用户名: 密码: 验证码:
臭氧垂直探测仪高精度辐照度响应度定标研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧垂直探测仪是我国第二代极轨气象卫星风云三号上的有效载荷,其主要任务是测量臭氧总量的垂直分布,为气候预报、环境监测及全球气候变化研究提供重要参数。为了实现臭氧垂直探测仪在轨的高精度探测,仪器发射前实验室的高精度辐射定标至关重要。论文介绍了国内外星载臭氧遥感仪器的现状及发展趋势,在总结本项目组近年来紫外光谱遥感仪器研制过程中建立的辐射定标系统及定标方法的基础上,概括了臭氧垂直探测仪以往辐照度定标方法的潜在不确定度源,主要针对各项不确定度源及其影响进行了深入的分析研究。针对“大气定标环境”不确定度源进行了理论分析、数值模拟和实验验证。
     研究结果表明:受臭氧垂直探测仪光学元件铝+氟化镁薄膜光学性质的影响,在真空和大气两种环境下,仪器250-400nm波段的辐照度响应度存在约3.8%的相对偏差,直接说明仪器全波段定标在真空环境下完成的必要性。
     针对“标准光源辐射不稳定性”不确定度源,构建了光源辐射稳定性测试研究系统。研究结果表明:光谱辐照度标准石英卤钨灯辐射稳定;氟化镁窗口传递标准氘灯存在真空辐射衰减现象,且衰减结果具有波长相关性。提出并成功研制了一套液氮制冷屏装置,提高氘灯辐射稳定性达7%。
     针对“发散光照明方法”不确定度源,分析出发散光和平行光两种照明方法标定仪器辐照度响应度的影响因素,数值模拟和实验验证了两种照明方法定标结果的偏差值。研究结果表明:发散光和平行光标定仪器辐照度响应度结果的相对偏差均小于各自的相对定标不确定度,证明了发散光照明方法的准确性。
     直接消除了“光源辐照度三次样条插值法”和“标准光源辐照度非均匀性”不确定度源。前者通过使用插值精度更高的SSBUV公式代替三次样条插值,提高插值精度约0.3%;后者通过对标准光源的辐照度非均匀性及仪器视场响应函数的准确测量,实现了对标准石英卤钨灯和传递标准氘灯入射辐照度值的有效修正,分别提高光源辐照度值精度约1%和3.2%。
     最后,在上述研究工作的基础上,总结出臭氧垂直探测仪实验室高精度辐照度定标方法并完成了仪器的标定。不确定度分析表明:臭氧垂直探测仪160-300nm和250-400nm波段辐照度定标总不确定度分别为±4.3%和±2.8%,与以往定标方法相比,两波段分别提高定标精度达4.5%和1.6%,达到了臭氧垂直探测仪高精度辐照度定标的目的。臭氧垂直探测仪在轨地外太阳紫外光谱测试结果与国际同类仪器测得的太阳光谱平均值相比,一致性优于±5%,证明了高精度辐照度定标方法的精确性。
Solar Backscatter Ultraviolet Spectrometer (SBUS) is one of the remote sensing instruments in FY-3 meteorological satellite. Its major task is to provide essential data for environmental monitoring, climatic prediction and global climatic change by detecting the vertical distribution of total ozone. In order to achieve the in-flight high-accuracy detection, pre-launch high-accuracy radiometric calibration of the SBUS is crucial. In this thesis, it is firstly reviewed the research work of space-borne remote sensing probes for measurement ozone content at home and abroad, and on the basis of summarizing the radiation calibration systems and methods established during the process of developing the ultraviolet spectral remote sensing instruments in our project group recent years, the potential uncertainties sources in previous irradiance calibration method of the SBUS are proposed. Then, deep analysis and study on every uncertainty source and its effect are made.
     According to the uncertainty source of atmosphere calibration environment, the methods of theory analysis, numerical simulation and comparison experiment have been adopted. The study results show that the spectral responsivity of the SBUS under atmosphere environment has a relative deviation of about 3.8% to that under vacuum environment in 250-400nm and it is necessary that the whole waveband irradiance calibration of the SBUS is accomplished under vacuum environment.
