用户名: 密码: 验证码:
半焦孔隙结构和加压燃烧特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不断发展的第二代增压流化床燃烧联合循环(PFBC-CC)发电技术是洁净煤技术(CCT)在理念上的更新和完善,是洁净煤技术发展的新阶段。实施煤热解、气化、燃烧的分级转化和综合利用,就是根据煤不同形态的特点,采用优化和集成的概念,达到既能使用常规的技术脱除煤利用过程中的污染物,又能实现其高效转化和清洁利用的目的。半焦加压燃烧是第二代PFBC-CC技术的重要组成部分。因此本课题直接选用了常压工业流化床和中试规模增压喷动流化床气化炉半焦,对原煤和半焦进行了孔隙结构和表面形态的测定和分析,对半焦的加压燃烧特性进行了系统地试验研究,并在中试规模热输入1MWt增压流化床燃烧室内进行了半焦燃烧的验证试验。
     用氮气等温吸附(77K)法测量了原煤和加压、常压部分气化后半焦的BET比表面积,并通过BJH法计算了孔比表面积、比孔容、孔径和孔分布。结果表明,原煤在转化为半焦的过程中,孔隙结构变得发达,比表面积、孔比表面积和孔容积明显增大。实验发现半焦的孔比表面积和孔容积分布曲线存在两个明显的峰值,第一个尖峰对应的孔径稍小于2nm,表明微孔的比表面积大大增加;第二个尖峰对应的孔径在3.8nm左右,说明中孔的比表面积增加很快以至于出现了中孔的扩展。加压气化后的半焦孔隙结构更加发达,加压气化比常压气化更能促进半焦孔隙的生成和发展。
     从气化条件、半焦颗粒粒径、半焦工业分析成分三方面定性分析了影响半焦孔隙结构的因素。常压喷动流化床气化中,挥发分析出和热解反应对半焦孔隙的发展和生成起到主导作用;加压气化过程中,碳的气化反应对半焦孔隙的生成和发展有明显的促进作用。在一定的气化工况下,煤焦可能存在一个合适的颗粒尺寸范围,使得挥发分的析出比较彻底,煤焦气化反应进行得比较充分,半焦颗粒的比表面积、孔比表面积和孔容积都能得到充分的发展。本实验中,对常压气化该合适的粒径范围是1mm~1.5mm,对加压气化为0.5mm~1mm。利用扫描电镜,得到了不同粒径原煤和半焦样品的表观结构图像,进一步证实了加压半焦比常压半焦有更为发达的孔隙结构。
     在小型加压试验台上,分别对原煤和两种半焦进行了系统的燃烧特性试验研究;在大型增压流化床燃烧试验台上,进行了半焦加压燃烧的验证试验。研究结果表明:系统压力对煤和半焦的燃烧有不同的影响。随系统压力的增加,炉膛温度逐渐升高,燃烧效率也相应增大;在压力接近于0.5MPa左右时,压力增加,煤的燃烧效率增加减缓,但半焦的燃烧效率仍然增加显著。这一结果对第二代PFBC燃烧室内半焦的燃烧有指导意义。在较低的系统压力下,过量空气系数对半焦燃烧效率有较大的影响;在较高的系统压力下,压力对燃烧的影响占主导因素,过量空气系数的合适范围以不超过1.5为宜。压力下,初始静止床层高度对半焦的燃烧效率有较大影响。对喷动流化床,随静止床高的增加,燃烧效率呈先增大后减小的趋势,对一定的试验装置,存在一个合适的静止床层高度的范围。本文实验条件下,静止床层高度在280~320mm之间比较合适。床层温度受燃料给料量、过量空气系数、炉膛压力、静止床层高度、空气预热温度等工况参数的综合影响,进而影响半焦的燃烧效率。床层温度提高时,燃烧反应速度加快,颗粒燃烧较完全,有利于提高燃烧效率。在小型试验台上,当系统压力为0.5MPa时,半焦的燃烧效率达到94.73%,在大型试验台上,半焦的燃烧效率达到99.20%,充分证明了半焦加压燃烧的优越性。
The developing 2~(nd) generation Pressurized Fluidized Bed Combustion Combined Cycle (PFBC-CC) power generation technology features the state of the art among the current Clean Coal Technologies (CCT) in a new concept of challenging the traditional coal complete gasification. Recognizing the fact that wild gasification of coal in fluidized bed gasifiers hinders the further promotion of gasification efficiency, a new concept is proposed that the coal is gasified in a carbonator first and then is burnt in a higher efficient combustor of PFB that is an optical way to utilize the coals with complete utilization and friendly environmental effect. In a result, the re-combustion of gasified coal-chars play a very important role in the 2nd PFBC-CC technologies for pursuing higher overall power generation efficiency. For the purpose of evaluating the effects of coal-char combustion and studying the coal-char combustion characteristic and providing the data base of designing parameters for industrialized PFBC boiler, the gasified coal-chars from both an industrial atmospheric fluidized bed gasifier and a pilot scale pressurized spouted fluidized bed gasifier were collected for better understanding the superficial features of the coal-chars and its pore structures. The pressurized combustion characteristic of coal-chars was systematically conducted in a bench-scale pressurized fluidized bed combustor. The effects of operational conditions on coal-char combustion efficiency were also experimentally tested. Finally, the coal-chars were fed into a pilot scale of heat input 1 MWt pressurized fluidized bed combustor to verify its utility combustion effects.
     The coal and coal-char samples from atmosphere and pressurized partial gasification were measured by nitrogen adsorption at 77K. Their specific surface areas were determined based on BET model. The average pore size, total pore volumes, pore specific surface areas and pore size distributions were statistically obtained by using BJH theory. The results showed that more abundant pores and larger specific areas and pore volumes were formed after partial gasification. Two peaks were found in distribution curves of the coal-char pore specific surface area and pore volume; the first peak corresponds to a pore diameter of a little less than 2 nm, the second of about 3.8 nm. Such a result implies quick increase of the specific surface areas of less than middle pores and forming a lot of larger than middle pores. It was concluded that gasification at elevated pressure could largely accelerate the pore formation and its further development comparing to gasification at atmospheric condition.
