用户名: 密码: 验证码:
季节性冻融渠基土壤水分运移特性及大型弧线形渠道防渗抗冻胀理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渠道防渗是节水灌灌的重要技术措施之一。但是,我国季节性冻土分布约占国土面积的54%,在北方地区,一年近1/4时间地表及其附近存在季节性冻融,使渠道工程在冻融作用下发生冻胀破坏。因此,研究我国北方地区季节性冻融对防渗渠道的冻胀理论与技术成为重要课题。
     本文在查阅国内外大量相关文献的基础上,结合北方地区季节性冻融特点,采用室内试验与原型观测、理论分析与数值模拟相结合的技术路线,较系统地研究了季节性冻融作用下大型U形混凝土衬砌渠道渠基土壤水分运移特性和不同结构形式的大型弧形坡脚梯形防渗渠道的抗冻胀理论与关键技术,对防渗膜料的抗拉、变形、抗裂、抗渗及抗老化性能及土膜复合材料抗剪性能进行了试验研究,提出了膜料防渗渠道边坡稳定性计算方法,建立了渠道防渗经济效益模型。主要研究成果为:
     (1)通过一个完整季节性冻融循环作用下大型U形混凝土衬砌渠道的原型观测,获得了渠基不同部位和0-40 cm深度范围的水分运移特征,探讨了地下水深埋条件下大型U形混凝土衬砌渠道抗冻胀机理和渠基土壤水分运移机理,采用时间序列法对冻融期含水率变化进行了回归分析,用水分运动基本方程和热流运动基本方程建立了渠基冻融水热耦合运移数学模型,采用混合型Richards方程对冻结过程中渠基非饱和土壤水分运移进行了数值模拟,研究了大型U形混凝土衬砌渠道在季节性冻融作用下的冻深、地温、含水率、冻胀量、冻胀应力等参数之间的相互关系,建立了大型U形混凝土衬砌渠道冻深、冻胀量预测模型。使冻深、冻胀预测从纯经验方法向基于冻胀机理的方向发展,研究成果为大型U形混凝土衬砌渠道设计提供理论依据。
     (2)通过对大型弧形坡脚梯形防渗渠道的冻胀原型观测,较系统研究了大型弧形坡脚梯形渠道防渗抗冻胀理论,揭示了板膜复合防渗渠道的抗冻胀特点。试验提出了渠道衬砌材料和嵌缝材料最佳配合比,并对其性能进行了评价。针对北方寒冷地区特点,研究了混凝土预制板(8 cm、10 cm和П形)复合塑膜、现浇混凝土肋板复合塑膜、沥青混凝土预制板,混凝土预制板复合塑膜封闭土层(全断面封闭、半断面封闭和封闭渠底)共计4类8种结构形式的弧形坡脚梯形渠道的保温、冻深、变位等特性。通过对渠道板面冻结指数规律研究,提出了由气温冻结指数预测渠道板面冻结指数的计算公式和渠道板面冻结指数修正系数;通过对渠道冻深分布规律研究,提出了由渠道板面冻结指数预测渠道冻深的计算公式和渠道冻深修正系数;通过对渠道冻胀变位规律研究,提出了由冻深和土壤水分预测渠道变位的计算公式和渠道变位修正系数。研究成果为弧形坡脚梯形渠道防渗抗冻胀设计提供了理论依据。
     (3)在室内冻融和紫外线照射快速老化条件下,对防渗膜料的抗拉、变形、抗裂、抗渗及抗老化性能分别进行了试验研究;依据薄膜理论对膜料水压力作用下圆形、正方形、长方形边界时的变形、中心变位及应力应变抗裂模型进行了数学推导;利用膜料水压力鼓胀试验对变直径、变膜料圆形边界条件下的中心变位抗裂模型进行了验证。研究成果为膜料防渗或板膜复合防渗渠道设计和应用提供了理论依据。
     (4)利用直剪仪和三轴仪两种设备,对粘土、壤土和砂壤土在不同干密度、饱和与非饱和试样中铺设不同膜料并变换铺膜倾角时的土膜复合材料抗剪强度进行了试验,提出了土膜三轴抗剪强度的试验方法和直剪抗剪强度的折减系数及膜料防渗渠道边坡稳定性计算时土膜抗剪强度的理论值。
     (5)结合我国渠道膜料防渗土保护层的实际,研究了渠道边坡稳定性的影响因素;通过试验资料建立了渠道边坡稳定性安全系数与粘土和壤土干密度、粘聚力、内摩擦角、渠道水深、边坡系数及土保护层厚度之间的关系函数;提出了膜料防渗不同土质保护层渠道的不冲流速;研究了渠道边坡稳定控制时期、渗透水压力、最小安全系数、滑裂面位置及形式,提出了膜料防渗土保护层渠道边坡稳定性的计算方法。
     (6)依据经济学原理,分别在经济静态和动态条件下对混凝土衬砌渠道防渗性能随运行时间呈等差数列衰减、等比数列衰减及不随运行时间衰减时的防渗效益进行了较深入研究,建立了混凝土衬砌渠道防渗、维修或改建的判定原则及经济模型,并利用渠道渗漏观测成果进行了渠道防渗的必要性判定和经济效益分析,避免了渠道防渗的盲目性。
Canal seepage control is one of the most important technologies in the water saving irrigation. But the distribution of the seasonal frozen soil in our country is about fifty-four percent, and in the northern area of China it exists on the soil surface or nearby place in almost a quarter of a year, thus some canals are destroyed by it. So the studies of theory and technology on the seasonal freezing and thawing for the seepage control canal in our northern area is becoming the most important subject.
     Based on prototype observation results of two large-arc canals, consulting abundant domestic and foreign interrelated data and using the technical routes which combine laboratory tests with prototype observation and theoretical analysis with numerical simulation, this dissertation systematically focused on the soil moisture movement on the base of U-shape canal with concrete lining in the process of seasonal freezing and thawing and the theory and technology of frost resistance of trapezoidal canal with arc foot lining with concrete and film, did some tests on the films characteristic of tensile, deformation, impermeability and crack resistance in aging time as well as the shear performance between soil and film, proposed the calculating method of side slopes of canal with film impervious and soil protective cover and established the model of effectiveness seepage under static and dynamic conditions. In the thesis, main results are as follows:
     (1) The frost-heaving mechanism of U-shape canal lining with concrete and soil moisture movement on canal base during seasonal freezing and thawing stage were studied on the temperature gradients theory. The characteristics of soil moisture movement within the depth of 40 cm of U-shape canal base were obtained by the prototype observation and the data of observation was analyzed using regression analysis according to time series. On this basis, a model of coupled heat-fluid transport was established by the soil moisture equation combined with heat movement equation in the cyclic process of freezing and thawing. The prediction model of frozen depth and frost-heaving deformation was derived with the amount of soil moisture movement, freezing temperature and observation value of frost depth. The test results show that the simulation and prediction curves were fitting with the prediction curves. The research supplies a theoretical basis for the design of U-shape canal lining with concrete.
     (2) By the prototype observation of large-trapezoidal canal with arc foot lining with the concrete prefabricated with film, the theory and technology of frost resistance of canal lining with concrete and film were studied 1) The optimization of mixing proportion of lining material and caulked material was presented that conformable local source, and the performance was studied in laboratory.2) Based on a fully consideration of the climate characteristics in north area, a section of large-trapezoidal canal with arc foot is designed with benefits to improve the non-uniformity of frost heave deformation, to prevent the occurrence of dislocation and crack, to replace the line after melting, to equalize the distribution velocity and convenience send transportation. The designed section is smaller in size and lower in cost than trapezoidal one. 3) In the structural form, the technology and the methods of avoiding, replacement and insulation had excluded, and 8 kinds of structural forms of 4 class had been designed. These are concrete prefabricated with (concrete prefabricated are consist of 8cm,10cm and∏-shape) concrete cast-in-place with film, bituminous concrete and concrete prefabricated with film of close soil layer (close soil layer are consist of the whole section, half a section closes and only bottom of canal) and, all the structural form were studied and evaluated.4) The research findings of soil temperature, soil moisture, water level, freezing depth, and amount of frost-having were given from large-arc canal.