     According to the uncertainty source of standard lamps’radiation instability, the lamps’radiation stability testing system is constructed. The study results show that spectral irradiance standard quartz-tungsten-halogen lamp radiates stably, and the MgF2 windowed standard source deuterium lamp has vacuum radiation degradation which is related to the wavelength. A liquid nitrogen cooled screen device is developed to improve deuterium lamp’s radiation stability by 7%.
     According to the uncertainty source of diverging light illumination calibration method, the influence factors of calibration result using parallel light calibration or diverging light calibration have been analyzed. The relative deviation of the calibration results between two calibration methods has been verified by numerical simulation and comparison experiment. The study results show that the relative deviation value is less than any one of the two calibration results’uncertainties and demonstrate the accuracy of the diverging light illumination calibration method.
     The uncertainty source of "standard lamp irradiance cubic spline interpolation" and "standard lamp irradiance non-uniformity" are eliminated directly. The former improves the interpolation accuracy by about 0.3% using the higher-accuracy SSBUV interpolation formula instead of the cubic spline interpolation; the latter achieves the effective revision towards the incident irradiance value of the spectral irradiance standard quartz-tungsten-halogen lamp and the transfer standard deuterium lamp, the accuracy of lamp irradiance value are improved by about 1% and 3.2% respectively.
     Finally, on the basis of the study work above, summarize a high-accuracy irradiance responsivity calibration method and accomplish the irradiance calibration of the SBUS. The uncertainty analysis shows that the total irradiance calibration uncertainties of the SBUS in 160-300nm and 250-400nm are±4.3% and±2.8% respectively. Compared with previous calibration methods, the calibration accuracy of the two bands were improved by 4.5% and 1.6%, achieved the purpose of high-accuracy irradiance calibration of the SBUS. The extraterrestrial solar ultraviolet spectrum measured by SBUS is compared with international spectrum average value and an agreement is better than±5%, which demonstrates the accuracy of the high-accuracy irradiance calibration method.
引文
[1] D. F. HEATH, A. J. KRUEGER,H. A. ROEDERand B. D. HENDERSON. The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for NIMBUSG [J]. OPTICAL ENGINEERING, 1975, 14(4):323-331.
    [2] H. Weiss, R. P. Cebula, K. Laamann,R. D. Hudson .Evaluation of the NOAA-11 Solar Backscatter Ultraviolet Radiometer, Mod 2 (SBUV/2): inflight calibration [J]. SPIE, 1991, 1493:80-90.
    [3] Richard P. Cebula, Ernest Hilsenrath, Thomas J. Kelly, et al. On the Radiometric Stability of the Shuttle Borne Solar Backscatter Ultraviolet Spectrometer [J]. SPIE, 1991, 1493:91-99.
    [4] Bramstedt K, Gleason J, Loyola D, et al. Comparison of Total Ozone from the Satellite Instruments GOME and TOMS with Measurements from the Dobson Network 1996-2000[J]. Atmos. Chem. Phys. Discuss, 2002, (2):1131-1157.
    [5] Gary K Corlett, Paul S Monks. A Comparison of Total Column Ozone Values Derived from the Global Ozone Monitoring Experiment (GOME), the Tiros Operational Vertical Sounder (TOVS), and the Total Ozone Mapping Spetrometer (TOM)[J]. Journal of the Atmospheric Sciences. 2001, 58:1103-1116.
    [6] Frederick J E, Soulen P F, Diaz S B, et al. Solar ultraviolet irradiance observed from southern Argentina: September 1990 to March 1991[J]. Geophys. Res , 1993 , 98:8891-8897.
    [7] Herman J R, Bhartia P K, TORRES O, et al. Global distribution of UV-absorbing aerosols from Nimbus 7/Toms data[J]. Journal of Geophysical Research, 1997, 102:16911-16922.
    [8] Wang P, Lenoble J. Influence of clouds on UV irradiance at ground level and backscattered exittance [J]. Adv. Atmos. Sci, 1996,(13):217-228.
    [9] w. p. ChU ,L. E. Mauldina. Overview of the SAGE III Experiment [J]. SPIE,1999, 3756:102–109.
    [10] Gary E. Halama, James McAdoo, Murzy Jhabvala, et al. SAGE III Alternative Detector Design and Characterization [J]. SPIE, 1999, 3756:172-189.
    [11] R. E. Veiga, B. N. Wenny, G.M.Hansen, et al. The SAGE III Test Model: Ground-based coincident measurement with the SAGE III flight instruments and field characterization measurements [J]. SPIE, 2002, 4485: 135-141.
