用户名: 密码: 验证码:
石灰石活性和塔内流场对湿法烟气脱硫效率的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济和社会的发展,燃煤造成的SO_2及NOx污染日益严重。在目前的烟气脱硫工艺中,石灰石-石膏湿法烟气脱硫工艺由于具有技术成熟、运行可靠、脱硫效率高、吸收剂来源丰富、价格低廉等优点,获得了广泛的应用。在石灰石-石膏湿法烟气脱硫系统中,作为吸收剂的石灰石的活性以及脱硫塔内的流场分布对SO_2的吸收有着重要影响。针对国外烟气脱硫工艺在中国运行过程中出现的问题,以提高脱硫效率和系统运行的经济性以及实现以湿法烟气脱硫工艺为基础的多种污染物同时脱除为目的,本文对石灰石的活性、脱硫塔内气液传质的优化以及石灰石浆液吸收NO_2的机理进行了研究。
     通过定pH值滴定法考察了pH值、温度、粒径分布、石膏、飞灰、Al~(3+)、F、NO_3~-等因素对石灰石溶解过程的影响。较低的pH值、较高的反应温度和较小的石灰石粒径分布有利于石灰石的溶解;石膏、飞灰对石灰石的溶解有轻微的抑制作用;Al~(3+)与F~-形成的络合物则会严重抑制石灰石的溶解。
     为考察石灰石成分对其脱硫能力的影响,测试了42种不同产地的石灰石样品的脱硫能力;系统分析了石灰石的化学成分,包括CaO、MgO、Fe_2O_3、Al_2O_3、SiO_2、烧失量等对其脱硫能力的影响。结果表明:CaO和MgO含量是影响石灰石脱硫能力的关键因素;SiO_2和Fe_2O_3含量对石灰石的脱硫能力也有一定影响。此外,XRD结果表明,石灰石脱硫能力与方解石的结晶程度密切相关,白云石相的存在会严重抑制石灰石的溶解。
     为考察石灰石的品质对SO_2吸收的影响,基于气体吸收的双膜理论,建立了通过石灰石品质和粒径分布来预测喷淋塔脱硫性能的数学模型,并进行了相应的试验研究。该模型中,石灰石种类的不同对SO_2吸收的影响通过石灰石溶解的表面反应速率常数来解释;对于同种石灰石来说,粒径分布越小,比表面积越大,溶解越快,越有利于SO_2的吸收。
     通过安装气液传质强化构件,对湿法烟气脱硫喷淋塔内的气液传质进行了优化试验研究及CFD模拟。结果表明,气液传质强化构件能够防止烟气沿塔壁逃逸,整流气相流场,强化气液两相在吸收区的混合,有利于SO_2的吸收。通流截面一定时,喷淋区压降和脱硫效率随构件与水平面夹角的增大而增大;构件与水平面夹角一定时,喷淋区压降和脱硫效率随通流截面的增大而减小。
     利用双搅拌釜反应器研究了NO_2在石灰石浆液中的吸收过程;考察了各种因素如石灰石浆液浓度、反应温度、石灰石颗粒的粒径分布、搅拌速率、NO_2入口浓度及烟气中的含氧量等因素对NO_2吸收速率的影响。结果表明,在NO_2的吸收过程中,石灰石的溶解具有重要影响。NO_2的吸收速率随着搅拌速率、NO_2入口浓度和烟气中含氧量的升高而升高,而且较低的反应温度有利于NO_2的吸收。在喷淋塔内,NO_2脱除效率随烟气停留时间的延长而升高。
With the development of economy and society, the environment is badly polluted by SO_2 and NOx from coal-fired boilers. At Present limestone-gypsum wet flue gas desulfurization technology is being widely applied all over the world because of its advantages: sophisticated technology and reliable operation, high desulfurization efficiency, widespread and cheap absorbent. In a WFGD system, the reactivity of limestone and the flow field distribution in the scrubber are of great effect on SO_2 absorption. According to the problems during the operation of foreign desulfurization process in China, in order to improve the SO_2 removal efficiency and operation economical efficiency of WFGD system and simultaneous removal SO_2 and NO_x through wet flue gas desulfurization process, the reactivity of limestone, optimization of the gas-liquid mass transfer in the scrubber and the absorption mechanism NO_2 by limestone slurry are studied in this dissertation.
     The impact of pH value, temperature, particle size distribution, gypsum, fly ash, Al~(3+), F~- and NO_3~- on the dissolution of limestone was investigated by pH-stat method. It seems that lower pH value, higher reaction temperature and smaller particle size are favorable to limestone dissolution. Gypsum or fly ash has a little inhibition effect on limestone dissolution and the aluminum/fluoride complexes (AlFx) inhibit the dissolution of limestone seriously.
     To study the relation between limestone chemical components and its desulfurization capacity, the desulfurization capacity of 42 kinds of limestone from different sources was tested. The correlation between limestone desulfurization capacity and its chemical components, including CaO, MgO, Al_2O_3, Fe_2O_3, SiO_2 and ignition loss was systemically analyzed to identify the key component which influenced the desulfurization capacity. The results showed that the content of CaO and MgO was the key factor influenced the desulfurization capacity of limestone. And the content of SiO_2 and Fe_2O_3 had some effect on limestone desulfurization capacity.In addition, as is shown in the XRD results, the desulfurization capacity of limestone was closely related to the crystallinity of calcite and the existence of dolomite would inhibit the dissolution seriously.
     In order to investigate the effects of limestone quality on SO_2 removal, the effects of limestone type and particle size distribution on SO_2 removal were studied by numerical model based on the two film theory of gas absorption and experimental method.The dissolution surface reaction rate constant variations accounted for differences between limestone types. As for the same kind of limestone, smaller particles had larger specific area and dissolved at a greater rate, thus could absorb more SO_2.
     By installing the gas-liquid mass transfer strengthening component in the spray scrubber for wet flue gas desulfurization, the mass transfer in it was studied by experimental and CFD simulation method. As can be seen from the results, flue gas can be prevented from escaping along scrubber wall by the component, flue gas flow field is rectified and the mixture of gas and liquid phase are strengthened too, they are all favorable to the absorption of SO_2. In addition, at a definite flow-through section, the pressure drop and SO_2 removal efficiency of the scrubber increase with the increase of the angle between the component and horizontal plane; and at a definite angle between the component and horizontal plane, the pressure drop and SO_2 removal efficiency drop with the increase of flow-through section.
     An experimental study on the absorption of low concentration nitrogen dioxide into limestone slurries in a stirred tank reactor with a plane gas-liquid interface has been performed. The absorption rates under various conditions such as limestone slurry concentration, reaction temperature, limestone particle size distribution; stirred speed, NO_2 inlet concentration and O_2 content in the simulated flue gas were measured and the absorption processes had been discussed. As can be seen from the results, limestone dissolution has a great effect on nitrogen dioxide absorption.NO_2 absorption rate increases with the increase of stirred speed, NO_2 inlet concentration and O_2 content in the flue gas, and lower reaction temperature is favorable to NO2 absorption. And NO_2 removal efficiency increases with increasing flue gas residence time in spray scrubber.
引文
1.郭宇辉,尹升华,刘勇.我国煤炭市场分析和原煤产量预测.中国煤炭,2006,7:14-15
    
