用户名: 密码: 验证码:
基于碱性溶剂体系制备壳聚糖新材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是一种天然多糖,是由甲壳素脱乙酰制备而成,甲壳素在自然界的含量十分丰富,仅次于纤维素。壳聚糖具有良好的生物相容性、生物可降解性、生物活性及无毒等优点,在生物材料方面具有很高的研究意义和应用价值。壳聚糖分子中含有大量的氨基,通常采用稀酸溶液溶解,但壳聚糖在酸体系中会快速降解,对产品造成了很多缺陷。本课题采用冷冻爆破法在碱性体系中将壳聚糖溶解,研究壳聚糖在碱性体系中溶解机理和溶液性质,并通过该体系制备了壳聚糖水凝胶和纤维材料。
     1.通过动态光散射对壳聚糖稀溶液研究发现,壳聚糖在碱性溶液中存在纳米级粒子,且纳米粒子的粒径与壳聚糖的浓度成线性关系。
     2.系统研究了壳聚糖浓度、LiOH浓度、尿素浓度、脱乙酰度对壳聚糖浓溶液的流变行为的影响。对于酸和碱两种溶剂体系的壳聚糖溶液,其流动指数(n)都小于1,均属假塑性流体;在碱溶剂体系壳聚糖溶液中,LiOH是起到主要与壳聚糖大分子形成包合络合物结构,破坏大分子间的氢键的作用。随着LiOH浓度的增加,形成包合络合物越多,对壳聚糖大分子间的氢键破坏作用更加强烈,使得溶液的溶解就更加充分,因而整个溶液体系的粘度都在减小;同时随着亲水性基团-NH2的减少,壳聚糖浓溶液中的氢键在减少,凝胶点温度增加。因此,随着LiOH浓度、尿素浓度的增加,浓溶液的凝胶点温度会提高;随着壳聚糖脱乙酰度的增加,溶液溶胶-凝胶相变点温度逐步下降。
     3.制备了具有超高强度的壳聚糖水凝胶。采用酸和碱两种溶剂体系制备了壳聚糖水凝胶,碱溶剂体系制备的水凝胶具有超高的压缩性能和拉伸性能,在含水率为95.6%时,压缩强度可达1.77MPa,压缩应变为74.1%,拉伸强度为2.30MPa,断裂伸长率为226%。碱溶剂体系制备的水凝胶压缩强度是酸溶剂体系水凝胶的47倍多,压缩应变也是其两倍多。
     4.通过SEM研究了两种壳聚糖水凝胶的结构揭示了两种凝胶性能差异的根本原因。两种壳聚糖水凝胶均具有多孔状结构,但是两者结构的差别也是非常明显的。(1)高强度壳聚糖水凝胶具有类似蜂窝状的结构,而且孔径相对均匀,其范围在5μm~10μm,孔与孔之间连接紧密,孔壁薄且光滑;随着壳聚糖浓度的增加,孔径逐步减小。(2)低强度壳聚糖水凝胶具有条带状的三维有序多孔结构,孔大,其范围在230μm以上,形状不规则,孔与孔之间连接松散,孔壁厚约有10μm;随着壳聚糖浓度的增加,孔径变小,分布范围减小。(3)说明高强度壳聚糖水凝胶的物理交联点要多,形成的交联网络更多,且分布相对均匀,估算出高强度壳聚糖水凝胶的物理交联点是低强度壳聚糖水凝胶的30-40倍。这也正是两种壳聚糖凝胶强度差别的根本原因。
     5.证明了采用碱溶酸凝固制备壳聚糖纤维以提高纤维的湿态力学性能的设想是正确的。通过酸溶碱凝固和碱溶酸凝固采用湿法纺丝工艺分别制备了壳聚糖纤维。研究结果表明:与酸溶碱凝固制备的壳聚糖纤维相比,由碱溶酸凝固制备的纤维湿态拉伸强度提高了125%,干态拉伸强度提高了22.6%。
Chitosan (CS) is one of polysaccharide, is prepared by N-deacetylation of chitin, which is the main structural component of cr.ab and shrimp shells. As it has many favorable properties such as biodegradability, biocompatibility, bioactivity and non-toxicity, CS has been extensively studied as a promising biomaterial. CS can only dissolve in some specific organic acids and a few inorganic solvents, but it is unstable in aqueous acid. Its hydrolysis is accompanied with the cleavage of glycosidic-bonds, which brings about the poor properties of CS products. The study includes that the mechanism of CS solution dissolved in alkali aqueous solution by freezing-blasting and preparation of CS hydrogel and fibers by this alkali solution system. Therefore, the studies are as followed:
     (1) Exploration on the state of CS macromolecules in alkaline solvent and acid solvent was carried out by Dynamic Light Scattering particle size analysis, proving the existence of nanoparticles. The nanoparticle size was linear with CS concentration.
