用户名: 密码: 验证码:
小偃麦渗入系抗条锈基因分子标记与遗传定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是由小麦条锈菌(Puccinia striiformis f. sp. tritici)引起的气传性真菌性病害,遍布于世界各大麦区,特别是高海拨的冷凉地区,是影响全世界小麦生产的三大重要病害之一。利用抗病基因历来是控制该病害的主要手段,但抗病性丧失是长期以来未能解决的大难题。科学表明,品种或抗源单一化而引起的毒性单化是造成抗病性丧失的重要原因。迄今国际上虽已正式命名了50多个抗条锈病基因(Yr1-Yr53),但除了Yr5、Yr10、Yr15等少数基因对我国目前流行的优势小种CYR32、 CYR33仍具有抗性外,绝大部分已成为无效基因。
     从近缘植物种属导入新的抗病基因是实现抗源多样化的有效途径。中间偃麦草(Thinopyrum intermedium,2n=6x=42, JJsS)和彭提卡偃麦草(Th. ponticun,2n=10x=70, JJJJsJs)免疫或高抗条锈、白粉等多种小麦真菌病害,是普通小麦(Triticum aestivumL.)遗传改良的重要基因库。多年来,本实验室以八倍体小偃麦为桥梁,通过‘六×八’式杂交、回交,将中间偃麦草和彭提卡偃麦草的抗性基因逐步导入普通小麦,育成了一系列稳定高抗小麦条锈、白粉的小麦-异源渗入系。本研究中则采用遗传分析、细胞遗传学鉴定和SSR分子标记技术,分别对其中几个渗入系材料进行了抗条锈性遗传分析及其抗性基因的分子定位,旨在发掘新的抗条锈病基因,拓宽小麦抗条锈育种资源。其主要结果如下:
     1、CH223是八倍体小偃麦新类型——TAI7047的一个渗入系。在苗期对其进行多小种抗性鉴定,结果表明CH223免疫CYR32、CYR33、v26等9个条锈菌生理小种,其抗性来自中间偃麦草。基因组原位杂交和染色体配对分析结果表明,CH223具有完整的21对染色体,且观察不到可见的外源DNA杂交信号,说明CH223是一个源于中间偃麦草的隐形异源渐渗系。将CH223与感病品种(系)‘台长29’和‘SY95-71’杂交,其F2、BC1代和F2:3家系的抗、感分离比均符合3:1、1:1和1:2:1,证明CH223对条锈菌系CYR32的抗性受1对显性基因控制,暂命名为YrCH223。利用211个来自台长29/CH223的F2代单株构建作图群体,发现5个与抗病基因连锁的多态性SSR标记,位置顺序为:Xgwm540-Xbarc1096-YrCH223-Xwmc47-Xwmc310-Xgpw7272,其遗传距离分别为21.9cM、8.0cM、7.2cM、12.5cM和11.3cM。最终根据小麦SSR遗传图谱和连锁标记在中国春缺体-四体、双端体的扩增结果,将该抗条锈病基因定位于4BL染色体上。由于这是第一个定位于小麦4BL的抗条锈病基因,因此国际小麦基因命名委员会正式将其定名为Yr50。
     2、小麦-彭提卡偃麦草渗入系CH7102衍生于八倍体小偃麦‘小偃7430’。苗期抗性鉴定表明,CH7102免疫我国目前的优势小种CYR32、CYR33,其抗性反应型与‘小偃7430’及其野生亲本彭提卡偃麦草的抗性表现一致,而系谱中的所有小麦亲本均感病,因而推断CH7102的抗性来源为彭提卡偃麦草。对CH7102与感病小麦杂交的后代进行成株期抗性遗传分析鉴定,发现其对条锈小种CYR32的抗性受1对显性基因控制,暂命名为YrCH7102。随后使用集群分离分析法(BSA法)和SSR标记相结合,筛选到5个与抗性基因连锁的SSR标记,位置顺序为:Xbarcl24-Xgwm636-YrCH7102-Xgpw2204-Xgwm95-Xgwm296,遗传距离分别为5.0cM、8.6cM、8.4cM、2.7cM和14.4cM。根据小麦SSR遗传连锁图及利用中国春第2同源群缺体-四体、双端体材料对SSR标记的定位结果,推断YrCH7102位于2AS上。
     3、CH7115是衍生于八倍体小偃麦‘小偃7430’并免疫当前优势条锈菌小种的另一个小偃麦渗入系。对CH7115的抗性鉴定和遗传分析结果表明,CH7115苗期免疫或近免疫流行条锈菌小种CYR32和CYR33,其抗性与抗性供体‘小偃7430’及野生供体彭提卡偃麦草相似。‘CH7115×台长29’杂交后代的成株期抗性鉴定显示,CH7115对条锈菌小种CYR32呈现1对显性基因的控制模式,暂命名为YrCH7115。随后将CH7115×台长29的F2代群体采用BSA法结合SSR标记技术进行分析,发现5个小麦SSR标记与抗病基因连锁,位置顺序为:Xgdm33-YrCH7115-Xgwm11-Xcfd65-Xgwm18-Xbarc137,遗传距离分别为10.5cM.7.1cM.0.4cM.2.7cM和1.2cM。通过中国春缺体-四体、双端体材料的进一步鉴定,这5个与抗病基因连锁的SSR标记被定位于1B染色体短臂上。据此推断YrCH7115位于1BS染色体上。
     4、抗条锈病渗入系CH7359衍生于小麦×中间偃麦草的八倍体小偃麦TAI8335。苗期条锈菌多小种鉴定结果揭示,CH7359的条锈病抗性来自中间偃麦草。将CH7359与台长29和绵阳11的F1、F2、BC1、F2:3群体种植于大田并分析其抗感分离比,结果表明CH7359对条锈菌CYR32的抗性受1对显性基因控制,暂命名为YrCH7359。使用BSA法结合SSR标记技术对CH7359×绵阳11的F2群体进行分析,找到3个与抗病基因连锁的SSR标记,位置顺序为:Xgwm273-YrCH7359-Xgwm626-Xbarc24,遗传距离分别为8.6cM、5.9cM和3.2cM。同样应用中国春缺体-四体、双端体材料进行鉴定,这3个与抗条锈基因连锁的标记均位于6BL染色体上,因而最终将这个新基因位于6BL染色体。
     5、抗条锈病渗入系CH7203也衍生于八倍体小偃麦TAI8335。苗期经多个条锈菌小种鉴定并结合系谱分析,推断出CH7203的条锈病抗性也来自中间偃麦草。将CH7203与绵阳11的各杂交、回交群体种植于大田并分析其抗感分离比,结果表明CH7203对条锈菌CYR32的抗性也受1对显性基因控制。同样也使用BSA法结合SSR标记技术对CH7203×绵阳11的F2群体进行分析,发现2个小麦SSR标记与抗病基因连锁,位置顺序为:YrCH7203-Xbarc170-Xwmc161,遗传距离分别为4.1cM和6.3cM。两个连锁标记经中国春缺体-四体、双端体材料的鉴定,被定位在4AL染色体上,但由于连锁的标记位于目标基因同侧,所以该抗条锈基因的准确定位还有待更多连锁标记的筛选。
     综上所述,本研究以5个小偃麦渐渗系(CH223、CH7102、CH7115、CH7359、 CH7203)为试材,应用遗传学、细胞遗传学和分子标记等技术,详尽分析了这5个小麦抗条锈新品系的抗性遗传机制和抗性位点的染色体定位。通过对这5个品系的F1、F2、BC1和F2:3群体,进行苗期和成株期的抗条锈性鉴定。抗性表型的遗传分析证明这5个品系的抗条锈性分别均由一个显性基因控制,且抗性位点来源于中间偃麦草或彭提卡偃麦草,是一类小麦条锈病的新抗源。以各品系相应的F2为作图群体,应用SSR标记技术分别构建了这5个新抗性位点的分子连锁图谱。进一步应用中国春缺体-四体、双端体材料鉴定与这5个抗性位点紧密连锁分子标记的染色体位置,初步将各自所携带的抗条锈基因分别定位于4BL、2AS、1BS、6BL和4A。其中定位于4BL染色体上的抗条锈基因已被国际命名委员会正式命名为Yr50。这5个新抗条锈位点的定位及分子标记的建立为下一步抗性基因的图位克隆及其功能鉴定奠定了基础。基因组原位杂交结果显示这些新品系都属于隐形异源渐渗系,这种抗性材料的抗性基因易于稳定遗传和导入新品系以培育优良抗性品种。这些新基因的发现不仅有助于小麦抗条锈分子标记聚合育种,而且对于实现抗源多样化及我国小麦条锈病的可持续控制具有重要的理论及应用价值。
Wheat stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a major disease that can cause tremendous wheat production losses worldwide, especially in the cooler and wetter environments. Since the appearance of PST race CYR32and CYR33which are the most widely virulent and predominant pathotypes in China, a lot of wheat cultivars have become susceptible, resulting in the epidemic of stripe rust. Frequent changes in the pathogen population and the homology of stripe rust resistance background in commercial wheat cultivars are the main reasons of the epidemic. Therefore, using resistant cultivars is the most economical and safty method to reduce damage caused by this disease.