    [12] David E. Flittnera, Ernest Hilsenrathb, Scott J. Janzb, et al. Retrievals from the Limb Ozone Retrieval Experiment on STS107 [J]. SPIE, 2004, 5542:215–226.
    [13] S. No?l, H. Bovensmann, J. P. Burrows,et al. The SCIAMACHY instrument on ENVISAT -1 [J]. SPIE, 1998, 3498:94-104.
    [14] H. Bovensmann, M. Buchwitz, J. Frerick,et al. SCIAMACHY on ENVISAT: In-flight optical performance and first results [J]. SPIE, 2004, 5235:160-173.
    [15] J. W. Leitch, J. V. Rodriguez, M. Dittman, Limb Scatter Ozone Profiling Sensor for the NPOESS Ozone Mapping and Profiler Suite (OMPS)[J].SPIE, 2003, 4891:13-21
    [16] Michael G. Dittman , James Leitch , Michael Chrisp. Limb Broad-Band ImagingSpectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS) [J].SPIE, 2002, 4814:120-130.
    [17] Brian K. McComas, Colin Seftor, Quinn Remund. End-to-End Modeling of the Ozone Mapping and Profiler Suite [J].SPIE, 2004, 5420:106-117.
    [18] Evangelina Oriol-Pibernat, Stefano Bruzzi. The METOP, MSG and ENVISAT ESA Programs [J]. SPIE, 1997, 2957:2-11.
    [19] Evangelina. Onol-Pibemat, Status of the MetOp-1 Program at ESA [J]. SPIE, 1998, 3498:78-81
    [20]王淑荣,李福田,FY-3卫星紫外臭氧垂直探测仪研制报告[R].2005.
    [21]王淑荣,宋克非,李福田.星载太阳紫外光谱监视器的地面辐射定标[J].光学学报,2007, 27(12):2256-2261.
    [22]唐玉国,李福田.200-350nm石英窗口氘灯光谱辐照度的绝对定标[J].光谱学与光谱分析,1996,16(4):7-10.
    [23]邢进,王淑荣,李福田.紫外-真空紫外辐射标准光源的比对[J].光学精密工程.2004.12(4):373-379
    [24]邢进.空间遥感仪器紫外—真空紫外光谱辐射标准及高精度辐射定标的研究[D].长春光学精密机械与物理研究所,2005.
    [25]黄煜.臭氧垂直探测仪辐射定标的研究[D].长春光学精密机械与物理研究所,2007.
    [26]车念曾,闫达远.辐射度学与光度学[M].北京理工大学出版社,1990.
    [27]金伟其,胡威捷.辐射度、光度与色度及其测量[M].北京理工大学出版社,2006.
    [28]唐晋发,顾培夫,刘旭,李海峰.现代光学薄膜技术[M].浙江大学出版社,2007.
    [29] G. Hass, W. R. Hunter, R. Tousey. Reflectance of Evapourated Aluminum in the Vacuum Ultraviolate [J].Journal of Optical Society of America. 1956, 46(12):1009-1012.
    [30] G. Hass , R. Tousey. Reflecting coatings for the Extreme Ultraviolet [J]. J.Opt.Soc.Amer.1959, 49(6):593-602.
    [31] L.R.Canfield, G. Hass, J. E. Waylonis. Further Studies on MgF2 Overcoated Aluminum Mirrors with Highest Reflectance in the Vacuum Ultraviolet [J].Applied.Optics,1996,5(1):45-50.
    [32]李志刚.紫外-真空紫外傅里叶变换光谱技术的研究[D].长春光学精密机械与物理研究所,2000.
    [33]刘颖.臭氧垂直分布探测仪紫外光谱辐射传输特性与定标的研究[D].长春光学精密机械与物理研究所,2001.
    [34]梁铨廷.物理光学[M].机械工业出版社,2008.
    [35] VUVAS Vacuum Spectrophotometer [EB/OL].
    [36] Xenon Light Source [EB/OL].
    [37]万国贤,韩之杰.空气折射率的一种计算方法[J].光学精密工程,1994,2:27-30.
    [38]宋正方.应用大气光学基础[M].气象出版社,1990.
    [39] Y.Ohno, J. k. Jackson. Characterization of Modified FEL Quartz-Halogen Lamps for Photometric Standards [J]. Metrologia, 1995/96, 32:693-696.