     (2) A systematic study of effects on rheological behavior of chitosan aqueous solution by CS concentration, LiOH, urea, degree of deacetylation of Chitosan. In the case of chitosan solution prepared by acid and alkali solvent system, the flow indexes (n) were less than1, which were pseudoplastic fluid; In CS alkali solution, LiOH played a vital role in forming inclusion complexes structure with CS macromolecules and destroying hydrogen bonds between CS macromolecules. With the increase of LiOH concentration, the solution formed more inclusion complexes, and hydrogen bonds between CS macromolecules were destroyed more strongly, therefore CS were dissolved sufficiently. So the viscosity of entire solution system were reduced. At the same time, along with the decrease of the free hydrophilic groups (-NH2), hydrogen bonds between chitosan macromolecules were reduced, and the temperature of gel point increased. In short, with the increase of LiOH and urea, the temperature of gel point of CS solution increased. With the increase of the degree of deacetylation. the temperature of gel point of CS solution decreased.
     (3) The high strength pure chitosan (CS) hydrogel was prepared. CS hydrogels were prepared by two kinds of solvent systems (alkaline solvent and acid solvent). The results from universal testing machine indicated that the high strength CS hydrogel prepared by alkaline solvent sustains a compressive stress of1.77MPa. which was47times more than that sustained by the low strength CS hydrogel by acid solvent. The fracture compressive strain (ε) of the high strength CS hydrogel was74.1%, which is much higher than that of the low strength CS hydrogel (ε=32.3%). In addition, the tensile stress and strain of CS hydrogel prepared by alkaline solvent were2.30MPa and226%.
     (4) SEM of two hydrogels showed the network structure, which appeared to be highly porous with the interconnected macrodomains. The morphology comprised the CS and pores as features not only of these samples but also of all of the samples that were produced. It is obvious that the structures of two CS hydrogels are different. For the High strength CS (H-CS) hydrogels, these pores possessed honeycomb-like shapes. The pore size and morphology of the various hydrogels were quite similar. The inner surface of pore was smooth, and the pores had a mean diameter of<10μm. The sizes of pore walls were1μm at most. For the low strength CS (L-CS) hydrogels. F it was a ribbon structure. The pores between ribbons had a mean diameter in a range of200to600μm, which were more than30times that H-CS hydrogels. The sizes of pore walls were almost10μm, which were more10times than the size of pore walls of the H-CS hydrogels. The H-CS hydrogels had well-distributed pores. And above all, the results showed that the physical cross-linking points of H-CS hydrogels were more regularly distributed and20times than L-CS hydrogels. The increase of cross-linking points enhanced the cross-linked network of hydrogel, and therefore, the mechanical properties of H-CS hydrogels were improved greatly.
     (5) Improving wet mechanical properties of chitosan fibers by a new approach was correct. The results from Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and universal testing machine indicated that the new approach did not change the chemical structure of chitosan. The approach performed better in forming dense structure in the cross section of chitosan fiber and improved thermal stability and mechanical properties of CS65fibers. The wet and dry tensile strength of the novel CS65fibers reached0.8cN/dtex, which were increased by125%, compared with that of CS65fibers prepared by conventional approach.
引文
[1]Muzzarelli RAA, Muzzarelli C. Chitosan chemistry:Relevance to the biomedical sciences. In:Heinze T, editor. Polysaccharides 1:Structure, Characterization and Use2005.p.151-209.
    [2]Kurita K. Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science.2001;26:1921-71.
    [3]Hayashi T. Biodegradable polymers for biomedical uses. Progress in Polymer Science.1994; 19:663-702.
    [4]Du YM, Shi XW, Sun LP. Preparation and characterization of carboxymethyl chitosan nanoparticles and their doxorubicin delivery in vitro. Abstracts of Papers of the American Chemical Society.2005;230:U3740.
    [5]Xie H, Yu W, Liu X, Xie W, Lv G, Wang F, et al. Basic properties of alginate/chitosan microcapsule surfaces and their interaction with proteins. Journal of Controlled Release.2011;152:E246-8.
    [6]Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Progress in Polymer Science.2006;31:576-602.
    [7]Fink HP, Weigel P, Purz HJ, Ganster J. Structure formation of regenerated cellulose materials from NMMO-solutions. Progress in Polymer Science. 2001;26:1473-524.
    [8]Heinze T, Liebert T. Unconventional methods in cellulose functionalization. Progress in Polymer Science.2001:26:1689-762.
    [9]Weissmann B, Meyer K. The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord. Journal of the American Chemical Society.1954;76:1753-7.
    [10]Sashiwa H, Aiba SI. Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science.2004;29:887-908.