     (3) The aging of crack resistance of film was studied by the use of freeze-thaw and the ultraviolet shine in laboratory. The results showed that the aging crack resistance of film was reduced to some extent in freeze-thaw and the ultraviolet shine. The mathematical model was established to describe the relation between stress and strain, breaking resistance and deformation high in freeze-thaw. Theoretical foundation has been studied and it was feasible for using as a guide for the design of the polyethylene in canal.
     (4) The shear strength of sample between film and soil was studied, which the soil was different classes or different density in saturated or unsaturated and, the film was changing in classes and angle, the instrument and the equipment were two kinds, one kind was tri-axial shear and the other one was direct shear. The new method and the steps of tests were proposed in shear performance between film and soil by using the result of two kinds of instrument and equipment. The reasonable parameters were provided for calculated stability of side slopes of canal with film impervious and soil protective cover.
     (5) Combined with the reality of prevention of seepage of our country's large-scale canal, the influence of side slopes of canal with film impervious and soil protective cover were studied on water, temperature, wind speed, silt content, soil property, section form of canal and base, film classification, operation and management etc. The new calculated method of side slopes of canal with film impervious and soil protective cover was proposed. The control index of shear strength, coefficient of internal friction and safety factor were studied. The form and position of landside of side slopes of canal with film impervious and soil protective cover were analyzed.
     (6) According to principles of economy, the seepage control effectiveness of canal lining with concrete and film was studied under static and dynamic conditions, and the seepage control performance was geometric progression, arithmetic progression or no change with the time. The judge principles and economic models had been concluded in seepage control. With the examples of seepage observation for calculation, the economy of seepage control effectiveness of canal lining concrete with film has been discussed. It was avoided blindness of the seepage control of canals by necessity judgment of test.
引文
[1]李佩成.论中国农业水土工程面临的新问题及其历史使命[J].沈阳农业大学学报,2004,35(5-6):373-377.
    [2]白丹,魏小抗,王凤翔.节水灌溉技术[M].陕西科学技术出版社,2001.
    [3]建功.发展节水农业推广渠道防渗新成果[J].防渗技术,1997,3(3):1-4.
    [4]任之中,李学军.我国大中型大U型防渗渠道应用总结[J].防渗技术,1996,237-40.
    [5]李安国,建功,曲强.渠道防渗工程技术[M].北京:中国水利水电出版社,1998.
    [6]柯成椿.美国渠道的膜料防渗简介[J].湖南水利,1994,6:30-34.
    [7]SL18-2004.渠道防渗工程技术规范[S].水利电力出版社,2004.
    [8]任之忠,张少宏.对渠道防渗工程设计有关问题的商榷[J].防渗技术,2002.8(4):1-4.
    [9]建功.旧混凝土渠道破坏的原因及修补改建措施[J].防渗技术,2001.7(2):1-7.
    [10]薛洁.渠道防渗现浇混凝土渠道防冻胀衬砌厚度计算[J].河北水利科技,2001,4:38-45.
    [11]石金堂.渠道防渗工程设计及冻害防治问题研究[D].武汉大学硕士学位论文,2004.
    [12]张爱军.特殊土地区渠道防渗问题的探讨[J].人民黄河,2004,12(11):26-27.
    [13]郑泽民,建功.土保护层膜料防渗渠道的调查与分析[J].防渗技术,1996,2(1): 30-35.
    [14]Edwin J C, Anthony J G. Effect of Freezing and Thawing on the Permeability and Structure of Soils[J]. Engineering Geology,1979, (13):73-92.
    [15]吴景海.土工膜料防渗层渗漏流量的计算[J].岩土工程学报,1995,17(2):93-99.
    [16]周维博,李立新,何武权,吕洪光.我国渠道防渗技术研究与进展[J].水利水电科技进展,2004.24(5):60-63.
    [17]郎佳川龙.膨润土防渗毯在宁夏渠道防渗工程中的应用[J].中国建筑防水,2007,1:34-36.
    [18]李志斌.土工织物膨润土垫防渗有效性研及相关机理分析[D].同济大学博士学位论文,2008.