     Alien resistant gene transfer is a valuable means of increasing the amount of resistance diversity. The Thinopyrum species, Th. intermedium (Host)(2n=6x=42, JJSS) and Th. ponticum (Podp.)(2n=10x=70,JJJJSJS) had many excellent resistance gene for wheat disease, it is a valuable source of wheat resistance breeding. At present, more and more stripe rust resistance varieties derived from the two Thinopyrum species have been cultivated and used for wheat breeding. Recently, several new Thinopyrum-derived multi-resistance lines have been developed, and they are highly resistant to stripe rust. In this study, our aims were to determine the inheritance, chromosome location and linkage to molecular markers of these new lines. The main results are as follows:
     1. CH223is a Th. intermedium-derived wheat introgression line and resistant to stripe rust. To investigate the inheritance of stripe rust resistance introgressed from Th. intermedium, CH223was crossed to susceptible cultivars Taichung29and SY95-71to yield segregating populations. The F2, F3and BC1were tested for segregation of stripe rust resistance. Genetic analysis showed that resistance of CH223was controlled by a single dominant gene. An F2segregating population from CH223/Taichung29was further used for microsatellite screening and gene mapping. The resistance gene was linked to five co-dominant genomic SSR markers, Xgwm540, Xbarc1096, Xwmc310, Xgpw7272and Xwmc47, their most likely order was Xgwm540-Xbarc1096-YrCH223-Xwmc310-Xgpw7272-Xwmc47at21.9,8.0,7.2,12.5and11.3cM, respectively. Through the Chinese Spring nullisomic-tetrasomic and ditelosomic lines detection, the polymorphic markers and the resistance gene were assigned to chromosome4BL. As no stripe rust resistance gene was previously assigned to chromosome4BL, this new resistance gene was designated Yr50. Yr50, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding stripe rust resistance genes.
     2. CH7102, the resistance to stripe rust was introgressed into common wheat (Triticum aestivum L.) from Thinopyrum ponticum, using a resistant partial amphiploid as a bridging parent in crosses with susceptible wheat lines. The evaluation of resistance reactions in this study demonstrated that the wheat line CH7102has exhibited a high level of resistance to Chinese Pst races CYR32and CYR33, the most widely virulent and predominant pathotypes in China. The resistance responses of CH7102to the races tested was similar to those of its donor parent Xiaoyan7430as well as the wild parent, whereas all the wheat parents involved were susceptible, indicating that the resistance conferred by CH7102was possibly derived from T. ponticum. The F1,F2, F3and BC1populations from a cross of CH7102with susceptible line were tested for segregation of stripe rust resistance. Genetic analysis all showed that resistance of CH7102was controlled by a single dominant gene. Through microsatellite screening five co-dominant genomic SSR markers were found linking to resistance gene, Xbarcl24, Xgwm636, Xgpw2204, Xgwm95and Xgwm296. Their most likely order was Xbarc124-Xgwm636-YrCH7102-Xgpw2204-Xgwm95-Xgwm296at5.0cM,8.6cM,8.4cM,2.7cM and14.4cM, respectively. Through the nullisomic-tetrasomic and ditelosomic lines detection, the polymorphic markers and the resistance gene were assigned to chromosome2AS.
     3.CH7115is another stripe rust resistance gene which was also introgressed from Thinopyrum ponticum. The resistance responses of CH7115to the races tested was similar to those of its donor parent Xiaoyan7430as well as the wild parent, which indicated the resistance of CH7115was derived from Thinopyrum ponticum. The F1, F2, F3and BC1populations from a cross of CH7115with susceptible line were tested for segregation of stripe rust resistance. Genetic analysis all showed that resistance of CH7115was controlled by only one dominant gene.Through microsatellite screening five co-dominant genomic SSR markers were found linking to resistance gene, Xgdm33, Xgwmll, Xcfd65, Xgwm18and Xbarc137. Their most likely order was Xgdm33-YrCH7115-Xgwm11-Xcfd65-Xgwml8-Xbarcl37at10.5cM,7.1cM,0.4cM,2.7cM and1.2cM, respectively. Through the nullisomic-tetrasomic and ditelosomic lines detection, the polymorphic markers and the resistance gene were assigned to chromosome IBS.
     4. TAI8335was a new partial amphiploid derived from Thinopyrum intermedium. CH7359was a homogeneous BC2F4-derived wheat lines using TAI8335as its donor parent. Through races test, CH7359showed similar phenotype to its donor parent and the wild parent, which indicated the resistance of Line CH7359was derived from Thinopyrum-intermedium. The F1, F2, F3and BC1populations from a cross of CH7359with susceptible line were tested for segregation of stripe rust resistance. Genetic analysis all showed that resistance of CH7359was controlled by only one dominant gene. After microsatellite screening three co-dominant genomic SSR markers was found linking to resistance gene. Using Mapmaker3.0software to map their linkage, we got their most likely order was Xgwm273-YrCH7359-Xgwm626-Xbarc24at8.6cM,5.9cM and3.2cM, respectively. Finally the polymorphic markers and the resistance gene were assigned to chromosome6BL.
     5. CH7203is another stripe rust resistance gene which was also introgressed from Thinopyrum Intermedium, using the resistant partial amphiploid TAI8335as a bridging parent crossed with susceptible wheat lines MianYang11. The resistance response of CH7203to the tested races was similar to those of its donor parent as well as the wild parent, which indicated the resistance of CH7203derived from Thinopyrum Intermedium. Genetic analysis of the F1, F2, F3and BC1populations from the cross of CH7203with susceptible line Mian Yang11showed that resistance of CH7203was controlled by only one dominant gene. Microsatellite screening results showed two co-dominant genomic SSR markers were linked to resistance gene, Xbarc170and Xwmcl61, their most likely order was YrCH7203-Xbarc170-Xwmc161at4.1cM,6.3cM, respectively. Through nullisomic-tetrasomic and ditelosomic lines detection, the polymorphic markers were assigned to chromosome4AL. But the two linking SSR makers were located the same side to resistance gene, the target gene was only assigned to chromosome4A. We need to find more tight linking markers to locate this new resistance gene exactly.