    2.张德益.世界和中国能源消费和石油供求形势及预测——炼油工业与原油资源述评之 一.当代石油石化,2005,13(7):1-7.
    
    3.国家环境保护总局.2006年中国环境状况公报.
    
    4. Calvert J. C, Stockwell W. R. SO_2, NO and NO_2 oxidation mechanism: atmospheric considerations. Ed. Calvert J. G, Butterworth, 1984.
    
    5. Finlayson-Pitts B. J. and Pitts Jr J. N. Atmospheric chemistry, Chapter 11, John-Wiley,Chichester, 1986.
    
    6.刘孜.关于我国NOx污染指标及控制措施等有关问题的探讨.北京城市大气污染防治 学术研讨论文选集,2000.
    
    7.刘天齐.三废处理工程技术手册(废气卷).北京:化学工业出版社,1999.
    
    8. Busca G, Lietti L., Ramis G, et al. Chemical and mechanistic aspect of the selective catclyticreduction of NOx by ammonia over oxide catalysts: A review, Applied Catalysts B: Environmental, 1998,18: 1-36.
    
    9. Forzatti P. Environmental catalysis for ststionary applications. Catalyst Today, 2000, 62:51-65.
    
    10.陈梅倩,何伯述.氨法脱除烟气中气态污染物的应用分析.北方交通大学学报,2003, 27(4):49-74.
    