     The influential factors on pore structure of coal-chars were discussed based on the analytical results such as operating condition, coal-char size and coal-char proximate analysis. In atmospheric gasification process, devolatilization of volatile matters and pyrolysis played a leading role to form the abundant pore structure of coal-chars. While in pressurized gasification process, it was the gasification reaction of char that played an additional and dominant positive impact on promoting formation and development of the coal-char pore structure. An assumption could be derived from the variation of coal-char sizes that there maybe exist an optimal coal-char size range that made abundant porosity and bigger pore specific areas to enhance the gasification reaction. In this study, the optimal range of particle size is about 1mm~1.5mm for atmospheric gasification and about 0.5mm~1mm for pressurized gasification. Moreover, applying the Scanning Electron Microscope (SEM) technique into viewing the microscopic surface configuration ofcoal-chars, it further confirmed that the pressurized gasified coal-chars have more developed pore structures than the atmospheric gasified coal-chars.
     The systematical experiments on pressurized combustion characteristic were done in a bench scale test facility for two kinds of gasified coal-chars along with bituminous coal from which the coal-chars were produced. The same cola-chars were also tested in a pilot scale PFBC test rig to verify their utility combustion effect. The results showed that the system pressure and combustion temperature exerted different impacts on combustion of coal and coal-chars. Generally, the combustion temperature and efficiency increased with increasing of the system pressure. When pressure approached to 0.5MPa, the combustion efficiency of coal increased slowly but the combustion efficiency of coal-char continued going up which represented potential advantages of coal-char combustion for the 2nd generation pressurized fluidized bed combustion system because it is usually run at higher pressure much more than the experimental pressure. Under operational condition of low pressure, excess air coefficient affected the coal-char combustion efficiency more; however, under operational condition of a little higher pressure of the test case, the pressure turned to pay a dominant affection to the combustion efficiency. The optimal excess air coefficient was better less than 1.5 for most test runs. At elevated pressure, the combustion efficiency also varied greatly with changes of initial stationary height of bed material in the bench scale spouted fluidized bed. It increased first and then decreased with ever increasing of the initial stationary height, which showed that there existed an optimal height of 280~320mm in the operation condition of this paper. The combustion temperature was dependent on many run parameters such as coal feeding rate, excess air coefficient, system pressure, initial bed height, air temperature, and so on, which directly affected the combustion efficiency of coal-chars. Higher temperature made the coal-chars burnt completely as a result of speeding up the combustion reactions between air and coal-chars and thus benefited the combustion efficiency. At the system pressure of 0.5MPa, the coal-char combustion efficiency reached 94.73% in the bench scale pressurized spouted fluidized bed test facility and 99.20% in the pilot scale 1 MWt PFBC test rig, which indicated the advantage of coal-char combustion at elevated pressure.