     In conclusion, through conventional hybrid analysis, we found stripe rust resistances of five wheat-Thinopyrum germplasm lines (CH223, CH7102, CH7115, CH7359, CH7203) were all controlled by a single dominant gene and the resistance was derived from Th. intermedium or Th. poticum. Resistance genes carried by the five lines were respectively assigned to4BL2AS, IBS,6BL and4A, using SSR molecular marker technique to analyze F2derivations. Both the resource and chromosome of these genes are different from other known stripe rust genes. Among them, a new resistance gene carried by CH223was formally designated Yr50. Identification and analysis of these new stripe rust resistance lines will be beneficial for map-based gene cloning and gene function characterization. Cytological analyses using GISH also detected no chromosomal segments from alien species, so the resistance of these new lines can be stably inherited. It will be available for wheat molecular marker-assisted resistance breeding and increasing the diversity of wheat resistance resource.
引文
[1]Hadi Bux, Muhammad Ashraf, Fida Hussain et al. Characterization of wheat germplasm for stripe rust (Puccini striiformis f. sp. tritici) resistance [J]. AJCS,2012, 6(1),116-120.
    [2]万安民,赵中华,吴立人.2002年我国小麦条锈病发生回顾[J].植物保护,2003,29(2),5-8.
    [3]李振歧,商鸿生.中国农作物抗病性及其利用[M].北京,中国农业出版社,2005,175-190.
    [4]李振岐,曾士迈.中国小麦锈病[M].北京,中国农业出版社,2002,1-60.
    [5]万安民.2000小麦条锈病的发生状况和研究现状[J].世界农业,2000,5,39-40.
    [6]喻璋等.小麦病虫害及其防治[M].四川,四川大学出版社,2002,2-6.
    [7]甘肃省农科院植物保护研究所编.小麦锈病[M].甘肃,甘肃人民出版社,1979,1-4.
    [8]王琦,刘媛,杨宁权.小麦病虫害识别与防治[M].宁夏,宁夏人民出版社,2009,1-7.
    [9]李振歧,商鸿生.小麦锈病及其防治[M].上海,上海科学技术出版社,1980,2-3.
    [10]孟亚雄.8个小麦条锈病主要流行小种(致病类群)遗传差异研究[D].甘肃兰州,甘肃农业大学,博士学位论文,2011,4-9.
    [11]Chen X M. Epidemiology and control of stripe rust on wheat [J]. Can J Plant Pathol, 2005,27,314-337.
    [12]Chen XM, Moore M, Milus EA, et al. Wheat stripe rust epidemics and races of Puccinia striiformis f.sp.tritici in the United States in 2000[J]. Plant Dis,2002,86, 39-46.
    [13]Newton M., Johnson T. Identified two physiologic races in Canada [J]. Sci. Agric. Abstr,1932,8,464-469.
    [14]Bever W. W. Physiologic specialization in Puccinia glumerum in the United States [J].Phytopathology,1934,24,686-688.
    [15]Line R F, Ch X M. Wheat and barely stripe rust in North America [C]. Proceedings of European Mediterranean cereal rust Powdery mildew conference,1995,9, 101-104.
    [16]姚占军,徐世昌,万安民等.3个小麦条锈菌鉴别寄主的抗性遗传分析[J].植物遗传资源学报,2006,7(1),39-43.
    [17]郝保军,王保通,李强等.小麦条锈菌水源11类群的RAPD分析及SCAR标记的建立[J].植物病理学报,2010,40(1),1-6.
    [18]汪可宁,洪锡午,司权民等.我国小麦条锈菌生理专化研究[J].植物保护学报,1963,2(1),23-35.
    [19]詹刚明,王建锋,王晓杰等.中国小麦条锈菌生理小种演化及遗传重组[J].中国农业科学,2011,44(9),1815-1822.
    [20]Chen X M, Line R F. Identification of stripe rust resistance genes in wheat cultivars used to differentiate North American races of Puccinia striiformis [J]. Phytopathology,1992,82,1428-1434.
    [21]Line R F, Chen X M. Successes in breeding for and managing durable resistance to wheat rusts [J]. Plant Disease,1995,79,1254-1255.
    [22]Lupton F G H, Macer R C. Inheritance of resistance to yellow rust (Puccincia glmarrum Erikss.&Henn) in seven varieties of wheat [J]. Trans Brit Mycol Soc, 1962,45(1),21-45.
    [23]McIntosh R, Dubcovsky J, Rogers J, et al. Catalogue of gene symbols for wheat: 2012 supplement. Annual Wheat Newsletters [EB/OL].2012,58,271-272.
    [24]McIntosh R, Yamazaki Y, Dubcovsky J, et al. Catalogue of gene symbols for wheat. Annual Wheat Newsletters [EB/OL].2008, http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008/.
    [25]Macer R C F. The formal and monosomic genetic analysis of stripe rust(Puccinia striiformis) resistance in wheat. Proceediings of the 2nd International Wheat Genetics Symposium.19-24 August 1963, Lund, Sweden (Edited by MacKe J.)[C]. Hereditas (Suppl),1966,127-142.
    [26]Riley R, Chapman V, and Johnson R. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis [J]. Genet.Res.,1968,12,713-715.
    [27]Riley R, Chapman V, Johnson R. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination [J]. Nature, 1968,217,383-384.
    [28]Macer R C F. Plant pathology in a changing world[C].Transactions of the British Mycological Society,1975,65,351-374.
    [29]Johnson R, Taylor A J. Isolates of Puccinia striiformis collected in England from wheat varieties'Maris Beacon'and'Joss Cambier'[J]. Nature,1972,238,105-106.
    [30]Priestley R H. Detection of increased virulence in populations of wheat yellow rust [M]. Plant Disease Epidemiology, Oxford:Blackwell Scientific Publishers(Scott PR&Bainbridge A eds.),1978.63-70.
    [31]Gerechter-Amitai Z K, Silfhout C H, Grama A, et al. Yr15 a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25[J]. Euphytica,1989,43, 187-190.
    [32]Worland A J, Law C N. Genetic analysis of chromosome 2D of wheat I.The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance [J]. Zeitschrift fur Pflanzenzuchtung,1986,96,331-345.
    [33]Bariana H S, McIntosh R A. Cytogenetic studies in wheat XIV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A [J]. Genome,1993,36,476-482.
    [34]Singh R P. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat [J]. Phytopathology,1992,82,835-838.
    [35]Chen X M, Jones S S, Line R F. Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis [J]. Phytopathology,1995,85,375-381.
    [36]McIntosh R A, Lagudah E S. Cytogenetical studies in wheat ⅩⅧ.Gene Yr24 for resistance to stripe rust [J]. Plant Breeding,2000,119,81-83.
    [37]Calonnec A, Johnson R. Chromosomal location of genes for resistance to Puccinia striiformis in the wheat line TP1295 selected from the cross of Soissonais-Desprez with Lemhi [J]. European Journal of Plant Pathology,1998,104,835-847.
    [38]Ma J X, Zhou R G, Dong Y S, et al. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticun turgidum L. using microsatellite markers [J]. Euphytica,2001,120,219-226.
    [39]McDonald D, McIntosh R A, Wellings C R,et al. Cytogenetical studies in wheat XIX.Location and linkage studies on gene Yr27 for resistance to stripe rust[J]. Euphytica,2004,2,1-10.
    [40]Singh R P, Nelson J C, Sorrells M E. Mapping Yr28 and other genes for resistance to stripe rust in wheat [J]. Crop Science,2000,40,1148-1155.
    [41]William H M, Singh R P, Herta-Espino J, et al. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat[J]. Phytopathology,2003,93,153-159.