    11. Fellner P. and Khandl V. Characterization of limestone reactivity for absorption of SO_2 from fume gas. Chemical Papers, 1999, 53 (4): 238-241.
    
    12. Stumpf T., Roeder A. and Hennicke H. W. The reaction behavior of carbonate stone dusts in acid solutions , more particularly of sulphurous acid. Part II: Important parameters, and measurement on various carbonate stone dusts for flue gas desulfurization. ZKG, 1984b, 37(9): 454-461, (in German).
    
    13. Rochelle G T, Chan P.K. and Toprac A. T. Limestone dissolution in flue gas desulfurization process, prepared for Industrial Environmental Research Lab, Research Lab, Research??Triangle Park, NC, Texas University at Austin, Department of Chemical Engineering, U.S. Department of Commerce, NTIS, August 1983.
    
    14. Brogren C. and Karlsson H. T. A model for prediction of limestone dissolution in wet flue gas desulfurization applications. Industrial & Engineering Chemistry Research, 1997,36: 3889-3897.
    
    15. Miller S. F., Miller B. G and Scaroni A.W. Limestone performance in a pilot-scale forced-oxidation scrubber. EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium, the Mega Symposium SO_2 Control Technologies and Continuous Emissions Mintors (Volume 2), Washington DC, August 25-29,1997.
    
    16. Hosten C., Gülsüm M. Reactivity of limestones from different sources in Turkey. Minerals Engineering, 2004,17: 97-99.
    
    17. Ukawa N., Takashina T. and Shinoda N. Effects of particle size distribution on limestone dissolution in wet FGD process applications. Environmental Progress, 1993,12(3): 238-242.
    
    18. Allers T, Luckas M. and Schmidt K. G Modeling and measurement of the dissolution rate of solid particles in aqueous suspensions-Part II: Experimental results and validation. Chemical Engineering and Technology, 2003,26(12): 1225-1229.
    
    19.管一明,李仁刚.湿式石灰石烟气脱硫工艺现状和发展.电力环境保护,1999,15(2): 53-58
    
    20. Toprac A. J. Rochelle G.T. Limestone dissolution in stack gas desulfurization. Environmental Progress, 1982,1: 52-64.
    
    21. Berner R. A. and Morse J. W. Dissolution kinetics of calcium carbonate in sea water: IV. Theory of calcite dissolution, American Journal of Science, 1974,274: 108-134
    
    22. Lund K., Fogler H. S., McCune C. C. and Ault J.W. Acidization-II. The dissolution of calcite in hydrochloric acid. Chemical Engineering Science, 1975,30 (8 ): 825-835
    
    23. Sjoberg E. L. and Rickard D. T. Temperature dependence of calcite dissolution kinetics between 1 and 62 ℃ at pH 2.7 to 8.4 in aqueous solutions. Geochimica et Cosmochimica Acta, 1984,48: 485-493.
    
    24. Sjoberg E. L. and Rickard D. T. The effect of added dissolved calcium on calcite dissolution kinetics in aqueous solutions at 25 ℃ , Chemical Geology, 1985,49: 405-413.
    
    25. Chan P. K. and Rochelle G. T. Limestone dissolution-Effects of pH, CO_2, and buffers??modeled by mass transfer. ACS Symposium Serial. 1982,188: 75-97.
    
    26. Wallin M. and Bjerle I. A mass transfer model for limestone dissolution from a rotating cylinder. Chemical Engineering Science, 1989,44 (1): 61-67.
    
    27. Ahlbeck J., Engman T., et al. Measuring the reactivity of limestone for wet flue gas desulfurization, Chemical Engineering Science, 1995, 50(7):1081-1089
    
    28.时正海,赵彩虹,周屈兰,惠世恩.微型鼓泡床中石灰石溶解特性的实验研究.热能动 力工程,2004,19(3):234-237
    
    29. Shih S. M., Lin J. P. and Shiau G Y. Dissolution rates of limestones of different sources. Journal of Hazardous Materials, 2000(B79): 159-171.
    
    30. Plummer L. N., Parkhurst D.L., Wigley T. M. L. Critical review of calcite dissolution and precipitation. In: Chemical Modeling in Aqueous Systems( Editor: Jenne E. A.), American Chemical Society Symposium Serial,1979,93: 537-573
    
    31. Bjerle I. and Rochelle G T. Limestone dissolution from a plane surface. Chemical Engineering Science, 1984,39(1): 183-185.
    