    [40] Edward A. Early, Ambler Thompson. Irradiance of Horizontal Quartz-Halogen Standard Lamps [J]. Journal of Research of the National Institute of Standard and Technologh, 1996, 101:141-153.
    [41] Benjamin K. Tsai. Developments for a New Spectral Irradiance Scale at the National Institute of Standard and Technologh [J]. Journal of Research of the National Institute of Standard andTechnologh, 1997, 102:551-558.
    [42] Facility For Spectroradiometric Calibrations (FASCAL) [EB/OL].
    [43] Ambler Thompson, Edward A. Early, Thomas R. O’Brian.Ultraviolet Spectral Irradiance Scale Comparison: 210nm to 300nm [J]. Journal of Research of the National Institute of Standard and Technologh, 1998, 103:1-13.
    [44] H. W. Yoon, J. E. Proctor, C. E. Gibson. FASCAL 2: a new NIST facility for the calibration of the spectral irradiance of sources. Metrologia, 2003, 40:S30-S34.
    [45] David G. Goebel. Generalized integrating-sphere Theory [J]. Applied Optics, 1967, 6: 125-128.
    [46] L.K.Huang,R.P.Cebula, E. Hilsenrath. New procedure for interpolating NIST lamp irradiances [J]. Metrologia, 1998, 35: 381-386.
    [47]唐玉国,李福田.200-350nm石英窗口氘灯光谱辐照度的绝对定标[J].光谱学与光谱分析,1996,16(4):7-10.
    [48]刘金元,薛凤仪.紫外和真空紫外光谱辐射标准灯—氘灯[J].计量技术,2002, 3:19-21.
    [49]邢进,王淑荣,李福田.紫外-真空紫外辐射标准光源的比对[J].光学精密工程,2004.12(4):373-379.
    [50] P Sperfeld, K D Stock, K-H Raatz, et al. Characterization and use of deuterium lamps as transfer standards of spectral irradiance [J]. Metrologia, 2003, 40: s111-s114.
    [51] U. Finkenzeller, D. Labs. Deuterium lamp as a UV continuum source from 160 nm to 320 nm for space applications [J]. Applied Optics, 18(23):3938-3941.
    [52] J. HOLLANDT, U. BECKER, W. PAUSTIAN, M. RICHTER, G. ULM. New developments in the radiance calibration of deuterium lamps in the UV and VUV spectral range at the PTB [J]. Metrologia, 2000, 37:563-566.
    [53]黄煜,王淑荣,张振铎,等.用150W氘灯标定200-300nm光谱辐照度[J].光学精密工程,2007,15(8):1215-1219.
    [54] M Richter, J Hollandt, U Kroth, Source and detector calibration in the UV and VUV at BESSY II [J]. Metrologia, 2003, 40: s107-s110.
    [55] J. Schwinger, Electron radiation in high energy accelerators [J]. Phys. Rev., 1946, 70: 798.
    [56] J. Schwinger, On the Classical Radiation of Accelerated Electrons [J]. Phys. Rev, 1949, 75: 1912-1921.
    [57] G. JAROSS, R. CEBULA, M. DELAND, et al.. Backscatter ultraviolet instrument solar diffuser degradation [J]. SPIE, 1998, 3427:432-444.
    [58] KEY P. J. , NETTLETON D. H.. DETERMINATION LAMPS AS TRANSFER STANDARDS FOR SPECTRAL RADIANCE MEASUREMENTS[R]. BCR Information Applied Metrology, Commission of the European Communities, Report, EUR 10234 EN, 1985.
    [59] P J KEY , R C PRESTON. Magnesium fluoride windowed deuterium lamps as radiance transfer standards between 115 and 370 nm [J]. J. Phys. E: Sci. Instrum.,1980,13: 866-870.
    [60] K. Albyn, H. D. Burns. Interaction of vacuum ultraviolet radiation with molecular deposits [J].SPIE, 2006, 6291:62910H-1-62910H-15.
    [61] C. S. Recher, R. L. Kernell, Proton-induced degradation of VUV transmission of LiF and MgF2 [J]. Applied Optics, 1980, 19(24): 4156-4158.
    [62] Kevin F. Carr. Integrating sphere calibration sources for remote sensing imaging radiometers [J].SPIE, 1989, 1109: 99-112.
