rubisco activase constrains the photosyntheticpotential of leaves at high temperature and CO2. Proc. Natl Acad. Sci. USA.2000a,97:13430-13435.
    [110]Grafts-Brander, S.J.Law, R.D. Effect of heat stress on the inhibition and recovery of theribulose’s catalytic chaperone. Photosynthesis by heat stress: the activation state of rubisco as alimiting factor in photosynthesis.Physiol. Plant, 2004, 120:179-186.
    [ 111 ]Portis, A.R. Rubisco activase-rubisco’s catalytic catalyticchaperone.Photosyth.Res.,2003,75:11-27.
    [112]Salvucci, M.E., Crafts-Brander, S.J. Inhibition of photosynthesis. Physiol. Plant.,2004,120:179-186
    [113]Korner, C. Alpine Plant Life: Funtional Plant Ecology of High Moutain.1999.
    [114]Hobbie, S.E.,Schimel, J.P., Trumbore, S.E. Controls over carbon storage and turnover inhigh-latitude soils. Global Change Biology. 2000,6:196-210.
    [115]Hobbie, S.E., Nadelhoffer, K.J., Hogberg, P. A synthesis: The role of nutrients as constraintson carbon balances in boreal and arctic regions. Plant Soil. 2002, 242:163-170.
    [116]Wood, S.L., Wheeler, E.F., Berghage, R.D., Graves, R.E. Temperature effects on wastewaternitrate removal in laboratory scaled constructed wetlands. Transactions of the ASAE.1999,42(1):185-190.
    [117]Liang-Ming Langmuir Whang. Investigation of enhanced biological phosphorusremoval at different temperatures:microbial competition,kinetic,stoichiometry,and theeffects of sludge age:[Doctor Thesis]. University of Wisconsin-Madison,2002.
    [118]陈玲芳,氧化塘处理高含盐采油废水的数学模型研究:[硕士论文].四川:四川大学,2005.
    [119]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社.2000,3-4,14-16, 56-60。
    [ 120 ]陈黎明,柴立和.生物膜废水处理系统的数学模型及机理探讨[J].自然科学进展,2005.vol.15(7), 843-848.
    [121]廖日红,顾华,申颖洁,黄赞芳.北京市农村生活污水排放现状调研与分析. [J],中国给水排水, 2011,27(2):30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700