    [11]Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science. 2011:36:981-1014.
    [12]Guibal E. Heterogeneous catalysis on chitosan-based materials:a review. Progress in Polymer Science.2005;30:71-109.
    [13]Yui T, Imada K, Okuyama K, Obata Y, Suzuki K, Ogawa K. Molecular and crystal structure of the anhydrous form of chitosan. Macromolecules.1994:27:7601-5.
    [14]Mazeau K, Winter WT, Chanzy H. Molecular and crystal structure of a high-temperature polymorph of chitosan from electron diffraction data. Macromolecules.1994;27:7606-12.
    [15]Gardner K, Blackwell J. The structure of native cellulose. Biopolymers. 1974:13:1975-2001.
    [16]Takahashi Y, Ozaki Y, Takase M, Krigbaum W. Crystal structure of poly (p-benzamide). Journal of Polymer Science Part B:Polymer Physics.1993;31:1135-43.
    [17]Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K. Molecular and crystal structure of hydrated chitosan. Macromolecules.1997:30:5849-55.
    [18]Okuyama K, Noguchi K, Kanenari M, Egawa T, Osawa K, Ogawa K. Structural diversity of chitosan and its complexes. Carbohydrate Polymers.2000;41:237-47.
    [19]Cairns P, Miles MJ, Morris VJ. Ridout MJ, Brownsey GJ, Winter WT. X-ray fibre diffraction studies of chitosan and chitosan gels. Carbohydrate research. 1992:235:23-8.
    [20]Ogawa K, Inukai S. X-ray diffraction study of sulfuric, nitric, and halogen acid salts of chitosan. Carbohydrate research.1987; 160:425-33.
    [21]Sorlier P, Viton C, Domard A. Relation between solution properties and degree of acetylation of chitosan:Role of aging. Biomacromolecules.2002;3:1336-42.
    [22]Wang W, Bo S, Li S, Qin W. Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. International journal of biological macromolecules.1991;13:281-5.
    [23]Anthonsen MW, Varum KM, Smidsr(?)d O. Solution properties of chitosans: conformation and chain stiffness of chitosans with different degrees of N-acetylation. Carbohydrate Polymers.1993;22:193-201.
    [24]Terbojevich M, Cosani A, Conio G, Marsano E. Bianchi E. Chitosan:chain rigidity and mesophase formation. Carbohydrate research.1991;209:251-60.
    [25]Rinaudo M, Milas M, Dung PL. Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International journal of biological macromolecules.1993:15:281-5.
    [26]Berth G, Dautzenberg H. The degree of acetylation of chitosans and its effect on the chain conformation in aqueous solution. Carbohydrate Polymers.2002;47:39-51.
    [27]Chen RH, Tsaih ML. Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. International journal of biological macromolecules.1998;23:135-41.
    [28]林瑞洵,罗广建,张慕珊,方碧华.脱乙酰甲壳质溶液的粘度及其稳定性.化学世界.1991:32:160-4.
    [29]Tsaih ML, Chen RH. Effect of molecular weight and urea on the conformation of chitosan molecules in dilute solutions. International journal of biological macromolecules.1997:20:233-40.
    [30]Vachoud L, Zydowicz N, Domard A. Physicochemical behaviour of chitin gels. Carbohydrate Research.2000;326:295-304.
    [31]Franca EF, Lins RD, Freitas LCG, Straatsma T. Characterization of chitin and chitosan molecular structure in aqueous solution. Journal of Chemical Theory and Computation.2008;4:2141-9.
    [32]Amiji MM. Pyrene fluorescence study of chitosan self-association in aqueous solution. Carbohydrate Polymers.1995:26:211-3.
    [33]Nystrom B, Kj(?)niksen AL, Iversen C. Characterization of association phenomena in aqueous systems of chitosan of different hydrophobicityl. Advances in colloid and interface science.1999;79:81-103.
    [34]Philippova OE. Volkov EV, Sitnikova NL, Khokhlov AR, Desbrieres J, Rinaudo M. Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules.2001:2:483-90.
    [35]Lavertu M, Filion D. Buschmann MD. Heat-induced transfer of protons from chitosan to glycerol phosphate produces chitosan precipitation and gelation. Biomacromolecules.2008:9:640-50.
    [36]Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science. 2008;33:448-77.
    [37]Oh JK, Lee DI, Park JM. Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science.2009;34:1261-82.
    [38]Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers:Chemistry, solubility and fiber formation. Progress in Polymer Science.2009:34:641-78.
    [39]Motornov M, Roiter Y, Tokarev I, Minko S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Progress in Polymer Science.2010:35:174-211.
    [40]Lepri L, Desideri PG, Muzzarelli RAA. Chromatographic behavior of nucleic-acid constituents and of phenols on chitosan thin-Jayers. Journal of Chromatography.1977; 139:337-42.