    [63] D. F. Heath, Zhongying Wei. Comparison of spectral radiance calibrations of SBUV-2 satellite ozone monitoring instruments using integrating sphere and flat-plate diffuser techniques [J]. Metrologia, 1993, 30: 259-264.
    [64] P.Yvonne, Barnes, Jack J. Hsia. UV Bidirectional reflectance distribution function measurements for diffusers [J]. SPIE, 1992, 1764:285-288
    [65] W.K.Fowler.and V.W.Nelson .Performance of various diffuser materials in the absolute radiometric calibration of the SBUV-2. Metrologia [J]. 1993,30:255-257.
    [66] E.Renotre, A. Novi,D. Labate et al.. Solar diffuser pre-flight calibration set-up [J]. SPIE, 1997, 2957:355-371.
    [67]刘颖,李福田.若干材料紫外-真空紫外漫反射特性研究[J].光学学报2001,21(3):371-375.
    [68]俞浩.用于紫外-真空紫外空间遥感仪器的若干材料的漫反射特性的研究[D].长春光学精密机械与物理研究所,2004.
    [69] Donald F Heath. Large aperture spectral radiance calibration source for ultraviolet remote sensing instruments [J]. SPIE,2003, 4891:335-342.
    [70] Heath D F,Wei Z. Comparability of spectral radiance calibrations of large aperture earth observing instruments based upon diffuse reflective panels and internally illuminated spherical integrator techniques [J]. SPIE,1994,2209:148-159.
    [71]邢进,王淑荣,李福田.利用积分球光源定标空间紫外遥感光谱辐射计[J].光学精密工程,2006,14(2):185-190.
    [72] WEI Zong-ying,Kevin Kelly,Jamie Prall-Kaliher. Specification Compliance and Calibration Data Book for SBUV/2 Flight Unit #8 (S/N 009) [R]. IN021-A-061.
    [73]黄煜. FY-3臭氧垂直探测仪遥感数据预处理及误差分析[R].长春光学精密机械与物理研究所,2009.
    [74] Francesco Bordi, Christopher Scolese, An Overview of Earth Science Missions at the Goddard Space Flight Center [J]. SPIE, 2001, 4540: 1-10.
    [75] Matthew T. DeLand, Richard P. Cebula. Creation of a Composite Solar Ultraviolet Irradiance Data Set [J]. Journal of Geophysical Research, 2008, 1-38.
    [76] Skupin, J., Weber, M., No?l, S et al.. GOME and SCIAMACHY solar measurements: Solar spectral irradiance and MgII solar activity proxy indicator [J].Memorie della Societa Astronomica Italiana, 2005, 76: 1038-1041.
    [77] Weber, M., J. P. Burrows, R. P. Cebula. GOME solar UV/VIS irradiance measurements in 1995 and 1996– First results on proxy solar activity studies [J]. Solar Phys., 1998, 177: 63-77.
    [78] Skupin, J., S. No?l, M. W. Wuttke, M. Gottwald, H. Bovensmann, M. Weber, J. P. Burrows. SCIAMACHY solar irradiance observation in the spectral range from 240 to 2380nm [J]. Adv. Space Res., 2005, 35: 370-375.
    [79] Cebula, R. P., M. T. DeLand, E. Hilsenrath, B. M. Schlesinger, R. D. Hudson, D. F. Heath. Intercomparisons of the solar irradiance measurements from the Nimbus-7 SBUV, the NOAA-9 and NOAA-11 SBUV/2, and the STS-34 SSBUV instruments: A preliminary assessment [J]. J. Atmo. Terr. Phys., 1991, 53, 993-997.
    [80] DeLand, M. T., R. P. Cebula, E. Hilsenrath.(2004a), Observations of solar spectral irradiance change during cycle 22 from NOAA-9 Solar Backscattered Ultraviolet Model 2 (SBUV/2) [J]. J. Geophys. Res., 2004 109, D06304.
    [81] A. A. Fegley and W. K. Fowler. Radiometric calibration of SBUV/2 instruments:retrospective improvements [J]. J, Metrologia, 1991, 28: 297-300.
    [82] Cebula, R. P., M. T. DeLand, E. Hilsenrath. NOAA 11 Solar Backscattered Ultraviolet, model 2 (SBUV/2) instrument solar spectral irradiance measurements in 1989-1994, 1. Observations and long-term calibration [J]. J. Geophys. Res., 1998, 103: 16235-16249.