    32. Bjerle I. and Rochelle G. T. Limestone dissolution in acid lakes. Vatten, 1982, 38: 156-163.
    
    33. Fradsen Jan B. W., Kiil S. and Johnsson J. E. Optimization of a wet FGD pilot plant using fine limestone and organic acids. Chemical Engineering Science, 2001,56 (10): 3275-3287
    
    34.钟秦,刘爱民.湿法烟气脱硫中石灰石溶解特性.南京理工大学学报,2000,24(6): 561-569
    
    35. Ukawa N. and Okino S. Effects of salts on limestone dissolution rate in wet flue gas desulfurization. Journal of Chemical Engineering of Japan, 1993, 26 (1): 112-113.
    
    36. Shaffer N.R. and Sadowski R. Indiana limestones and dolomites for flue gas desfulurization. Indiana Geological Survey an Institute of Indiana University.
    
    37. Harvey R. D. Petrographic and mineralogical characteristics of carbonate rocks related to sorption oxides in flue gases. Illinois Geological Survey and Environmental Geology, 1970,38: 31.
    
    38.岳临海,金达莱,徐铸德.共沉淀法合成复合碳酸钙及其形貌和晶形的研究.化学学报, 2003, 61(10): 1587-1591.
    
    39.崔喜春.添加镁离子对碳酸钙结晶形貌的影响.桂林工学院学报,2005,25(2):208-210.
    
    40.曹莉莉,杨东,计永跃.石灰石/石膏湿法脱硫真空皮带脱水机脱水效果影响因素研究.??中国电力,2005,38(1):73-75.
    
    41. Eden D. and Luckas M. A heat and mass transfer model for the simulation of the wet limestone flue gas scrubbing process. Chemical Engineering Technology, 1998, 21 (1): 56-60.
    
    42.赵丽娟.湿法烟气脱硫系统的运行调节.电力环境保护.2002,18(4):53-54.
    
    43. Barton P. and Vatanatham T. Kinetics of limestone neutralization of acid waters. Environmental Science & Technology, 1976, 10(3): 262-266.
    
    44. Terjesen S. F., Erga O., Thorsen G and Ve A. II: Phase boundary process as the rate determing steps in reactions between solids and liquids. Chemical Engineering Science, 1961,14 (1): 277-288.
    
    45. Jarvis J. B., Meserole F. B., Selm T. J., Rochelle G T. and Gage C. L. Development of a predictive model for limestone in wet FGD systems. Prepared for Presentation at the EPA/EPRI First Combined FGD and Dry SO_2 Control Symposium, St. Louis, MO, October 25-28,1988.
    
    46. Gage C. L. and Rochelle G T. Limestone dissolution in flue gas scrubbing: Effects of sulfite. Journal of Air Waste Management Association, 1992,42 (7); 926-935.
    
    47. Mori T., Matsuda S., Nakajima F., Nlshimura T. and Arikawa Y. Effect of Al~(3+) and F on desulfurization reaction in the limestone slurry scrubbing process. Industrial & Engineering Chemistry Process Design and Development, 1981,20: 144-147.
    
    48. Farmer W. R., Jarvis J. B., and Moser R. Effects of aluminum/fluoride chemistry in wet flue gas desulfurization. Chemical Engineering Communications, 1989,77 (1): 135-154.
    
    49.钟秦.石灰石湿法烟气脱硫中氟络合物的影响.南京理工大学学报,2001,25(1):75-78.
    
    50. Ukawa N., Okino S., Iwaki T, et al. The effects of fluoride complexes in wet limestone flue gas desulfurization. Journal of Chemical Engineering of Japan, 1992,25 (2): 146-152.
    
    51.李娟,钱枫,李建宇.燃煤烟气脱硫氧化镁活性研究.环境污染与防治,2005,27(3): 201-203.
    
    52.吴国华,朴香兰,王玉军.添加剂强化石灰石烟气脱硫过程的应用及研究进展.环境科 学动态,2004,3:65-67.
    
    53. Radian International LLC. Electric utility engineer's FGD manual, Volume I-FGD process design, final report, DE-FG22-95PC94256, 1996.
    
    54.刘艺,杜云贵,杨剑,等.石灰石中微量杂质对其脱硫活性的影响研究.环境工程学报, 2007,1(12):110-113.
    
    55. Nygaard H. G, Kiil S., Johnsson J. E., et al. Full-scale measurements of SO_2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber. Fuel, 2004,83 (9): 1151-1164.
    