引文
[1] 章明耀等.增压流化床联合发电技术[M],东南大学出版社,1998,10-11.
    [2] 周一工.大型增压流化床联合循环开发研究概况[J].锅炉技术,2000,31(1):19—20.
    [3] Franklin R.E. Trans Faraday Soc,1949,45:274.
    [4] Gan H,Nandi S P,Walker P L Jr. Fuel,1972,51:272.
    [5] 陈国昌,鲜学福. 煤结构的研究及发展[J]. 煤炭转化,1998,21(2):7-13.
    [6] Guet J M,Characosset H. Advanced Methodologies in Coal Characterization. Coal Science and Technology Amsterdam:Elsevier,1990,103.
    [7] Haenel M W.Fuel,1992,71:1211.
    [8] 邱介山,郭树才.燃料化学学报[J].1991,19(3):253.
    [9] 黄瀛华. 煤及煤焦孔隙结构的研究[J].华东化工学院学报,1986,12(3):25.
    [10] Su J L, Perlmutter D D. Effect of pore structure on char oxidation kinetics[J]. AIChE J,1985, 31:973.
    [11] Gan H. Nature of Porosity in American Coal. Fuel,1972,51:272.
    [12] Toda Y. Micropore structure of coal[J]. Fuel,1971, 50:187.
    [13] 李书荣,张文辉,王岭,单晓梅.不同变质程度的煤制活性炭孔隙结构分析[J].洁净煤技术,2004,10(1):43-45.
    [14] 向银花,王洋,张建民,等.煤焦气化过程中比表面积和孔容积变化规律及其影响因素研究[J]. 燃料化学学报,2002,30(2):108-112.
    [15] 张守玉,吕俊复,岳光溪,等.煤种及炭化条件对活性焦孔隙结构的影响[J].煤炭学报,2003, 28(2):167-172.
    [16] Tomkov K, Siemieniewska T, Czechonski F, et al. Formation of porous structures in activated brown-coal chars using O2, CO2 and H2O as activating agents. Fuel,1977,56(2):121-124.
    [17] Molina Sabio M,Gonzalez M T,Rodriguez Reinoso F,et al. Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon. Carbon,1996,34(4):505—509.
    [18] 程秀秀,黄瀛华,任德庆. 煤焦德孔隙结构及其与气化的关系[J]. 燃料化学学报,1987,15 (3):261-267.
    [19] Wigmans T. Activation of carbon fibres by steam and carbon dioxide. Carbon,1993,31(5):841-842.
    [20] 朱子彬,马智华,林石英. 高温下煤焦气化反应特性(Ⅱ)细孔构造对煤焦气化反应的影响[J]. 化工学报,1994,45(2):155-161.
    [21] Davini P,Ghetti P,Bonfanti L etal. Fuel,1996,75:1083.
    [22] Ghetti P,de Robertis U,Anotone S D etal. Fuel,1985,64:950.
    [23] 吴争鸣,胡大为,任军,等. 煤燃烧过程中表面形态变化规律的研究[J].燃料化学学报,2001,29(1):24-28.
    [24] 胡松,孙学信,向军,等. 淮南煤焦颗粒内部孔隙结构在燃烧过程中的变化[J] . 化工学报, 2003,54(1):107-111.
    [25] Salatino P,Zimbardi F,Massi S. Carbon,1993,31:501.
    [26] Simons G A,Finson M L. Combustion Science and Technology,1979,19:217.