    [83] DeLand, M. T., R. P. Cebula. NOAA 11 Solar Backscattered Ultraviolet, model 2 (SBUV/2) instrument solar spectral irradiance measurements in 1989-1994, 2. Results, validation, and comparisons [J]. J. Geophys. Res., 1998, 103: 16251-16273.
    [84] G.Brueckner, K. Edlow, L. Floyd, et al..The solar ultraviolet spectral irradiance monitor (SUSIM) experiment on board the upper atmospheric research satellite (UARS) [J]. Geophys. Res., 1993, 98:10695-10711.
    [85] Linton E.Floyd, Lynn C. Herring, Dianne K. Prinz, et al.. Instrument responsivity evolution of SUSIM UARS [J]. SPIE, 1998, 3427:445-456.
    [86] Cebula, R. P., G. O. Thullier, M. E. VanHoosier, E. Hilsenrath, M. Herse, G. E. Brueckner, P. C. Simon. Observations of the solar irradiance in the 200-350 nm interval during the ATLAS-1 mission: A comparison among three sets of measurements-SSBUV, SOLSPEC, and SUSIM [J]. Geophys. Res. Lett., 1996, 23: 2289-2292.
    [87] Linton E.Floyd, Lynn C. Herring, Dianne K. Prinz, et al.. Instrument responsivity evolution of SUSIM UARS [J]. SPIE, 1998, 3427:445-456.
    [88] Thomas N. Woods, Gary J. Rittman. In-flight degradation results for the UARS SOLSTICE instrument [J]. SPIE, 1998, 3427: 457-468.
    [89] Gary Rottman, Thomas Woods. SOLSTICE technique for measuring long-term solar variability [J]. SPIE, 1995, 2583: 347-355.
    [90] Martin Snow, Greg Holsclaw, William E. McClintock, Tom Woods. Absolute ultraviolet irradiance of the moon from SORCE SOLSTICE [J]. SPIE , 2007 , 6677: 66770D-1-66770D-12.
    [91] V.A. Drake, W.E. McClintock, T.N. Woods, G.J. Rottman. Flight photomulitplier tube performance for the Earth Observing System's SOLSTICE II instruments [J]. SPIE, 2003, 4796: 107-114.
    [92] J.Harder, G. Lawrence, G. Rottman, et al.. The spectral irradiance monitor (SIM) for the SORCE mission [J]. SPIE, 2002, 4135: 204-214.
    [93] DeLand, M. T., L. E. Floyd, G. J. Rottman, J. M. Pap. Status of UARS solar UV irradiance data [J]. Adv. Space Res., 2004, 34: 243-250.
    [94] Woods, T. N., D. K. Prinz, G. J. Rottman, et al.. Validation of the UARS solar ultraviolet irradiances: Comparisons with the ATLAS 1 and 2 measurements [J]. J. Geophys. Res., 1996, 101:9541-9569.
    [95] Robert J. McNeal. Upper Atmosphere Research Satellite an overview[ J]. SPIE, 1991, 1491: 84-90.
    [96] Rottman, G. J. The SORCE mission [J]. Solar Phys., 2005, 230: 7-25.
    [97] Tom Woods, Gary Rottman, Jerry Harder, et al.. Overview of the EOS SORCE Mission [J].SPIE, 2004, 4135: 192-203.
    [98] Alkiviadis F. Bais. Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer [J]. Applied Optics,1997, 36(21): 5199-5204.
    [99] G. Thuillier, L. Floyd, T.N. Wood. Solar irradiance reference spectra for two solar active levels [J]. Advances in Space Research, 2004, 34: 256-261.
    [100] Cong Huang, Dan-Dan Liu, Jing-Song Wang. Forecast daily indices of solar activity, F10.7 , using support vector regression method [J]. Research in Astronomy and Astrophysics, 2009, 9(6):694-702.
    [101] H. Slaper, H. A. J. M. Reinen, M. Blumthaler, et al.. Comparing groud-level spectrally resolved solar UV measurements using various instrument : A technique resolving effects of wavelength shift and slit width [J].GEOPHYSICAL RESEARCH LETTERS, 1995, 22(20): 2721-2724.
    [102] W. H. EBERHARDT. Slit-Width Effects in Spectrophotometry [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1950, 40(3):172-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700