    56. Romachandran P. A. and Sharma M. M. Absorption with the fast reaction in a slurry containing sparingly soluble fine particles, Chemical Engineering Science, 1969, 24 (11): 1681-1686.
    
    57. Bjerle I., Bengtsson S. and Farnkvist K. Absorption of SO_2 in CaCO_3 slurry in a laminar jet absorber. Chemical Engineering Science, 1972,27 (10): 1853-1861.
    
    58. Takeda T., et al. A paper submitted to the 12th Fall Meeting of the Society of Chemical Engineering of Japan, Nagoya, 1976.
    
    59. Uchida S., Koide K. and Shindo M. Gas absorption with fast reaction into a slurry containing fine particles. Chemical Engineering Science, 1975, 30 (6): 644-646.
    
    60. Uchida S. and Wen C. Y. Rate of gas absorption into a slurry accompanied by instantaneous reaction. Chemical Engineering Science, 1977, 32 (11): 1277-1281.
    
    61. Rochelle G. T. and King C. J. The effect of additives on mass transfer in CaCO_3 or CaO slurry scrubbing of SO_2 form waste gases. Industrial & Engineering Chemistry Fundamentals, 1977, 16: 67-75
    
    62. Sada E., Kumazawa H. and Butt M. H. Single and simultaneous absorption of lean SO_2 and NO_2 into aqueous slurries of Ca(OH)_2 and Mg(OH)_2 particles. Journal of Chemical Engineering of Japan, 1977, 12 (2): 111-117.
    
    63. Sada E., Kumazawa H., Sawada Y. and Hashizume I. Kinetics of absorptions of lean sulfur dioxide into aqueous slurries of calcium carbonate and magnesium hydroxide. Chemical Engineering Science, 1981,36 (1): 149-155.
    
    64. Sada E., Kumazawa H., Hashizume I. and Kamishima M. Desulfurization by limestone slurry with added magnesium sulfate. Chemical Engineering Journal, 1981, 22: 133-141.
    
    65. Sada E., Kumazawa H., Hashizume I. and Nishimura H. Absorption of dilute SO_2 into aqueous slumes of CaSO_3. Chemical Engineering Science, 1982, 37 (9 ): 1432-1435.
    
    66. Uchida S. and Ariga O. Absorption of sulfur dioxide into limestone slurry in a stirred tank.??The Canadian Journal of Chemical Engineering, 1985, 63: 778-783
    
    67. Lancia A., Mumsarra D., Pepe F. and Volpicelli G SO_2 absorption in a bubbling reactor using limestone suspensions. Chemical Engineering Science, 1994,49 (24): 4523-4532.
    
    68. Mehra A. Gas absorption into reactive slurries: particle dissolution near gas-liquid interface. Chemical Engineering Science, 1996, 51 (3 ): 461-477.
    
    69. Lowell P. S. A theoretical description of the limestone injection-wet scrubbing process. U.S. Environmental Protection Agency, 1970, PB 193-029.
    
    70. Faist M. B., Hebets M. J. and Gevirtzman L. Development of a chemistry and process engineering simulator(CAPES)capable of modeling chemistry and engineering problems in wet lime/limestone flue gas desulfurization. Technical Report, DE-AC21-80MC14549(Radian Corporation, Austin, TX) , 1983.
    
    71. Noblett J. G, Hebets M. J. and Moser R. E. EPRI's FGD process model (FGDPRISM) Proceeding of EPA/EPRI Symposium on Flue Gas Desulfuirzation, New Orleans, LA, May, 1990.
    
    72. Kill S., Michelsen M. L. and Johansen K .D. Experimental investigation and modeling of a wet flue gas desulfuirzation pilot plant. Industrial & Engineering Chemistry Research, 1998, 37: 2792-2806.
    
    73. Brogren C. and Karlsson H. T. Modeling the absorption of SO_2 in a spray scrubber using the penetration theory. Chemical Engineering Science, 1997,52(18): 3085-3099.
    
    74. Gage C. L. and Rochelle G T. Modeling of SO_2 removal in slurry scrubbing as a function of limestone type and grind. The 1993 SO_2 Control Symposium, 1993.
    
    75.周至祥.介绍2种湿式FGD强制氧化方法.电力环境保护,2002,18(3):52-54.
    