    [19]姜丙阳.含土工膜夹层土坡地震稳定性研究[D].大连理工大学硕士学位论文,2002.
    [20]孙坤君.新型防渗接缝材料性能研究[D].西北农林科技大学硕士学位论文,2007.
    [21]王俊发.渠道塑膜料防渗理论与机械化铺膜的关键技术研究[D].吉林大学博士学位论文,2006.
    [22]郭忠.大型渠道混凝土衬砌防渗中机械化成型技术的研究[D].河海大学硕士论文,2006.
    [23]赵建军,董金梅,等.正冻土的水热耦合模型[J].天津城市建设学院学报,2001,7(1):47-52.
    [24]徐绍新.季节冻土区水工建筑物抗冻害技术研究的成就与展望[A].第五届全国冰川冻土学大会论文集(上),兰州:甘肃文化出版社,1996,291-298.
    [25]Harlan R L. Analysis of copied heat-fluid transport in partially frozen soil[J]. Water Research,1973, 9 (5):1314-1323.
    [26]李述训,程国栋.冻融土中的水热输运问题[M].兰州:兰州大学出版社,1995.
    [27]徐学祖,吴紫汪.冻土缘的基本特征及特征参数确定方法[R].冻土工程国家重点实验室,1990年报,4:28-35.
    [28]郑秀清,樊贵盛.冻融土壤水热运移数值模型的建立及仿真分析[J].系统仿真学报,2001,16(3):308-331.
    [29]杨成松,何平,等.冻融作用对土体干容重和含水量影响的试验研究[J].岩石力学与工程学报,2003,22(增2):2695-2699.
    [30]商怀帅,宋玉普,覃丽坤,于长江.冻融循环后在三向受压荷载混凝土性能的试验研究[J].水利学报,2006,37(7):874-879.
    [31]李金玉,曹建国,徐文雨.混凝土冻融破坏机理的研究[J].水利学报,1999,30(7):41-49.
    [32]刘鸿绪,朱卫中,等.再论冻胀量与冻胀力之关系[J].冰川冻土,2001,23(1):63-66.
    [33]童长江.我国冻土融化压缩性研究[J].冰川冻土.1988,10(3):327-331.
    [34]周池绪,陈德民,等.混凝土U形渠道在新疆高寒地区抗冻胀研究[J].石河子大学学报(自然科学版),1998,2(2):133-136.
    [35]胡永桢.渠基土壤冻胀与衬砌结构变形及破坏规律的研究[J].防渗技术,1999,5(2):41-44.
    [36]余书超,宋玲,欧阳辉等.渠道刚性衬砌层(板)冻胀受力试验与防冻胀破坏研究[J].冰川冻土,2002,24(5):639-6413.
    [37]张伯平,牟过斌,闫宁霞.渠道衬砌体冻胀破坏机理与防治对策[J].水利与建筑工程学报,2003,1, (1): 10-12.
    [38]张茹.大u形混凝土衬砌渠道冻胀破坏力学模型及数值模拟[D].西北农林科技大学硕士学位论文,2007.
    [39]王正中,李甲林,陈涛等.弧底梯形渠道砼衬砌冻胀破坏的力学模型研究[J].农业工程学报,2008,24(1):18-23.
    [40]SL23-2006.渠系工程抗冻胀设计规范[S].
    [41]JGJll8-89.冻土区建筑地基基础设计规范[S].
    [42]Andersland O B. Geotechnical Engineering in Cold Region[M]. Mc Graw-Hill Book Company, 1987.
    [43]朱强.我国渠道冻胀防治综述[J].防渗技术,1994,2(2):7-17.
    [44]张兴,李荫荣,宋征远.吉林省1:200万季节冻深图集[A].第三届全国冻土学术会议论文选集.科学出版社,1989.
    [45]李国安,陈瑞杰,杜应吉,等.渠道冻胀模拟试验及衬砌结构受力分析[J].防渗技术,2000,6(1): 5-16.
    [46]张海燕,杜应吉,张金凯.我国混凝土防渗渠道问题分析[J].利水电科技进展,2004,24(6):52-54.
    [47]刘鸿绪,朱卫中,等.再论冻胀量与冻胀力之关系[J].冰川冻土,2001,23(1):63-66.