    [42]Singh R.P., Huerta-Espino J., Rajaram S. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes [J]. Acta Phytopathologicaet Entomologica Hungarica,2000,35,133-139
    [43]Singh R P, William H M, Huerta-Espino J, et al. Identification and mapping of genes Yr31 for resistance to stripe rust in Triticum aestivum cultivar pastor[C]. Proceeding of the 10th International Wheat Genetics Symposium,2003,411-413.
    [44]Eriksen L, Afshari F, Christiansen M J, et al. Yr32 for resistance to stripe rust present in the wheat cultivar Carstens V [J]. Theor Appl Genet,2004,108,567-575.
    [45]Zahravi M. Bulk segregation analysis of stripe rust resistant gene Yr33 in wheat (T.aestivum) using microsatellite markers [C]. Proceeding of the 10th international wheat genetics symposium, Italia,2003,861-863.
    [46]Bariana H S, Parry N, Barclay I R, et al. Identification and characterization of stripe rust resistance gene Yr34 in common wheat [J]. Theor Appl Genet,2006,112, 1143-1148.
    [47]N. A. Dadkhodaie, H. Karaoglou, C. R. Wellings et al. Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36 [J]. Theor Appl Genet,2011,122, 479-487.
    [48]Uauy C., Brevis J.C., Chen X.M., et al. High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1 [J]. Theor Appl Genet,2005,112,97-105.
    [49]Marais G F, McCallum B, Snyman J E, et al. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi [J]. Plant Breeding, 2005,124,538-541.
    [50]G. F. Marais, P. E. Badenhorst, A. Eksteen, et al. Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat [J]. Euphytica, 2010,171,15-22.
    [51]Lin F, Chen X M. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-speciWc high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa [J]. Theor Appl Genet,2007,114(7), 1277-1287.
    [52]Kuraparthy V, Chhuneja P, Dhaliwal H S, et al. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat [J]. Theor Appl Genet,2007,114, 1379-1389.
    [53]Luo P.G., Ren Z.L., Zhang H.Q.,et al. Identification, chromosomal location, and diagnostic markers for a new gene(YrCN19) for resistance to wheat stripe rust [J]. Phytopathology.2005.95,1266-1270.
    [54]Marais F., Marais A.,McCallum B., Pretorius Z. Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req.exBertol. to common wheat [J]. Crop Science 2009,49,871-879.
    [55]Cheng P, Chen X M. Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s [J]. Theor Appl Genet,2010,121,195-204.
    [56]Q. Li, X. M. Chen, M. N. Wang, et al. Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D [J]. Theor Appl Genet,2011,122, 189-197.
    [57]Sybil A. Herrera-Foessel, Evans S. Lagudah, Julio Huerta-Espino, et al. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked [J].Theor Appl Genet,2011,122,239-249.
    [58]U. K. Bansal, K. L. Forrest, M. J. Hayden, et al. Characterisation of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52 [J]. Theor Appl Genet,2011,122,1461-1466.
    [59]Iago Lowe, Ljupcho Jankuloski, Shiaoman Chao. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat [J]. Theor Appl Genet,2011,123,143-157.
    [60]McIntosh R, Dubcovsky J, Rogers J, et al. Catalogue of gene symbols for wheat: 2011 supplement. Annual Wheat Newsletters [EB/OL].2011,57,313-314.
    [61]Jie Liu, Zhijian Chang, Xiaojun Zhang, et al. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL [J]. Theor Appl Genet,2013,126,265-274.
    [62]R. S. Ren, M. N. Wang, X. M. Chen, et al. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527[J]. Theor Appl Genet,2012,125,847-857.
    [63]L. S. Xu, M. N. Wang, P. Cheng, et al. Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat [J]. Theor Appl Genet,2013,126,523-533.
    [64]杨敏娜,徐智斌,王美南,等.小麦品种中梁88375抗条锈病基因的分子作图[J].中国农业科学,2008,41(10),2931-2936.
    [65]Wellings C R, McIntosh R A, Hussain M. A new source of resistance to Puccinia striiformis f.sp. tritici in spring wheats(Triticum aestivum) [J]. Plant Breeding,1988, 100,88-96.
    [66]Lin Huang, Lian-Quan Zhang, Bao-Long Liu. Molecular tagging of a stripe rust resistance gene in Aegilops tauschii [J]. Euphytica,2011,179,313-318.
    [67]Wang L.M., Zhang Z.Y., Liu H.J., et al. Identification, gene postulation and molecular tagging of a stripe rust resistance gene in synthetic wheat CI142 [J]. Cereal Research Communications 2009,37,209-215.
    [68]Li Y, Niu Y C, Chert X M. Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers [J]. Theor Appl Genet,2009,118(2), 339-346.
    [69]Li G Q, K Z F, Yang W Y, et al. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai42 and its allelism with Yr24 and Yr26 [J]. Theor Appl Genet,2006,112(8),1434-1440.
    [70]刘方慧,牛永春,邓晖,等.小麦农家品种赤壳中一个主效抗条锈病基因的微卫星标记和定位[J].遗传学报,2007,34(12),1123-1130.
    [71]Navabi A, Tewari J P, Singh R P, et al. Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar Triticum aestivum'Cook' [J], Genome,2005,48,97-107.
    [72]Chen X M,Line R F,Jones S S. Chromosomal location of genes for resistance to Puccinia striiformis in winter wheat cultivars Heines Ⅶ,Clement, Moro, Tyee, Tres and Daws[J].Phytopathology,1995,85,1362-1367.
    [73]Ren T.H., Yang Z.J., Yan B.J., et al. Development and characterization of a new 1BL/1RS translocation line with resistance to stripe rust and powdery mildew of wheat [J]. Euphy tica,2009,169,207-213.
    [74]Chen X M, Line R F, Jones S S. Chromosomal location of genes for resistance to Puccinia sriiformis in wheat cultivars Druchamp, Stephens, and Yamhill [J]. Phytopathology,1994,84,1116.
    [75]Chen X M, Jones S S, Line R F. Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci [J]. Phytopathology,1996,86,1228-1233.
    [76]王宁.小麦种质贵农775和Centrum抗条锈性特征及遗传研究[D].陕西杨凌,西北农林科技大学,硕士学位论文,2012.
    [77]徐继萍,周桂林,王忠伟.小麦品种贵州98-18抗条锈基因YrG98的分子标记定位[J].麦类作物学报.2012,32,18-21.
    [78]Peng J H, Fahima T, Roder M S, et al. Microsatellite tagging of the stripe rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B [J]. Theor Appl Genet,1999,98,862-872.
    [79]杨雪.小麦农家品种红麦(苏1661)中主效抗条锈病基因的分子标记与定位研究[D].北京,中国农业科学院硕士学位论文,2007.
    [80]Cao Z J, Deng Z Y, Wang M N, et al. Inheritance and molecular mapping of an aliem stripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line [J]. Plant Science,2008,174,544-549.
    [81]牛永春,刘红彦,吴立人,等.小麦品种“Lee”中抗条锈病基因的PAPD标记[J].高技术通讯,1998,12,11-14.
    [82]周兖晨,张相岐,王献平,等.滨麦抗条锈病基因的染色体定位和分子标记[J].遗传学报,2001,28(9),864-869.
    [83]宋晓贺,侯璐,杨敏娜,等.小麦-滨麦易位系M8657-1抗条锈病基因遗传分析和分子标记[J].植物病理学报,2008,38(6),652-655.
    [84]徐中青,张书英,王睿,等.小麦品系M8003-5抗条锈病基因遗传分析和分子作图[J].作物学报,2010,36(12),2116-2123.