    76. Danckwerts P. V. Gas-liquid Reactions. New York: McGraw-Hill, 1974.
    
    77. Whitman W. G Preliminary experimental confirmation of the two-film theory of gas absorption. Chemical & Metallurgical Engineering, 1923,29: 146-148.
    
    78. Sherwood T. K. and Pigford R. L. Absorption and extraction. McGraw-Hill, New York, 1963.
    
    79.[苏联]B.M.拉姆著,刘凤至译.气体吸收(第二版).北京:化学工业出版社,1985.
    
    80. Olausson S., Wallin M. and Bjerle I. A model for the absorption of sulfur dioxide into a limestone slurry. The Chemical Engineering Journal, 1993,51: 99-108.
    
    81. Brogren C. and Karlsson H. T. The impact of the electrical gradient on limestone dissolution under wet flue gas desulfurization conditions. Chemical Engineering Science, 1997,52(18): 3101-3106.
    
    82. Gage G L. Limestone dissolution in modeling of slurry scrubbing for flue gas desulfurization. Ph. D. Thesis, The University of Texas at Austin, TX, 1989.
    
    83.姚允斌.物理化学手册.上海:上海科学技术出版社,1985.
    
    84. Bronikowska W. P. and Rudzinski K. J. Absorption of SO_2 into aqueous systems. Chemical Engineering Science, 1991,46 (9): 2281 -2291.
    
    85.孟令杰,徐凤刚,王小明.大型燃煤锅炉湿法烟气脱硫吸收塔冷态实验模型流体力学研 究.电力环境保护,2001,17(4):1-3.
    
    86.周山明,金保升,仲兆平,孙克勤.大型烟气脱硫塔的流体动力学模拟及优化设计.东 南大学学报(自然科学版),2005,35(1):105-110.
    
    87.林永明,高翔,施平平,等.300MW机组湿法烟气脱硫(WFGD)吸收塔内气液流场 模拟.热力发电,2006,7:21-24.
    
    88. Dudek S. A., Rogers J. A. and Gohara W. F. Computational fluid dynamics (CFD) model for predicting two-phase flow in a flue-gas-desulfurization wet scrubber. Presented to: EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium, August 16-20, 1999, Atlanta Georgia, U.S.A.
    
    89.姚征,陈康民.CFD通用软件综述.上海理工大学学报,2002,24(2):137-144.
    
    90. Hinze J. O. Turbulence. McGraw-Hill Publishing Corporation, New York, 1975.
    
    91. Launder B. E. and Spalding D. B. Lectures in mathematical models of turbulence, Academic Press, London, England, 1972.
    
    92. Markatos N. C. The mathematical modeling of turbulence flows. Applied Mathematical Modeling, 1986, 10: 190-220
    
    93. Rodi W. Turbulence models and their application in hydraulics, 2nd ed. Netherlands, IAHR, 1984: 9-46
    
    94. Serg-Eldin M. A. and Spalding D. B. Computations of three-dimensional gas turbine combustion chamber. ASME Journal of Engineering for Power, 1979, 101: 327-336.
    
    95. Chieng C. C. and Launder B. E. On the calculation of turbulent heat transport downstream from an abrupt pipe expansion. Numerical Heat Transfer, 1980,3: 189-207.
    
    96. Farouk B. and Guceri S. I. Laminar and turbulent natural convection in the annulus between horizontal concentric cylinders. ASME Journal of Heat Transfer, 1982,104: 631-636.
    
    97. Farouk B. and Guceri S. I. Natural convection from a horizontal cylinder-turbulent regime ASME Journal of Heat Transfer, 1982,104: 228-235
    
    98. Pourahmadi F. and Humphery J. A. C. Prediction of curved channel flow with an extended k-ε model of turbulence AIAA Journal, 1983,21: 1365-1373.
    
    99. Amano R. S. Development of a turbulence near-wall model and its application to separated and reattached flows. Numerical Heat Transfer, 1984,7: 59-75.
    
    100. Gupta A. K. and Lilley D. G Flow field modeling and diagnostics. New York: Abacus Press, 1985: 36-39
    
    101. Ramadhyani S. Two-equation and second-moment turbulence models for convective heat transfer. In: Minkowycz W. J., Sparrow E. M. eds. Advances in numerical heat transfer. Washington DC: Taylor & Francis, 1997,1: 171-199.
    