    [27] Bhatia S K. AIChE J,1987,33:1707.
    [28] 向银花,房倚天,黄戒介,等.煤焦的燃烧特性和动力学模型研究[J].煤炭转化,2000,23(1), 10-15.
    [29] 熊源泉,郑守忠,章明耀.加压条件下半焦燃烧特性的试验研究[J].锅炉技术,2001,11():12-14.
    [30] 谷小兵.半焦加压燃烧特性研究[D].东南大学硕士学位论文,2003.
    [31] Schulte A.,Muhlen H.J.,Van Heek K.H.. Coal Sci.Tech.1987,11:789.
    [32] S.MacNeil and P.Basu. Effect of Pressure on Char Combustion in a Pressurized Circulating Fluidized Bed Boiler[J]. Fuel,1998,77(4):269-275.
    [33] H.H.Liakos,K.W.Thedogos,A.G.Boudowvis,etal.The effect of Pressure on Coal Char Combustion[J]. Applied Thermal Engeering,2001,21:919-928.
    [34] Shi-Ying Lin,Yoshizo Suzuli,Hiroyuki Hatawo,etal.Pressure Effect on Char Combustion in Different Rate-control Zones Initial Rate Expression[J].Chemical Engineering Science,2000,55:43-50.
    [35] Yongbin Cui,John F.Stubington. In -bed char combustion of Australian coals in PFBC,2,Char combustion without secondary fragmentation[J]. Fuel,2001,80:2235-2243.
    [36] Tsai C.Y., Scaroni A.W. Reactivity of bituminous coal chars during the initial stage of pulverized-coal combustion[J].Fuel,1987,66:1400.
    [37] Zhang D.K., Wall,T.F.and Tate,A.G. The reactivity of pulverized coal char particles: experiment using ignition, burnout and DTG thechnique and partly burnt chars[J]. Fuel,1992,71:1247.
    [38] Leslie,I.H., Jost,M. and Kruger,C.H. Measured and predicted char reactivity of three U.S Coals[J]. Combust. Flame,1989,78:195-203.
    [39] Jenkins,R.G., Nandi,S.P., Walker,P.L.Jr. Fuel,1973,52:288.
    [40] R.C. Messenbock,D.R. Dugwell, R. Kandiyoti. CO2 and Steam-gasification in a High-pressure Wire-mesh Reactor: the Reactivity of Daw Mill coal and combustion Reactivity of its Char[J].Fuel 1999,78:781-793.
    [41] Charles R. Monson,Geoffrey J. Germane, Angus U. Blackham and L. Douglas Smoot. Char Oxidation at Elevated Pressure[J]. Combustion and Flame,1995,100:669—683.
    [42] 向银花,王洋,张建民,房倚天,黄戒介.部分气化煤焦燃烧特性的研究[J].煤炭/碳转化,2002,25(4):35-38.
    [43] Cai H Y, Guell A J, Chatzakis I N etal. Combustion Reactivity and Morphological Change in Coal Chars: Effect of Pyrolysis Temperature, Heating Rate and Pressure[J]. Fuel,1996,75(1):15—24.
    [44] Takarada T, Tammai Y, Tomitta A. Reactivities of 34 Coals Under Steam Gasification[J].Fuel,1985,64(10):1438-1442.
    [45] Young B C,Niksa S.Combustion Rates for Selected Low-rank Coal Chars[J]. Fuel,1988,67(2):155-164.
    [46] Floess J K, Longwell J P, Sarofim A F.Intrinsic Reaction Kinetics of Microporous Carbons 1: Noncatalyzed Chars[J]. Enerty&Fuels,1988,2(5):756-764.
    [47] 赵宗彬,李保庆.煤中矿物质对 NO-半焦还原反应的影响[J].燃料与化学学报,2001,(29):129-134.
    [48] Liming Lu, Chunhua Kong, Veena Sahajwalla, David Harris. Char structural odering during pyrolysis and combustion and its influence on char reactivity[J]. Fuel,2002,81:1215-1225.