    [48]Taylor G S. Luthin J N. A model for coupled heat and moisture transfer during soil freezing [J]. Canadian Geo-technique,1987,15:548-555.
    [49]雷志栋,杨诗秀,谢树传.土壤水动力学[M].北京:清华大学出版社,1988.
    [50]Hope S W. A model for frost heave including over-burden[J]. Cold Region Sci and Tech,1980,3 (2):111-127.
    [51]Gilpin R R. A model for the prediction of ice lens and frost heave in soils [J]. Water Resources, 1985,16 (5):918-930.
    [52]李洪升,刘增利,李南生.基于冻土水分温度和外荷载相互作用的冻胀模式[J].大连理工大学学报,1998,38(1):29-33.
    [53]王希尧.不同地下水埋深和不同土壤条件下的冻结和冻胀试验研究[J].冰川冻土,1980,2(3).
    [54]朱强.渠道渠基土壤冻结与冻胀基本关系的定量试验研究[J].工程冻土,1990,1.
    [55]王俊发,马旭,周海波.混凝土衬砌渠道冻胀破坏的机理及力学分析[J].佳木斯大学学报,2006,24(2).
    [56]Thomas H R, Zhou Z. A comparison of field measured and numerically simulated seasonal ground in unsaturated caly[A]. International Journal for Numerical and Analytical Mathods in Geomechanics.1995,19 (4):249-265.
    [57]柯成椿.美国渠道的膜料防渗简介[J].湖南水利.1994.6.
    [58]Giroud J P, Bachus R C. Robert M K. Influence of water flow on the stability of geosynthetic-soil layered systems on slopes[J]. Geosynthetics International.1995,2 (6):457-472.
    [59]陶同康.复合土工膜及其防渗设计[J].岩土工程学报.1993,15(2):31-39.
    [60]束一鸣,叶乃虎.LDPE土工膜液胀极限载荷的工程仿真实验[J].水利水电科技进展,2003,23(5): 1-3.
    [61]崔中兴,刘兰亭.土工膜渗透特性测试试验研究[J].西北水资源与水工程,1994,5(4):30-35.
    [62]Goldsmith P M, Stessel R I. Multi-Axial testing of Geomembranes[J]. Waste Management & Research,1996,105-124.
    [63]Masahiro S D, Richard J B. Lateral and axial deformation of PP, HDPE and PET geogrids under tensile load [J]. Geotextiles and Geomembranes,2004,22, (4):205-222.
    [64]Tushar K G. Puncture resistance of pre-strained geotextile and its relation to uniaxial tensile strain at failure[J]. Geotextile and Geomembranes.1998,16 (6):293-302.
    [65]顾淦臣.土工膜和复合土工膜的品种和特性[J].水利规划设计,2000,3:26-30.
    [66]Wesseloo J, Visser A T, Rust E. A mathematical model for the strain-rate dependent stress-strain response of HDPE geomembranes[J]. Geotextiles and Geomembranes.2004,22(4):273-295.
    [67]Struve F, Koerner G R. Behavior of HDPE geomembrane sheet and seams subjected to a 90° tensile test[J]. Geo-Frontiers,2005,4345-4351.
    [68]余玲,赵文昌.PVC复合土工膜老化性能初探[J].水利水电技术,1996,11:59-61.
    [69]张慧莉.APP改性塑性体沥青防水毡老化性能试验研究[J].防渗技术,2000,6(4):5-8.
    [70]曹慧林,苑会林,王凤霞.聚乙烯醇缩丁醛薄膜老化机理研究[J].塑料,2006,35(1):68-72.
    [71]何武权,刑义川.渠道防渗抗冻新材料与新技术[J].节水灌溉,2003,1:4-6.
    [72]韩苏建,陈兴安,张海燕,李元婷.一种新型U形混凝土构件成型机械[J].水利与建筑工程学报,2003,1(1):16-17.
    [73]郑顾团,殷有泉.有渗透作用的断裂带破裂机理的研究[J].科学通报,1990,35(15):1167-1170.
    [74]Ng C W W, Shi Q. Influence of transient seepage on slope stability inunsaturated soils[J]. Soils and Foundations,1996,36 (3):250-262.