    [41]Muzzarelli RAA, Mattiolibelmonte M, Tietz C, Biagini R, Ferioli G, Brunelli MA, et al. Stimulatory effect on bone-formation exerted by a modified chitosan. Biomaterials.1994:15:1075-81.
    [42]Giunchedi P, Genta I, Conti B, Muzzarelli RAA, Conte U. Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheres. Biomaterials.1998; 19:157-61.
    [43]Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers.2009;76:167-82.
    [44]Jayakumar R, Chennazhi KP, Muzzarelli RAA, Tamura H, Nair SV, Selvamurugan N. Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydrate Polymers.2010;79:1-8.
    [45]Hirano S, Yamaguchi Y, Kamiya M. Water-soluble N-(n-fatty acyl)chitosans. Macromolecular Bioscience.2003;3:629-31.
    [46]Hirano S, Ohe Y. Chitosan gels- novel molecular aggregation of chitosan in acidic solutions on a facile acylation. Agricultural and Biological Chemistry. 1975:39:1337-8.
    [47]Hirano S. Wet-spinning and applications of functional fibers based on chitin and chitosan. Macromolecular Symposia.2001; 168:21-30.
    [48]Hirano S, Zhang M, Nakagawa M, Miyata T. Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility. Biomaterials. 2000:21:997-1003.
    [49]Domard A, Rinaudo M, Terrassin C. New method for the quaternization of chitosan. International Journal of Biological Macromolecules.1986:8:105-7.
    [50]Brunel F, Veron L, David L, Domard A, Delair T. A Novel Synthesis of Chitosan Nanoparticles in Reverse Emulsion. Langmuir.2008;24:11370-7.
    [51]Brunel F, Veron L, David L, Domard A, Verrier B, Delair T. Self-Assemblies on Chitosan Nanohydrogels. Macromolecular Bioscience.2010;10:424-32.
    [52]Ladet S, David L, Domard A. Multi-membrane hydrogels. Nature.2008;452:76.
    [53]Ladet SG, Tahiri K, Montembault AS, Domard AJ, Corvol MTM. Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors. Biomaterials. 2011:32:5354-64.
    [54]Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, et al. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials.2007;28:3478-88.
    [55]Boucard N, Viton C, Domard A. New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules. 2005:6:3227-37.
    [56]Montembault A, Viton C, Domard A. Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials.2005;26:1633-43.
    [57]Montembault A, Viton C, Domard A. Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules. 2005:6:653-62.
    [58]Montembault A, Viton C, Domard A. Physico-chemical studies of the gelation of chitosan in a hydroalcoholic medium. Biomaterials.2005;26:933-43.
    [59]Boucard N, David L, Rochas C, Montembault A, Viton C, Domard A. Polyelectrolyte microstructure in chitosan aqueous and alcohol solutions. Biomacromolecules.2007:8:1209-17.
    [60]Araiza RNR, Rochas C, David L, Domard A. Interrupted wet-spinning process for chitosan hollow fiber elaboration. Macromolecular Symposia.2008:266:1-5.
    [61]Notin L, Viton C, Lucas JM, Domard A. Pseudo-dry-spinning of chitosan. Acta Biomaterialia.2006;2:297-311.
    [62]Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang MQ. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. Journal of Controlled Release.2005; 103:609-24.
    [63]Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews.2010;62:83-99.
    [64]Kievit FM, Veiseh O, Bhattarai N, Fang C, Gunn JW, Lee D, et al. PEI-PEG-Chitosan-Copolymer-Coated Iron Oxide Nanoparticles for Safe Gene Delivery:Synthesis, Complexation, and Transfection. Advanced Functional Meterials. 2009; 19:2244-51.
    [65]Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang MQ. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26:6176-84.
    [66]Cooper A, Jana S, Bhattarai N, Zhang M. Aligned chitosan-based nanofibers for enhanced myogenesis. Journal of Materials Chemistry.2010:20:8904-11.
    [67]Bhattarai N, Zhang M-Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology.2007; 18.
    [68]Cooper A, Zhong C, Kinoshita Y, Morrison RS, Rolandi M, Zhang M. Self-assembled chitin nanofiber templates for artificial neural networks. Journal of Materials Chemistry.2012:22:3105-9.
    [69]Cooper A, Bhattarai N, Zhang M. Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration. Carbohydrate Polymers. 2011;85:149-56.
    [70]Kievit FM, Florczyk SJ, Leung MC, Veiseh O, Park JO, Disis ML, et al. Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials.2010;31:5903-10.
    [71]Jana S, Florczyk SJ. Leung M, Zhang M. High-strength pristine porous chitosan scaffolds for tissue engineering. Journal of Materials Chemistry.2012:22:6291-9.