    [85]徐皖彬,尹军良,马东方,等.普通小麦-柔软滨麦草易位系M97抗条锈基因的遗传分析和分子作图[J].植物保护学报,2012,39(1),24-30.
    [86]Bomer A, Roder M S, Unger O, et al. The detection and molecular mapping of a major gene for non-specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat [J].Theor Appl Genet,2000,100,1095-1099.
    [87]Pu Z.J., Chen G.Y., Wei Y.M.,et al. Identification and molecular tagging of a stripe rust resistance gene in wheat line P81 [J]. Plant Breeding 2010,129,53-57.
    [88]Deng Z. Y., Zhang X.Q., Wang X.P., et al. Identification and molecular mapping of a stripe rust resistance gene from a common wheat line Qz180 [J]. Acta Botanica Sinica,2004,46,236-241.
    [89]Yuanfeng Hao, Zhenbang Chen, Yingying Wang. Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat [J]. Theor Appl Genet,2011,123,1401-1411.
    [90]Luo P.G., Zhang H.Y., Shu K., et al. Stripe rust (Puccinia striiformis f.sp. tritici) resistance in wheat with the wheat-rye 1BL/1RS chromosomal translocation [J]. Canadian Journal of Plant Pathology,2008,30,254-259
    [91]ZHANG Shu-ying, XU Zhong-qing,WANG Rui, et al. Genetics and Molecular Mapping of Stripe Rust Resistance Gene YrShan515 in Chinese Wheat Cultivar Shan 515[J]. Agricultural Sciences in China,2011,10(4),553-559.
    [92]房体麟,程颖,李根桥,等.小麦条锈病抗源S2199抗病基因分子标记及其与Yr5的关系[J].作物学报,2008,34(3),355-360.
    [93]张宏,任志龙,胡银岗,等.陕麦139抗条锈病基因遗传分析[J].作物学报,2010,36(1),109-114.
    [94]Gosal K S. Aspects of Resistance to Wheat Stripe Rust in Australia [D]. PhD Thesis, Sydney:The University of Sydney,2000.
    [95]关海涛,郭玉华,王悦冰,等.小麦条锈菌生理小种国际鉴别寄主Spaldings Prolific中抗条锈病基因YrSpP的微卫星标记[J].中国农业科学,2005,38(8), 1574-1577.
    [96]Shi-Sheng Chen, Guo-Yue Chen, Hua Chen, et al. Mapping stripe rust resistance gene YrSph derived from Tritium sphaerococcum Perc. with SSR, SRAP,and TRAP markers[J]. Euphytica,2012,185,19-26.
    [97]殷学贵,尚勋武,庞斌双,等.A-3中抗条锈新基因YrTpl和YrTp2的分子标记定位分析[J].中国农业科学,2006,39(1),10-17.
    [98]周新力,吴会杰,张如佳,等.来自簇毛麦抗条锈病新基因的SSR标记[J].植物病理学报,2008,38(1),69-74.
    [99]周艳丽,蔺瑞明,张建周,等.小麦条锈菌中国鉴别寄主维尔中抗条锈病基因YrVirl的微卫星标记[J].中国农业科学,2008,41(4),1023-1029.
    [100]王睿,张书英,徐中青,等.簇毛麦易位系V9125-2抗条锈基因YrWV遗传分析和SSR分子标记[J].中国农业科学,2011,44(1),9-19.
    [101]X. L. Zhou, W. L. Wang, L. L. Wang. Genetics and molecular mapping of genes for high-temperature resistance to stripe rust in wheat cultivar Xiaoyan 54[J]. Theor Appl Genet,2011,123,431-438.
    [102]张海泉,贾继增,杨虹,等.来自粗山羊草抗条锈病基因的SSR标记[J].遗传,2008,30(4),491-494.
    [103]张海泉,郎杰,马淑琴,等.粗山羊草抗条锈病新基因YrY206遗传分析和微卫星标记[J].生物工程学报,2008,24(8),1475-1479.
    [104]张海泉,郎杰,马同锁,等.粗山羊草抗条锈病鉴定及抗病基因YrY212SSR标记[J].西北农林科技大学学报,2008,36(9),156-168.
    [105]Li Z F, Zheng T C, He Z H, et al. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B [J].Theor Appl Genet,2006,112, 1098-1103.
    [106]杨敏娜,徐智斌,王美南,等.小麦品种中梁22抗条锈病基因的遗传分析和分子作图[J].作物学报,2008,34(7),1280-1284.
    [107]Harlan J.R., J.M.J.de Wet. Toward a rational classification of cultivated plants [J]. TAXON,1971,20(4),509-517.
    [108]董玉琛.小麦的基因源[J].麦类作物学报,2000,20(3),78-81.
    [109]杨华安,Stubbs R.W中国小麦条锈菌鉴别寄主抗条锈基因初步分析[J].植物保护学报,1990,17(1),67-72.
    [110]姚占军,蔺瑞明,徐世昌,等.小麦条锈菌鉴别寄主Lee中抗性基因Yr7的微卫星标记[J].中国农业科学,2006,39(6),1146-1152.
    [111]Suenaga K., Singh R. P, Huerta-EsPino J., et al. Mierosatellite markers for genes Lr34/Yrl8 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat [J]. Phytopathology,2003,93,881-890.
    [112]Peng Zhang, Robert A. McIntosh, Sami Hoxha, et al. Wheat stripe rust resistance genes Yr5 and Yr7 are allelic [J]. Theor Appl Genet,2009,120,25-29.
    [113]Law C.N. The genetic control of daylength response in T.spelta album[C], Plant Breeding Institute, Cambridge, Annual Report,1976,108-109.
    [114]井金学,徐智斌,王殿波,等.小偃6号抗条锈性遗传分析[J].中国农业科学,2007,40(3),499-504.
    [115]魏昕.玉米丝裂病遗传效应分析及其QTL定位[D].四川雅安,四川农业大学,博士学位论文,2007.
    [116]姚占军,于徐世昌,吴立人.小麦抗病性遗传的研究进展[J].辽宁农业科学,2002,6,30-33.
    [117]徐世昌,张敬原,赵文生,等.小麦京核891-1抗条锈病主效、微效基因的遗传分析[J].中国农业科学,2001,34(3),272-276.
    [118]Krupinsky J.M. and Sharp E.L. Additive resistance in wheat to Puccinia striiformis [J]. Phytopathology,1978,68,1795-1799.
    [119]王保通,李强,胡茂林,等.小麦品种Libellula和N. strampelli抗条锈病主效、微效基因遗传分析[J].植物病理学报,2010,40(3),300-306.
    [120]伍玲.小麦条锈病成株抗性QTL定位和分子标记检测[D].四川雅安,四川农业大学,博士学位论文,2011.
    [121]Biffen R H. Mendel's law of inheritance and wheat breeding [J].Agric. Sci,1905,1, 4-48.
    [122]Sears E.R. The aneuploids of comment wheat [J]. Missouri Agricultural Experiment Station Research Bulletin,1954,572,59.
    [123]何家泌.小麦抗病遗传学[M].北京,中国农业出版社,1994.
    [124]马蕾蕾,王瑞义,吴玉星,等.小麦条锈菌中国鉴别寄主阿夫的抗条锈病基因单体分析[J].植物保护,2006,32(1),27-29.
    [125]Flor H H. Current status of the gene for gene concept [J]. Ann Rev phytopathol, 1971,9,275-296.
    [126]李春莲.小麦抗条锈新种质的创制及分子细胞遗传学基础研究[D].陕西杨凌,西北农林科技大学,博士学位论文,2006.
    [127]杨华安.中国小麦条锈菌鉴别寄主抗条锈基因初步分析[J].植物保护学报,1990,17(1),67-72.