    [49] M.J.G Alonso,A.G.Borrego, D.Alvarez, R.Menendez. A reactivity study of chars obtained at different temperatures in relation to their petrographic characteristics[J].Fuel Processing Technology,2001,69:257-272.
    [50] 张守玉,黎永,吕後复,岳光溪,王洋.煤焦反应活性影响因数的探讨[J].煤炭/碳转化,2003,26(2):25-28.
    [51] Young B.C.Temperature measurements of Beulah lighite char in a novel laminar flow reactor[J].Fuel,1988,67:40.
    [52] SmithS.E., Neavel R.C.,Hippo E.J.,Miller R.N.. Fuel,1981,60:458.
    [53] Gumming J.W. .Fuel,1984,63(10):1436.
    [54] Charles R. Monson,Geoffrey J. Germane, Angus U. Blackham and L. Douglas Smoot.Char Oxidation at Elevated Pressure[J].Combustion and Flame,1995,100:669-683.
    [55] 廖洪强,李保庆,孙成功.煤-焦炉气共热解半焦燃烧动力学特性研究[J].燃料化学学报,1999,6(3):246-250.
    [56] Field M.A.,Gill D.W., Morgan B.B. etal. Combustion of Pulverized Coal. Englan:BCVRA Letherhead, 1967.
    [57] 章明川,徐旭常. CO 气相反应对碳颗粒燃烧的影响——连续膜理论一种简化模拟方法[J].工程热物理学报,1990,11(4):438-443.
    [58] Tseng H P, Edgar T F.Combustion Behavior of Bituminous and Anthracite Coal Between 425℃ and 900℃[J]. Fuel,1985,64(3):373.
    [59] Petersen E E. Reaction of Porous Solids. AIChE J,1957,3 (4):443.
    [60] Sekeley J,Evans J W. A Structure Model for Gas-Solid Reactions with a Moving Boundary[J]. Chem Eng Sci,1970,25(6):1091.
    [61] Sekeley J, Evans J W.A Structure Model for Gas-Solid Reactions with a Moving Boundary-II The Effect of Grain Size.Porosity and Temperature on the Reaction of Porous Pellets[J]. Chem Eng Sci,1971,26(10):1901.
    [62] Mandelbrot B B. The Fractal Geometry of Nature. New York:W H Freeman,1982.
    [63] 任有中,符建. 煤多燃烧分形增长模型的初步研究[J]. 工程热物理学报,1997,18(1):103-107.
    [64] 任有中,陈智波,张玲. 多相燃烧分形模型及实验研究[J].工程热物理学报,1998,19(3):372-376.
    [65] 刘鑫,沈胜强.半焦粒子团燃烧模型与计算分析[J]. 燃烧科学与技术,1997,(3):304-308.
    [66] 郭朝令,屈卫东,杨宏民.电站锅炉燃煤特性的热重分析法研究[J].华中电力,1999,12():4-7.
    [67] 李萌堂,李军,刘艳华.煤焦燃烧动力学参数随煤质的变化[J].热能动力工程,2000,9(15):477-479.
    [68] Barrett E P,Joyner L S,Halenda P P.. J Am Chem Soc, 1951, 73(1):373.
    [69] 严继明等.吸附与凝聚-固体的表面与孔[M].北京,科学出版社,1986,89-103.
    [70] 高嘉安.多孔质淀粉制备及其性质研究[D].吉林农业大学硕士学位论文.
    [71] 范云鸽,李燕鸿,马建标.交联聚苯乙烯型多孔吸附剂的中孔性质研究[J].高等学校化学学报,2002,23(8):1622-1626.
    [72] Piotr Kowalczyk,Vladimir M. Gun’ko,Artur P. Terzyk,Piotr A. Gauden,Haiqin Rong,Zhenyu Ryu,Duong D. Do.The comparative characterization of structural heterogeneity of mesoporous activated carbon fibers(ACFs) [J].Applied Surface Science,2003,206:67-77.
    [73] de Boer J.H.,Lippens B.C., Lipens B.G.etal. J. Colloid Interface Sci.,1966,21:405-414.
    [74] 胡大为,吴争鸣,李凡,谢克昌.从煤的表面特性研究煤燃烧过程[J].煤炭转化,1998,21(3):7-13.