    [72]Khan F, Tare RS, Oreffo ROC, Bradley M. Versatile Biocompatible Polymer Hydrogels:Scaffolds for Cell Growth. Angewandte Chemie-International Edition. 2009;48:978-82.
    [73]王爱勤,俞贤达.O-丁烷基壳聚糖的合成与表征.合成化学.1999:308-310.
    [74]Sun SL, Wang AQ. Adsorption kinetics of Cu(Ⅱ) ions using N,O-carboxymethyl-chitosan. Journal of Hazardous Materials.2006;131:103-11.
    [75]王爱勤,周金芳,俞贤达.完全脱乙酰化壳聚糖与Zn(Ⅱ)的配位作用.高分子学报.2000:688-91.
    [76]Wang X, Wang A. Removal of Cd(Ⅱ) from aqueous solution by a composite hydrogel based on attapulgite. Environmental Technology.2010:31:745-53.
    [77]董炎明,吴玉松,王勉,阮永红,邱蔚碧,许聪义,et al.N-苄基壳聚糖的合成和液晶性表征.厦门大学学报(自然科学版).2001:63-7.
    [78]董炎明,袁清,肖滋兰,汪剑炜,梅雪峰.氰乙基羟丙基壳聚糖的溶致和热致液晶性研究.高等学校化学学报.1999:145-50.
    [79]董炎明,阮永红,吴玉松,王勉,许聪义,丘蔚碧.鱿鱼顶骨β-壳聚糖的液晶性.厦门大学学报(自然科学版).2001:1238-43.
    [80]申丙星,胡晓兰,董炎明.可吸收壳聚糖纤维增强壳聚糖棒材.复合材料学报.2008:28-32.
    [81]Xu YM, Du YM. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics. 2003:250:215-26.
    [82]Wang XH, Du YM, Ding S, Wang QQ, Xiong GG, Xie M, et al. Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots films. Journal of Physical Chemistry B.2006;110:1566-70.
    [83]Xu YM, Du YM, Huang RH, Gao LP. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials.2003:24:5015-22.
    [84]Chen LY, Tian ZG, Du YM. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials. 2004:25:3725-32.
    [85]Chang Y, Xiao L, Du Y. Preparation and properties of a novel thermosensitive N-trimethyl chitosan hydrogel. Polymer Bulletin.2009;63:531-45.
    [86]Dong Z, Du Y, Fan L, Wen Y, Liu H, Wang X, et al. Preparation and Properties of Chitosan/Gelatin/Nano-TiO2 Ternary Composite Films. Journal of Functional Polymer.2004; 17:61-6.
    [87]He G, Chen X, Yin Y, Zheng H, Xiong X, Du Y. Synthesis, characterization and antibacterial activity of salicyloyl chitosan. Carbohydrate Polymers.2011;83:1274-8.
    [88]Deng H, Wang X, Liu P, Ding B, Du Y, Li G, et al. Enhanced bacterial inhibition activity of layer-by-layer structured polysaccharide film-coated cellulose nanofibrous mats via addition of layered silicate. Carbohydrate Polymers.2011;83:239-45.
    [89]Deng H, Zhou X, Wang X, Zhang C, Ding B, Zhang Q, et al. Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydrate Polymers.2010;80:474-9.
    [90]Li X, Li X, Ke B, Shi X, Du Y. Cooperative performance of chitin whisker and rectorite fillers on chitosan films. Carbohydrate Polymers.2011;85:747-52.
    [91]Ma L, Gao CY, Mao ZW, Shen JC, Hu XQ, Han CM. Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent. Journal of Biomaterials Science-Polymer Edition.2003;14:861-74.
    [92]Hong Y, Gong Y, Gao C, Shen J. Collagen-coated polylactide microcarriers/chitosan hydrogel composite:Injectable scaffold for cartilage regeneration. Journal of Biomedical Materials Research Part A.2008;85A:628-37.
    [93]Zhu YB, Gao CY, He T, Shen JC. Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials.2004;25:423-30.
    [94]Shi HF, Han CM, Mao ZW, Ma L, Gao CY. Enhancing the angiogenesis of collagen/chitosan porous scaffolds loaded with angiogenin. Tissue Engineering. 2006;12:1102-.
    [95]HaiFei SHI, ChunMao HAN, ZhengWei MAO, YiXin C, Lie MA, ChangYou GAO, et al. Study on Fabrication of Heparinized Collagen/chitosan Porous Scaffold and its Angiogenesis in vivo. Chinese Journal of Biomedical Engineering. 2007:26:296-302.
    [96]Shi H, Han C, Mao Z, Ma L, Gao C. Enhanced Angiogenesis in Porous Collagen-Chitosan Scaffolds Loaded with Angiogenin. Tissue Engineering Part A. 2008:14:1775-85.