    [128]代君丽,刘珂,牛永春.中国小麦地方品种抗条锈病基因推导[J].河南农业科学,2010,12,83-86.
    [129]井长勤,丰慧根,刘涌涛,等.92R137抗条锈病基因推导和SSR标记[J].河南科技学院学报,2006,13(4),5-7.
    [130]曹世勤,骆惠生,黄瑾,等.冬小麦品种陇鉴9821抗条锈遗传分析植物病理学报[J].2012,42(3),274-280.
    [131]Dubin H J. et al. Postulated genes for resistance to stripe rust in select CIMMYT and related wheat [J]. Plant Disease,1989,73,472-475.
    [132]葛昌斌,徐如宏,郭春强,等.贵农775抗条锈病基因标记的相关片段克隆及荧光原位杂交[J].种子,2007,26(5),40-43.
    [133]杨文杰.小黑麦×普通小麦衍生小麦抗条锈病品系的分子细胞遗传学研究[D].四川雅安,四川农业大学,硕士学位论文,2004.
    [134]樊小莉,王静,张玮量,等.小麦高产抗病新种质9204R的分子细胞学鉴定[J].麦类作物学报,2011,31(4),611-616.
    [135]Grozdicker T, Williams J, et al. Physical mapping of temperature-sensitive mutation of advenovirus [J]. Gold Spring Harbor Symp Quant Biol,1974,39,439-446.
    [136]Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkdage map in man using restriction fragment length polymorphisms [J]. Am J Hum Genet,1980, 32,14-331.
    [137]Gale M. D. Proceeding of the international wheat genetics symposium[C]. China Agriculture science press, Beijing, China,1995,1,29-40.
    [138]SUN G L, FAH IMA T, KOROL A B, et al. Identification of molecular markers linked to the Yrl5 Stripe rust resistance gene of wheat originated in wild emmer wheat Triticum dicoccoides [J]. Theor Appl Genet,1997,95,622-628.
    [139]G.F. Marais, Z.A. Pretorius, C.R. Wellings, et al. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides [J].Euphytica,2005, 143,115-123.
    [140]Autrique JE, et al. RFLP mapping of genes associated with different agronomictraits and disease resistance in wheat [M]. Abstract of Internation Plant Genome Ⅲ, San Diego, USA,1995, p8.
    [141]Williams JGR, Kwbelik AK, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers as useful as genetic markers [J]. Nucleic Acids Research,1990, 18(22),6531-6535.
    [142]Welsh J, Mcclell M O. Finger printing genomes using PCR with arbitrary primers [J]. Nucleic Acids Research,1990,18,7213-7218.
    [143]巫娟,牛永春,檀根甲.小麦农家品种红麦(京2747)主效抗条锈病基因的RAPD标记[J].植物遗传资源学报,2006,7(3),260-263.
    [144]郭伟锋,张改生,王军卫,等N95175抗条锈病的RAPD分析[J].麦类作物学报,2004,24(4),25-27.
    [145]李春莲,陈耀锋,韩德俊,等.普通小麦抗条锈新种质——WT212的抗性及遗传分析其及抗性基因的RAPD标记[J].西北农林科技大学学报,2004,32(增刊),11-14.
    [146]陆文辉,李兴峰,陈寅初,等.利用细胞学和RAPD技术鉴定抗条锈病小滨麦易位系[J].麦类作物学报,24(2),20-23.
    [147]Hamada H, Petrino M. G., and Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes [J]. Proc Natl Acad Sci,1982,79,646-649.
    [148]Zebeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting [P]. European patent office publication, Patent Number.:0535858A,13-31-1993,
    [149]Peng J H, Fahima T, Roder M S, et al. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicooccoides [J]. Genetics,2000,109(3),199-210.
    [150]Y. Li, Y. C. Niu, X. M. Chen. Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers [J]. Theor Appl Genet,2009,118, 339-346.
    [151]邵映田,朱立煌.小麦抗锈病基因Yr10的AFLP标记[J].科学通报,2001,46(8), 669-672.
    [152]张超,徐如宏,思彬彬,等.用AFLP标记来自偏凸山羊草的抗条锈病新基因YrG775[J].中国农业科学,2006,39(4),673-678.
    [153]Paran I, Michelmore R W. Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce [J].Theoritical and Applied Genetics,1993, 85,985-993.
    [154]钟鸣,牛永春,徐世昌,等.小麦品种Triticum spelta album中抗条锈病基因Yr5的RAPD标记[J].遗传学报.2002.29(8),719-722.
    [155]刘红彦.小麦抗条锈病基因分子标记的建立[D].陕西杨凌,西北农林科技大学博士学位论文,1999.
    [156]钟鸣,牛永春,吴立人,等.小麦品种‘'compair"抗条锈病基因的RAPD, SCAR标记[C].2001年辽宁省首届学术年会暨第四届青年学术年会,2001.
    [157]Sun G L, Fahima T, Korol A B, et al. Identification of molecular makers linked to the Yrl5 stripe rust resistance gene of wheat originated in wild emmer wheat Triticum dicoccoides [J]. Theory Apply of Genetic,1997,95,622-628.
    [158]Robert O, Abelard C, Dedryver F. Identification of molecular markers for the detection of the yellow rust resistance gene Yrl7 in wheat [J]. Molecular Breeding, 1999,5(2),167-175.
    [159]王丽娟.小麦抗条锈病基因YrSP的分子标记研究[D].中国农业科学院硕士学位论文,2005.
    [160]葛昌斌,廖平安,郭春强,等.小麦贵农775抗条锈病新基因YrGA的研究[J].河南农业科学,2008,7,20-24.
    [161]Olson M, Hood L, Cantor C, et al. A common language for physical mapping of the human genome [J]. Sci,1989,245,1434-1435.
    [162]梁丹,杨芳萍,何中虎.利用STS标记检测CIMMYT小麦品种(系)中Lr34/Yr18、 Rht-B1b和Rht-D1b基因的分布[J].中国农业科学,2009,42(1),17-27.
    [163]P.H. Smith, R.M.D. Koebner, L.A. Boyd. The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro [J]. Theor Appl Genet,2002,104,1278-1282.
    [164]Chunmei Wang, Yiping Zhang, Dejun Han, et al. SSR and STS markers for wheat stripe rust resistance gene Yr26 [J]. Euphytica,2008,159,359-366.
    [165]Chen X M, Line R F, Leung H. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis [J]. Theor Appl Genet,1998, 97(3),345-355.
    [166]YAN G P, CHEN X M, LINE R F, et al. Resistance gene analog polymorphism markers cosegregating with the Yr5 for resistence to wheat stripe rust [J]. Theor Appl Genet,2003,106,636-643.
    [167]殷贵鸿,王建武,闻伟锷,等.小麦抗条锈病基因YrZH84的RGAP标记及其应用[J].作物学报,2009,35(7),1274-1281.
    [168]Wen W.E., Li G.Q., He Z.H., et al. Development of an STS marker tightly linked to Yr26 against wheat stripe rust using the resistance gene-analog polymorphism (RGAP) technique [J]. Molecular Breeding 2008,22,507-515.
    [169]Pahalawatta V, Chen X M. Genetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogens [J]. Phytopathology,2005,95,427-432.
    [170]Lander E S. The new genomics:global views of biology [J]. Science,1996,274, 536-539.
    [171]刘燕,张增艳,辛志勇,等.利用分子标记解析小麦新种质YW243的抗锈病基因[J].中国农业科学,2006,39(2),295-299.
    [172]Bansal U.K., Hayden M. J., Keller B., et al. Relationship between wheat rust resistance genes Yrl and Sr48 and a microsatellite marker [J]. Plant Pathology 2009, 58,1039-1043.