    [75]Wong H N, Ho K S. General report on landslips on 5 November 1993 at manmade features in Lantau[R]. GEO Report No.44, Civil Engineering Department, Hong Kong Government,1993.
    [76]Cho S E, Lee S R. Instability of unsaturated soil slopes duo to inflitration[J]. Computers and Geotechnics.2001,28 (3):185-208.
    [77]Lam C C, Leung Y K. Extreme rainfall statistics and design rainstorm profiles at selected locations in Hong Kong[R]. Hong Kong:Technical Note No.86, Royal Observatory,1995.
    [78]Ng C W W, Shi Q. Importance of antecedent rainfall duration on slope stability[A]. In: Proceedings of the Second International Symposium on Structures and Foundations in Civil Engineering[C]. Hong Kong,1997,243-250.
    [79]姚琦,黄理兴,吴玉山.福建白琳大嶂山滑坡机制与诱发因素[J].岩石力学与工程学报,1998,17(增):952-955.
    [80]朱文斌,刘宝琛.降雨条件下土体滑坡的有限元数值分析[J].岩石力学与工程学报,2002,21(4):509-512.
    [81]朱文斌.降雨引起土体滑坡的机理研究[D].长沙铁道学院博士学位论文,1998.
    [82]曾宪明,林润德.软土边坡流鼓破坏模式研究[J].岩石力学与工程学报,1999,18(3):336-341.
    [83]秦四清.斜坡失稳的突变模型与混沌机制[J].岩石力学与工程学报,2000,19(4):486-492.
    [84]龙辉,秦四清,万志清.降雨触发滑坡的尖点突变模型[J].岩石力学与工程学报,2002,21(4):502-508.
    [85]武丽.降雨入渗对边坡渗流特性及稳定的影响研究[D].河海大学硕士学位论文,2005.
    [86]彭万巍,蒋允静,张建明.薄膜料防渗渠道的冻融稳定性[J].西北农业大学学报,1996,24(4):90-93.
    [87]水利部农村水利司.渠道防渗工程技术[M].中国水利水电出版社.1998.
    [88]水利部国际合作司.美国国际灌灌工程手册[M].中国水利水电出版社.1998.
    [89]D.B.克拉茨著,何丕承译.灌溉渠道衬砌[M].水利出版社,1980.
    [90]阮新建.带观测器的渠道控制系统设计与运行模拟仿真[J].灌溉排水学报2003,22(2):55-58.
    [91]Kawakata H, Cho A, Kiyama T, et al. Three-dimensional observations of faulting process in Westerly granite under uniaxail conditions by CT-X ay scan[J]. Tectonophysics,1999,33:293-305.
    [92]李平先,郭进军,赵国藩,程红强.冻融时引气剂对新老混凝土黏结面劈裂抗拉性性能的试验研究[J].水利学报,2007,37(7):886-892.
    [93]SL237-1999.土上试验规程[S].
    [94]钱蕴壁,李英能,杨刚.节水农业新技术研究[M].黄河水利出版社,2002.12.
    [95]陈晓飞,田静,刘小洲,都洋.研究冻融侵蚀的融雪积雪水量模型[J].水土保持科技情报,2003,(6): 13-16.
    [96]樊贵盛,郑秀清,潘光在.地下水埋深对冻融土壤水分入渗特性影响的试验研究[J].水利学报,1999,29(3):21-26.
    [97]樊贵盛,郑秀清,赵生义.大田土壤冻融条件下入渗特性的试验研究[J].土壤侵蚀与水土保持学报,1997,3(3)31-37
    [98]尚松浩,雷志栋,杨诗秀.冻结条件下土壤水热耦合运移数值模拟的改进[J].清华大学学报,1997,37(8):62-64.
    [99]尚松浩,雷志栋,杨诗秀,等.冻融期地下水位变化情况下土壤水分运动的初步研究[J].农业工程学报,1999,15(2):64-68.
    [100]Milly P C D. A simulation analysis of thermal effects on evaporation from soil[J]. Water Resource Research,1984,20:1087-1089.