    [97]Podsiadlo P, Arruda EM, Kheng E, Waas AM, Lee J, Critchley K, et al. LBL Assembled laminates with hierarchical organization from nano-to microscale: High-toughness nanomaterials and deformation imaging. ACS nano.2009;3:1564-72.
    [98]Lao L, Tan H, Wang Y, Gao C. Chitosan modified poly(L-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids and Surfaces B-Biointerfaces.2008;66:218-25.
    [99]Hong Y, Gao CY, Shen JC. Covalently cross-linked chitosan hydrogel formed at neutral pH and body temperature. Tissue Engineering.2006; 12:994-5.
    [100]Hong Y, Mao Z, Wang H, Gao C, Shen J. Covalently crosslinked chitosan hydrogel formed at neutral pH and body temperature. Journal of Biomedical Materials Research Part A.2006;79A:913-22.
    [101]Hong Y, Song H, Gong Y, Mao Z, Gao C, Shen J. Covalently crosslinked chitosan hydrogel:Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomaterialia.2007:3:23-31.
    [102]Lu X, Han C, Hu X, Ma L, Gao C, et al. Sudy on collagen-chitosan artificial dermis. Chinese Journal of Biomedical Engineering.2003;22:358-63.
    [103]Xu H, Ma L, Shi H, Gao C, Han C. Chitosan-hyaluronic acid hybrid film as a novel wound dressing:in vitro and in vivo studies. Polymers for Advanced Technologies.2007; 18:869-75.
    [104]Zhao Q, Mao Z, Gao C, Shen J. Assembly of multilayer microcapsules on CaCO3 particles from biocompatible polysaccharides. Journal of Biomaterials Science-Polymer Edition.2006:17:997-1014.
    [105]Zhao Q. Han B. Wang Z, Gao C, Peng C, Shen J. Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle:doxorubicin loading and in vitro and in vivo studies. Nanomedicine-Nanotechnology Biology and Medicine. 2007;3:63-74.
    [106]Chen F, Hu Q, Chen L, Li B, Shen J. Preparation of magnetic iron oxide/hydroxyapatite/cbtirosan rods by in situ precipitation. Acta Polymerica Sinica. 2006:756-60.
    [107]Wang Z, Hu Q, Cai L. Chitosan and multi-walled carbon nanotube composite rods. Chinese Journal of Polymer Science.2010;28:801-6.
    [108]Hu QL, Fang ZP, Zhao Y, Xu CW. A new method to prepare chitosan membrane as a biomedical material. Chinese Journal of Polymer Science.2001; 19:467-70.
    [109]Li BQ, Hu QL, Qian XZ, Fang ZP, Shen JC. Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture. Acta Polymerica Sinica.2002:828-33.
    [110]Hu QL, Qian XZ, Li BQ, Shen JC. Studies on chitosan rods prepared by in situ precipitation method. Chemical Journal of Chinese Universities-Chinese. 2003:24:528-31.
    [111]Li BQ, Hu QL, Wang M, Shen JC. Preparation of chitosan/hydroxyapatite nanocomposite with layered structure via in-situ compositing. Chemical Journal of Chinese Universities-Chinese.2004;25:1949-52.
    [112]Hu QL, Li BQ, Wang M, Shen JC. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture. Biomaterials. 2004;25:779-85.
    [113]Shen K, Hu Q. Layered chitosan conduits with controllable inner diameters. Materials Letters.2011;65:1503-5.
    [114]Shen K, Hu Q, Chen L, Shen J. Preparation of Chitosan Bicomponent Nanofibers Filled with Hydroxyapatite Nanoparticles via Electrospinning. Journal of Applied Polymer Science.2010; 115:2683-90.
    [115]Wang Z, Zhao H, Fan L, Lin J, Zhuang P, Yuan WZ, et al. Chitosan rods reinforced by aligned multiwalled carbon nanotubes via magnetic-field-assistant in situ precipitation. Carbohydrate Polymers.2011:84:1126-32.
    [116]Qu J, Hu Q, Shen K, Zhang K, Li Y, Li H, et al. The preparation and characterization of chitosan rods modified with Fe3+ by a chelation mechanism. Carbohydrate Research.2011;346:822-7.
    [117]Li Y, Wang Y, Wu D, Zhang K, Hu Q. A facile approach to construct three-dimensional oriented chitosan scaffolds with in-situ precipitation method. Carbohydrate Polymers.2010;80:408-12.
    [118]Hu QL, Lei Y, Zhang ZM, Shen JC. Surface biomimetic waterproof modification of chitosan rod. Chemical Journal of Chinese Universities-Chinese. 2005;26:1162-5.