    [173]林风,徐世昌,张立军,等.小麦抗条锈病基因Yr2的SSR标记[J].麦类作物学报,2005,25(1),17-19.
    [174]陈晓红,牛永春,胡宝忠.用变性PAGE-银染法鉴定小麦抗条锈基因Yr5的RAPD标记[J].遗传学报,2004,31(3),270-274.
    [175]Sun Q, Wei Y, Ni C, et al. Micrsoatellite marker for yellow rust resistance gene Yr5 introgressed from spelt wheat [J]. Plant Breeding,2002,121,539-541.
    [176]陈晓红.小麦抗条锈病基因Yr5的RAPD标记[D].黑龙江哈尔滨,东北农业大学,硕士学位论文,2003.
    [177]Murphy LR, Santra D, Kidwell K, et al. Linkage maps of wheat stripe rust resistance genes Yr5 and Yrl5 for use in marker-assisted selection [J]. Crop Science,2009,49, 1786-1790.
    [178]Smith P H, Hadfield J, Hart N J, et al. STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster [J]. Genome, 2007,50,259-265.
    [179]Chen X M, SoriaM A, Yan G P, et a.l Development of Sequence Tagged Site and Cleaved Amplified Polymorphic Sequence Markers for Wheat Stripe Rust Resistance Gene Yr5 [J]. Crop Science,2003(3),601-605.
    [180]李勇,牛永春.小麦抗条锈基因Yr6分子标记初步研究[J].华北农学报,2007,22(4),189-192.
    [181]翁东旭,徐世昌,蔺瑞明,等.小麦条锈菌鉴别寄主抗条锈病基因Yr9的微卫星标记.遗传学报[J],2005,32(9),937-941.
    [182]Shi Z.X., Chen X.M., Line R.F., et al. Development of resistance gene analog Polymorphism markers for theYr9 gene resistance to wheat stripe rust [J]. Genome, 2001,44,509-516.
    [183]Wang L.F., Ma J.X., Zhou R.H., et al. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.1.178383 (Triticum aestivum L.) [J]. Euphytica,2002,124,71-73.
    [184]FahimaT, Sun G L, ChaqueV, et al. Use of the near isogenic lines approach to identify molecular markers linked to the Yr15 stripe rust resistance gene of wheat [J]. Israel Journal of Plant Soienoe,1997,45,262.
    [185]Fahima T, Roder MS, Grama A, et al. Microsatellite DNA Polymorphism divergence in triticum dicoccoides accessions highly resistance to yellow rust [J]. Theor Appl Genet,1998,96,187-195.
    [186]Chague, V, Fahima. F, Dahan. A, et al. Isolation of microsatellete and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis [J]. Genome,1998,42,1050-1056.
    [187]Jia JQ, Li GR, Liu C,et al. Characterization of wheat yellow rust resistance gene Yr17 using EST-SSR and rice syntenic region[C]. Cereal Research Communications, 2011,39,88-99.
    [188]Spielmeyer W, Melntosh R A, Kolmer J. Powdery mildew resistance and Lr34/Yrl8 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome7D of wheat [J]. Theor.Appl.Genet.,2005,111,731-735.
    [189]Lagudah E.S., Krattinger S.G., Herrera-Foessel S., et al. Gene-specific markers for the wheat gene Lr34/Yrl8/Pm38 which confers resistance to multiple fungal pathogens [J]. Theoretical and Applied Genetics,2009,119,889-898.
    [190]Lagudah E S, McFadden H, Singh R P, et al. Molecular genetic characterization of the Lr34/Yrl8 slow rusting resistance gene region in wheat [J]. Theor.Appl.Genet., 2006,114,21-30.
    [191]刘亚萍,曹双河,王献平,等.小麦抗条锈病基因Yr24的SSR标记[J].植物病理学报,2005,35(5),478-480.
    [192]Kuraparthy V, Sood S, See DR & Gill BS. Development of a PCR assay and marker-assisted transfer of leaf rust and stripe rust rersistance genes Lr57 and Yr40 into hard red winter wheats [J]. Crop Science,2009,49,120-126.
    [193]王岭岭,侯冬媛,王文立,等.小麦品系中梁93444的抗条锈性遗传分析与分子作图[J].植物保护学报,2011,38(2),109-115.
    [194]王瑞义.中国小麦条锈菌鉴别寄主尤皮2号、阿夫抗条锈病基因定位及分子标记[D].北京,中国农业科学院,硕士学位论文,2004,25-38.
    [195]程颖,宋伟,刘志勇,等.小麦品种贵21抗条锈病基因的SSR标记[J].作物学报,2006,32(12),1867-1872.
    [196]何名召,王丽敏,张增艳.硬粒小麦-粗山羊草人工合成小麦CI108抗条锈病新基因的鉴定、基因推导与分子标记定位[J].作物学报,2007,33(7),1045-1050.
    [197]张增艳,曾祥艳,林志珊,等.小麦新种质YW243抗条锈病新基因的AFLP标记[J].中国农学通报,2005,21(12),56-59.
    [198]王金平,王洪刚,赵瑾,等小滨麦易位系山农0096抗条锈基因的微卫星标记和染色体定位[J].分子植物育种,2008,6(3),475-479.
    [199]蒲宗君,颜泽洪,魏育明,等.小麦材料P131抗条锈性鉴定及其抗性基因SSR标记[J].植物病理学报,2006,36(4),342-346.
    [200]蒲宗君.小麦抗条锈病遗传资源评价及抗性新基因发掘[D].四川雅安,四川农业大学博士学位论文,2008.
    [201]胡茂林,陈洁,程晶晶,等.小麦品种N.Strampelli的抗条锈基因定位与分子作图[J].中国农业科学,2009,42(6),1972-1979.
    [202]杨宏.小麦抗白粉病新基因PmCD1和抗条锈病基因YrCD的鉴定及分子标记筛 选[D].北京,中国农业科学院,博士学位论文,2009.
    [203]魏艳玲,倪中福,解超杰,等.来自斯卑尔脱小麦新的抗条锈基区(?)YrSp的分子标记定位[J].农业生物技术学报,2003,11(1),30-33.
    [204]任强,刘慧娟,陈洋,等.人工合成小麦C1191抗条锈病基因的鉴定及分子标记定位[J].作物学报,2010,36(5),721-727.
    [205]蒲宗君,杨武云,颜泽洪,等.源于叙利亚小麦ICA31抗条锈病基因分析及分子标记研究[J].中国农学通报,2006,22(2),65-68.
    [206]Roder M S, Korzun V, Wendehake K, et al. A microsatellite map of wheat [J]. Genetics,1998,149,2007-2023.
    [207]Gupta P K, Balyan H S, Edwards K J, et al. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat [J]. Theor Appl Genet,2002,105,413-422.
    [208]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) [J]. Theor Appl Genet,2004,109,1105-1114.
    [209]Sourdille P, Cadalen T, Guyomarc'h H, et al. An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat [J]. Theor Appl Genet,2003,106,530-538.
    [210]Torada A, Koike M, Mochida K, et al. SSR-based linkagemap with new markers using an intraspecific population of common wheat [J]. Theor Appl Genet,2006, 112,1042-1051.
    [211]Shulin Xue, Zhengzhi Zhang, Feng Lin, et al. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags [J]. Theor Appl Genet,2008,117,181-189.
    [212]刘文涛,程登发,康晓慧,等.小麦抗条锈品种遗传多样性的SSR分析[J].植物保护,2011,37(3),72-75.