    [75] 袁晓红,姚源,唐永良.活性炭吸附剂的孔结构表征[J].中国粉体技术,2000,6:190-191.
    [76] 徐龙君,张代钧,鲜学福.煤的超细物理结构特征[J].重庆大学学报,1997,20(1):32-33 .
    [77] de Bore J.H.. The Structure and Properties of Porous Materials [M],London:Butterworth,1958.
    [78] 吴俊.突出煤与非突出煤的孔隙性研究[J].煤炭工程师,1987,(5):1.
    [79] 张红日,刘常洪. 吸附回线与煤的孔结构分析[J]. 煤炭工程师,1993,(2):23.
    [80] Dubinin,M.M. Carbon,1989,27(3),457.
    [81] Sing K.S.W.,Everett D.H.,Haul R.A.W.,Moscou L.,Plerott R.A.,Kouquerol J. and Siemieniewska T.Pure & appl.Chem.,1985,57(4),603.
    [82] 丘纪华.煤粉在热分解过程中比表面积和孔隙结构的变化[J].燃料化学学报,1994,22(3):316-319.
    [83] Davini P,Ghetti P,Bonfanti L et al.Fuel,1996,75:1083.
    [84] Ghetti P, de Robertis U, Anotone S D et al. Fuel, 1985,64:950.
    [85] H.Lorenz,E.Carrea,M.Tamura,J.Haas. The role of char surface structure development in pulverized fuel combustion[J]. Fuel,2000,79:1161-1172.
    [86] Bo Feng,Suresh K.Bhatia.Variation of the pore structure of coal chars during gasification[J].Carbon,2003,41:507-523.
    [87] 张守玉,王洋,朱廷钰,吕俊复,岳光溪.活化条件对彬县煤活性焦孔隙结构的影响[J].化学反应工程与工艺,2003,19(3):221-226.
    [88] 朱廷钰,王洋.粒径对煤温和气化特性的影响[J].煤炭转化,1999,22(3):39-43.
    [89] 杨志忠.煤的矿物质特征分析技术[J].电站系统工程,1996,12(2):39-41.
    [90] 廖乾初,蓝芬兰.扫描电镜原理及应用技术[M].冶金工业出版社,1990,7:168-203.
    [91] 谢克昌.煤的结构与反应性[M].北京:科学出版社,2002,48.
    [92] 汪安璞等.电厂煤飞灰单个颗粒的化学表征[J].环境化学,1996,15(6):496-504.
    [93] 刘德昌.流化床燃烧技术的工业应用[M].中国电力出版社,1999.
    [94] Peter E.G. Gogolek and John R.Grace. Fundamental Hydrodynamics Related To Pressurized Fluidized Bed Combustion[J]. Prog. Progress energy and combustion science,1995,21,419-451.
    [95] 周山明. 加压喷动流化床高温煤裂解数学模型及冷态模拟试验研究[D]. 东南大学硕士学位论文,1999.
    [96] 金涌等.流态化工程原理[M].清华大学出版社,2001.
    [97] 赵利敏,李玉宝. 35t/h 循环流化床锅炉布风板阻力特性的试验研究[J].电站系统工程,1998,14(1):32-33.
    [98] VA/SA/FA 型玻璃转子流量计安装使用说明书[Z].常州热工仪表总厂,17-20.
    [99] 胡庆元,景山,王金福,金涌.粗颗粒在锥形床中的流化特性[J].高校化学工程学报,2002,14(1):12-18.
    [100] 余嘉耕,赵振荣.喷动流化床流动特性的试验研究[J].化工装备技术,1995,16(3):10-15.
    [101] 林宗虎,徐通模. 实用锅炉手册[M]. 化学工业出版社,1999:54-65.
    [102] 毛元夫,陈明强,颜涌捷.连续运转的加压喷动流化床内颗粒停留特性[J].化工冶金,1998,19(2):135-139.
    [103] Stephen Niksa,Cui-su Liu,Robert H.Hurt.Coal conversation submodels for design applications at elevated pressures.Part I.devolatilization and char oxidation[J].Progress energy and combustion science,2003,29:425-477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700