    [119]Lue J, Hu Q, Shen J. The effect of water states on mechanical properties of 3-dimensional chitosan materials. Acta Polymerica Sinica.2006:1019-23.
    [120]Fan M, Hu Q. Chitosan-LiOH-urea aqueous solution-a novel water-based system for chitosan processing. Carbohydrate Research.2009;344:944-7.
    [121]Fan M, Hu Q, Shen K. Preparation and structure of chitosan soluble in wide pH range. Carbohydrate Polymers.2009:78:66-71.
    [122]Kotz J, Kosmella S, Beitz T. Self-assembled polyelectrolyte systems. Progress in Polymer Science.2001:26:1199-232.
    [123]Cai J, Zhang L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromolecular bioscience.2005;5:539-48.
    [124]Cai J, Zhang L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules.2006;7:183-9.
    [125]Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B. Hydrogen-Bond-Induced Inclusion Complex in Aqueous Cellulose/LiOH/Urea Solution at Low Temperature. ChemPhysChem.2007;8:1572-9.
    [126]Hu X, Du Y, Tang Y, Wang Q, Feng T, Yang J, et al. Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydrate Polymers.2007;70:451-8.
    [127]Chang C, Chen S, Zhang L. Novel hydrogels prepared via direct dissolution of chitin at low temperature:structure and biocompatibility. J Mater Chem. 2011;21:3865-71.
    [128]Weng L, Zhang L, Ruan D, Shi L, Xu J. Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir.2004;20:2086-93.
    [129]Isogai A, Atalla R. Dissolution of cellulose in aqueous NaOH solutions. Cellulose.1998;5:309-19.
    [130]Isogai A. NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose.1997;4:99-107.
    [131]Cai J, Zhang L, Zhou J, Qi H. Chen H, Kondo T, et al. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties. Advanced Materials.2007;19:821-5.
    [132]Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H. Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromolecular rapid communications. 2004:25:1558-62.
    [133]Mao Y, Zhou J, Cai J, Zhang L. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. Journal of membrane science.2006:279:246-55.
    [134]Zhou J, Zhang L, Cai J, Shu H. Cellulose microporous membranes prepared from NaOH/urea aqueous solution. Journal of membrane science.2002;210:77-90.
    [135]Chang C, Zhang L, Zhou J, Kennedy JF. Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydrate Polymers. 2010;82:122-7.
    [136]Liang S, Wu J, Tian H, Zhang L, Xu J. High-Strength Cellulose/Poly (ethylene glycol) Gels. ChemSusChem.2008; 1:558-63.
    [137]Pillai C, Paul W, Sharma CP. Chitin and chitosan polymers:Chemistry, solubility and fiber formation. Progress in Polymer Science.2009;34:641-78.
    [138]Stauffer SR, Peppast NA. Poly (vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer.1992;33:3932-6.
    [139]Hassan CM, Peppas NA. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules.2000:33:2472-9.
    [140]Wan W, Campbell G, Zhang Z, Hui A, Boughner D. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. Journal of biomedical materials research.2002;63:854-61.
    [141]Ricciardi R, Mangiapia G, Celso FL, Paduano L, Triolo R, Auriemma F, et al. Structural organization of poly (vinyl alcohol) hydrogels obtained by freezing and thawing techniques:A SANS study. Chemistry of materials.2005;17:1183-9.
    [142]Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Laupretre F. Investigation of the crystallinity of freeze/thaw poly (vinyl alcohol) hydrogels by different techniques. Macromolecules.2004;37:9510-6.
    [143]Tong H, Noda I, Gryte CC. CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science.1984;262:589-95.
    [144]Okumura Y, Ito K. The polyrotaxane gel:A topological gel by figure-of-eight cross-links. Advanced Materials.2001;13:485-7.
    [145]Haraguchi K, Takehisa T, Fan S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay. Macromolecules.2002:35:10162-71.
    [146]Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N, N-dimethylacrylamide) and clay. Macromolecules.2003;36:5732-41.
    [147]Shibayama M, Suda J, Karino T, Okabe S. Takehisa T, Haraguchi K. Structure and dynamics of poly (N-isopropylacrylamide)-clay nanocomposite gels. Macromolecules.2004;37:9606-12.
    [148]Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Advanced Materials.2003;15:1155-8.
    [149]Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, et al. High Mechanical Strength Double-Network Hydrogel with Bacterial Cellulose. Advanced Functional Materials.2004; 14:1124-8.
    [150]Yasuda K, Ping Gong J, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, et al. Biomechanical properties of high-toughness double network hydrogels. Biomaterials. 2005;26:4468-75.
    [151]Tanaka Y, Gong JP, Osada Y. Novel hydrogels with excellent mechanical performance. Progress in polymer science.2005:30:1-9.