    102. Launder B. E. and Spalding D. B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974,3: 269-289.
    
    103. Morsi S. A. and Alexander A. J. An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 1972,55 (2): 193-208.
    
    104. O'Rurke P. J. Collective drop effect on vaporizing liquid sprays. New Jersey: Princeton University, 1981.
    
    105. O'Ruke P. J. and Amsden A. A. The TAB method for numerical calculation of spray droplet breakup. SAE Technical Paper, 872089, SAE, 1987.
    
    106. Ebrahimi S., Picioreanu C, Kleerebezem R., et al. Rate-based modeling of SO_2 absorption into aqueous Na_2CO_3/NaHCO_3 solutions accompanied by the desorption of CO_2. Chemical Engineering Science, 2003, 58 (16): 3589-3600.
    
    107. Chien T. W., Chu H. Removal of SO_2 and NO from flue gas by wet scrubbing using an aqueous NaClO_2 solution. Journal of Hazardous Materials, 2000, B80: 43-57.
    
    108. Chu H., Chien T. W., Li S. Y. Simultaneous absorption of SO_2 and NO from flue gas with KMnO_4/NaOH solutions. The Science of the Total Environment, 2001,275: 127-135.
    
    109. Jin D. S., Deshwal B. R., Park Y. S., et al. Simultaneous removal of SO_2 and NO by wet scrubbing using aqueous chlorine dioxide solution. Journal of Hazardous Materials, 2006,??B135: 412-417.
    
    110. Yang C. L., Chen L. Oxidation of nitric oxide in a two-stage chemical scrubber using dc corona discharge. Journal of Hazardous Materials, 2000, B80: 135-146.
    
    111. Yang C. L.. Pulse-energized wet tubular electrostatic precipitator for NOx emission control. Environmental Progress, 1999,18(2): 80-86.
    
    112. Yang C. L, Beltran M., Kravets Z.. Corona-induced chemical scrubber for the control of NOx emissions. Environmental Progress, 1998,17 (3 ): 183-189.
    
    113. Park J. Y, Tomicic I., Round G. E, et al. Simultaneous removal of NOx and SO_2 from NO-SO_2-N_2-O_2 gas mixtures by corona radical shower systems. Journal of Physics D: Applied Physics, 1999,32: 1006-1011.
    
    114. Ramachandran P. A., Sharma M. M. Absorption with fast reaction in a slurry containing sparingly soluble fine particles. Chemical Engineering Science, 1969,24 (11): 1681-1686.
    
    115. Uchida S., Koide K., Shindo M.. Gas absorption with fast reaction into a slurry containing fine particles. Chemical Engineering Science, 1975, 30: 644-646.
    
    116. Uchida S., Wen C. Y. Rate of gas absorption into a slurry accompanied by instantaneous reaction. Chemical Engineering Science, 1977,32: 1277-1281.
    
    117. Sada, E. Kumazawa H., Butt M. A. Single gas absorption with reaction in a slurry containing fine particles. Chemical Engineering Science, 1977,32: 1165-1170.
    
    118. Bjerle I., Bengtsson S., Farnkvist K.. Absorption of SO_2 in CaCO_3-slurry in a laminar jet absorber. Chemical Engineering Science, 1972,27: 1853-1861.
    
    119. Sada E., Kumazawa H., Sawada Y, et al. Kinetics of absorptions of lean sulfur dioxide into aqueous slurries of calcium carbonate and magnesium hydroxide. Chemical Engineering Science, 1981,36 (1): 149-155.
    
    120. Sada E., Kumazawa H., Butt M. A. Absorption of sulfur dioxide in aqueous slurries of sparingly soluble fine particles. The Chemical Engineering Journal, 1980, 19(2): 131-138.
    
    121. Sada E., Kumazawa H., Hashizume I. Further consideration on chemical absorption mechanism by aqueous slurries of sparingly soluble fine particles. Chemical Engineering Science, 1981,36 (4): 639-642.
    
    122. Shen C. H., Rochelle G T.. Nitrogen dioxide absorption and sulfide oxidation in aqueous sulfide. Journal of Air & Waste Management Association, 1999,49: 332-338.
    
    123. Shen C. H. Rochelle, G T.. Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite. Environmental Science & Technology, 1998,32: 1994-2003.
    
    124. Takeuchi H., Ando, M. Kizawa N. Absorption of nitrogen oxides in aqueous sodium sulfite and bisulfite solutions. Industrial and Engineering Chemistry Process Design and Development, 1977, 16(3): 303-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700