    [213]玄宏侠.93个小麦品种(系)的抗条锈性鉴定和SSR遗传多样性分析[D].河北保定,河北农业大学,硕士学位论文,2007.
    [214]陈国跃.人工合成六倍体小麦的遗传多样性研究与抗条锈病新基因的发掘[D].北京,中国农业科学院,博士学位论文,2004.
    [215]曾兴权.小麦抗条锈病种质的鉴定及其抗性相关基因的差异表达和克隆[D].陕西杨凌,西北农林科技大学,博士学位论文,2010.
    [216]万江华,任见明,陈涛,等.108份小麦种质抗条锈病基因的分子检测[J].贵州农 业科学,2011,39(5),22-26.
    [217]Mclntosh R.A., Art C.J. Genetic linkage of the Yrl and Pm4 genes for stripe rust and powder mildew resistances in wheat [J]. Euphytica,1996,89,401-403.
    [218]Mclntosh R.A., Luig N.H., Johnson R., et al. Cytogenetic studies in wheat XI. Sr9g for reaction to Puccinia graminis tritici [J]. Zeitschrift fur Pflanzenzuchtung,1981, 87,274-289.
    [219]Mclntosh R.A., Miller T.E., Chapman V. Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondite and Sr34 for resistance to P. graminis tritici [J]. Zeitschrift fur Pflanzenzuchtung,1982,89,295-306.
    [220]Friebe B., Jiang J., Raupp W.J., et al. Ciharacterization of wheat-alien translocations conferring resistance to diseases and pests:current status [J]. Euphytica,1996,91, 59-87.
    [221]Metzger R.J., Silbaugh B.A. Inheritance of resistance to stripe rust and its association with brown glume colour in Tritticum aestivum L. PI 178383 [J]. Crop Sci.,1970,10,567-568.
    [222]Payne P.I., Holt L.M., Johson R., et al. Linkage mapping of four gene loci Glu-Bl, Gli-B1, Rgl and Yr10 on chromosome 1B of bread wheat [J]. Genet. Agr.,1986,40, 231-242.
    [223]Mclntosh R.A., Silk J., The T.T. Cytogenetic studies in wheat XVII. Monosomic analysis and linkage relationships of gene Y15 for resistance to stripe rust [J]. Euphytica,1996,89,395-399.
    [224]Simon G. Krattinger, David R. Jordan, Emma S. Mace, et al. Reecent emergence of the wheat Lr34 multi-pathogen resistance:insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii [J]. Theor Appl Genet,2013,126,663-672.
    [225]Singh R.P., Genetic association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat [J]. Crop Sci.,1992,32,874-878.
    [226]Singh R.P. Genetic association of gene Bdvl for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat [J]. Plant Disease,1993,77,1103-1106.
    [227]McIntosh R.A., Hart G.E., Devos K.M., et al. Catalogue of gene symbols for wheat [C]. Proceeding of the 9th international Wheat Genetics Sym.,1998,3,139-143.
    [228]Singh R.P., McIntosh R.A. Complementary genes for resistance to Puccinia recondite tritici in Triticum aestivum II. Cytogenetic studies [J]. Can. J. Genet. Cytol.,1984,26,736-742.
    [229]李晴祺.冬小麦种质创新与评价利用[M].山东济南,山东科学技术出版社,1998,
    [230]吉万全,薛秀庄,王长有.中间偃麦草的GISH分析[J].西北植物学报,2001,21(3),401-405.
    [231]Liu Z, Li DY, Zhang XY. Genetic relationships among five basic genomes St, E, A, B and D in Triticeae revealed by genomic Southern and in situ hybridization[J]. J Integr Plant Biol,2007,49(7),1080-1086.
    [232]Wienhues A., Transfer of rust resistance of Agropyron to wheat by addition, substitution and translocation. In MacKey J (eds) Proc 2"Int Wheat Genet Symp. Land, Sweden [J]. Hereditas (Suppl),1966,2,328-341.
    [233]王长有,吉万全,薛秀庄,王秋英.小麦-中间偃麦草异附加系条锈病抗性的研究[J].西北植物学报,1999,19(6),54-58.
    [234]李红霞,王平,叶兴国,等.中间偃麦草Z4抗条锈病基因导入春小麦的研究[J].麦类作物学报,2002,22(3),31-33.
    [235]王黎明.小麦一中间偃麦草异代换系的选育、鉴定及其遗传分析[D].山东泰安,山东农业大学,博士学位论文,2006.
    [236]马建新,周荣华,董玉琛,等.小麦抗条锈病基因定位及分子标记研究进展[J].生物技术通报,1999(1),1-6.
    [237]井金学,傅杰,袁红旭.三个小麦野生近缘种抗条锈性传递的初步研究[J].植物病理学报,1999,29(2),147-150.
    [238]秦琳,李彬,崔凯荣,等.小麦抗锈变异体的RAPD分子验证[J].西北植物学报,1997,17(6),22-26.
    [239]Kang Z, Zhao J, Han D, et al. Status of wheat rust research and control in China [C]. BGRI 2010 Technical Workshop Oral Presentations,30-31-May 2010, St Petersburg, Russia,2010,50-69.
    [240]杨作民,解超杰,孙其信.后条中32时期我国小麦条锈抗源之现状[J].作物学报,2003,29(2),161-168.
    [241]Chang Z J, Ren Z L, Zhang H Y, et al. Production of a new partial wheat-Thinopyrum intermedium amphiploid and its genome analysis using genomic in situ hybridization [A]. In:Proceedings of 10th International Wheat Genetics Symposiuml Paestum, Italy,2003,557-561.
    [242]Han F, Lamb JC, Birchler JA. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize [C]. Proc Natl Acad Sci USA,2006,103, 3238-3243.
    [243]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions using segregation populations [J]. Proc Natl Acad Sci, USA,1991,88(21),9828-9832.
    [244]Hu L J, Li G R, Zeng Z X, et al. Molecular cytogenetic identification of a new-wheat-Thinopyrum substitution line with stripe rust resistance [J]. Euphytica,2011, 177,169-177.
    [245]畅志坚.几个小麦-偃麦草新种质的创制分子细胞遗传学分析[D].四川雅安,四川农业大学,博士学位论文,1999.
    [246]Qi L, Friebe B, Zhang P, et al. Homoeologous recombination, chromosome engineering and crop improvement [J]. Chromosome Research,2007,15,3-19.
    [247]杨敏娜.几个小麦重要抗源品种(系)抗条锈病基因的遗传分析与分子作图[D].陕西杨凌,西北农林科技大学,博士学位论文,2008.
    [248]王彦梅,钟冠昌,穆素梅,等.小麦品种“高优503”抗条锈基因染色体定位[J].作物学报,2001,27,384-386.
    [249]Chang Z J, Zhang X J, Yang Z J, et al. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat [J]. Hereditas,2010,147,304-312.
    [250]马渐新,周荣华,董玉琛,等.小麦抗条锈病基因定位及分子标记研究进展[J].生物技术通报,1999,44(1),65-69.
    [251]Wang B, Hu X, Li Q, et al. Development of race specific SCAR markers for detection of Chinese races CYR32 and CYR33 of Puccinia striiformis f. sp. Tritici [J]. Plant Disease,2010,94,221-228.
    [252]任勇,李生荣,李俊,等.两系杂交小麦恢复系MR168抗条锈基因遗传分析及分子标记定位[J].遗传,2011,33(11),1263-1270.
    [253]任强.小麦抗条锈病基因YrC25的遗传分析和分子标记[D].甘肃兰州,甘肃农业大学,硕士学位论文,2010.
    [254]Liu TG, Peng YL, Zhang ZY, et al. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42[J]. Plant Dis,2010,94,1163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700