    [152]Steed JW, Atwood JL. Supramolecular chemistry:Wiley Online Library; 2000.
    [153]Tang Z, Kotov NA, Magonov S, Ozturk B. Nanostructured artificial nacre. Nature materials.2003:2:413-8.
    [154]Kotov N. Membrane sensors:Nanocomposites are stretched thin. Nature materials.2004;3:669-71.
    [155]Tang Z, Wang Y, Podsiadlo P, Kotov NA. Biomedical Applications of Layer-by-Layer Assembly:From Biomimetics to Tissue Engineering. Advanced Materials. 2006;18:3203-24.
    [156]Sakaguchi H, Serizawa T, Akashi M. Layer-by-layer assembly on hydrogel surfaces and control of human whole blood coagulation. Chemistry Letters. 2003;32:174-5.
    [157]顾雪蓉,朱育平.凝胶化学:化学工业出版社;2005.
    [158]Lue A, Zhang L, Ruan D. Inclusion complex formation of cellulose in NaOH-thiourea aqueous system at low temperature. Macromolecular chemistry and physics.2007;208:2359-66.
    [159]Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, et al. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules. 2008;41:9345-51.
    [160]吴其晔,巫静安.高分子材料流变学:高等教育出版社;2002.
    [161]王伟,徐德时.聚电解质—壳聚糖浓溶液流变学性质研究:浓度,温度,溶剂pH值和外加盐对粘度及流动性能的影响.高分子学报.1994:328-34.
    [162]Han C,徐僖,吴大诚.聚合物加工流变学.北京:科学出版社;1985.
    [163]Lue A, Liu Y, Zhang L, Potthas A. Light scattering study on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer. 2011.
    [164]吕少一,邵自强,张振玲,王飞俊,王文俊.新型刺激响应性纤维素基含能凝胶的流变性能.高等学校化学学报.2012;2.
    [165]Risbud MV, Hardikar AA, Bhat SV, Bhonde RR. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. Journal of Controlled Release.2000;68:23-30.
    [166]Cascone MG, Maltinti S, Barbani N, Laus M. Effect of chitosan and dextran on the properties of poly(vinyl alcohol) hydrogels. Journal of Materials Science-Materials in Medicine.1999:10:431-5.
    [167]Orelma H, Filpponen I, Johansson L-S, Laine J, Rojas OJ. Modification of Cellulose Films by Adsorption of CMC and Chitosan for Controlled Attachment of Biomolecules. Biomacromolecules.2011; 12:4311-8.
    [168]Mi FL, Kuan CY, Shyu SS, Lee ST, Chang SF. The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydrate Polymers. 2000:41:389-96.
    [169]Rao BS, Murthy KVR. Preparation and in vitro evaluation of chitosan matrices cross-linked by formaldehyde vapors. Drug Development and Industrial Pharmacy. 2000;26:1085-90.
    [170]Jin J, Song M, Hourston DJ. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules.2004;5:162-8.
    [171]Maggi F, Ciccarelli S, Diociaiuti M, Casciardi S, Masci G. Chitosan Nanogels by Template Chemical Cross-Linking in Polyion Complex Micelle Nanoreactors. Biomacromolecules.2011;12:3499-507.
    [172]何曼君,陈维孝,董西侠.高分子物理上海:复旦大学出版社1990.
    [173]Huang T, Xu H, Jiao K, Zhu L, Brown HR, Wang H. A novel hydrogel with high mechanical strength:a macromolecular microsphere composite hydrogel. Advanced Materials.2007; 19:1622-6.
    [174]Kithva P, Gr(?)ndahl L, Martin D, Trau M. Biomimetic synthesis and tensile properties of nanostructured high volume fraction hydroxyapatite and chitosan biocomposite films. Journal of Materials Chemistry.2009;20:381-9.
    [175]Lawrie G, Keen I, Drew B, Chandler-Temple A. Rintoul L, Fredericks P, et al. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules.2007;8:2533-41.
    [176]Naumann D. FT-infrared and FT-Raman spectroscopy in biomedical research. Applied Spectroscopy Reviews.2001;36:239-98.
    [177]Paulino AT, Simionato JI, Garcia JC, Nozaki J. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers.2006;64:98-103.
    [178]Hirano S, Nagamura K, Zhang M, Kim SK, Chung BG Yoshikawa M, et al. Chitosan staple fibers and their chemical modification with some aldehydes. Carbohydrate Polymers.1999;38:293-8.
    [179]Hirano S, Nakahira T, Nakagawa M, Kim SK. The preparation and applications of functional fibres from crab shell chitin. Journal of Biotechnology.1999;70:373-7.
    [180]王爱勤.甲壳素化学:科学出版社;2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700