    [101]陈晓飞,田静,张雪萍,等.积雪融雪过程中水、热、溶质耦合运移规律的研究进展[J].冰川冻土,2006,28(1):288-292.
    [102]H.A.崔拖维奇.冻土力学[M].张长庆,朱员林译.北京:科学出版社,1985.
    [103]DL/T5150-2001.水工混凝土试验规程[S].
    [104]DL/T5362-2006.水工沥青混凝土试验规程[S].
    [105]李改琴,李学军,费良军.渠道防渗膜料水压力数学模型与老化抗裂试验研究[J].水资源与水工程学报,2008,19(1):36-39.
    [106]陕西省水利水土保持厅.U形渠道[M].水利电力出版社,1986.
    [107]范晓岚,金秀华.严寒地区灌溉渠道防渗抗冻胀技术的应用[J].黑龙江水利科技,2007,35(2): 182-183.
    [108]刘玉康.板膜复合结构在渠道防渗中的应用[J].安徽水利水电职业技术学院学报,2007,7(2): 17-19.
    [109]李宗尧.农田灌溉与排水[M].北京:中国水利水电出版社,2002.
    [110]Rowe R K. Sangam H P. Durability of HDPE geomembranes[J]. Geotextiles and geomembrane, 2002,20:77-95.
    [111]SL/T231-98.聚乙烯(PE)土工膜防渗工程技术规范[S].
    [112]GB/T 17688-1999.土工合成材料—聚氯乙烯土工膜[S].
    [113]Wesseloo J, Visser A T. Rust E. A mathematical model for the strain-rate dependent stress-strain response of HDPE geomembranes[J]. Geotextiles and geomembranes.2004,22 (4):273-295.
    [114]陈玉田.偏微分方程数值解法[M].河海大学出版社,1994.
    [115]余红松,陈光存.复合土工膜的老化试验研究[J].科技论坛,2005,1:26-30.
    [116]李宁,徐学祖.冻土力学的研究进展与思考[J].力学进展,2001,31(1):95-102.
    [117]赵佩钰,张晓宇.渠道防渗土工膜厚度的探讨[J].防渗技术,1998,4(2):19-24.
    [118]王振铎.土工合成材料在冻胀区渠道防渗中的应用研究[J].中国农村水利水电,2006,3:86-91.
    [119]华东水电学院主编,水工设计手册第四卷土石坝[M],水利电力出版社,1984.
    [120]Cui Y J, Lu Y F, Del age P, Riffard M. Field simulation of in situ water content and temperature changes duo to ground-atmospheric interactions[J]. Geotechnique,2005,55 (7):557-567.
    [121]Ng C W W, Shi Q. A numerical investigation of the stability og unsaturated sool slopes subjected to transient seepage[J]. Coputer abd Geotechnices,1998,22 (1):1-28.
    [122]Giroud J P. Mathematical model of geo-membrane stress-strain curves with a yield peak[J]. Geo-textiles and Geo-membranes.1994,13 (1):235-243.
    [123]王少丽,瞿兴业.防渗渠道顶托渗漏量计算方法的理论探讨[J].水利学报,2008,39(4):476-482.
    [124]全国渠道防渗情报网,渠道及水库防渗技术译文集[A].北京:水利电力出版社,1998.12.
    [125]Homayoon K. Seepage from lined canal using finite-element method[J]. Irrig. Drain. Eng.,2004, 130 (5):441-444.
    [126]Swamee P K, Kashap D. Design of minimum seepageloss nonpolygonal canal [J]. Irrig. Drain. Eng.,2001,127 (2):113-117.
    [127]吕擎峰.土坡稳定分析方法研究[D].河海大学博士学位论文,2005.
    [128]许志方,沈佩君.水利工程经济学[M].水利电力出版社,1987.
    [129]赵田夫.渠道防渗与维修改建设计经济问题研究及应用[J].水利学报,1995,26(9):4-12.
    [130]任之忠.泾惠渠北干一支渠道防渗效果的试验研究[J].防渗技术,1999,5(2):18-23.
    [131]娄宗科,张慧莉,李宗利.田间灌溉渠道防渗效果试验研究[J].水土保持研究,2002,9(2):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700