用户名: 密码: 验证码:
TiO_2纳米管阵列的制备、改性及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去的20多年里,由于高度有序、比表面大、方便回收和稳定性好等优点,阳极氧化法制备的TiO_2纳米管阵列被广泛的应用于在光催化剂、气体传感技术、环境监测、生物医药以及太阳能转换中等方面。然而,TiO_2具有较宽的能带隙(3.0-3.2eV),只能在紫外光作用下发生响应,催化剂表面光生电子与空穴复合和量子产率等问题严重制约了TiO_2纳米管阵列光催化的广泛应用。因此,通过对TiO_2纳米管阵列进行制备方法的改进,以及对其进行合理的改性从而促进其可见光光催化活性,促进TiO_2纳米管阵列广泛实际应用具有重要意义。本论文采用新的制备工艺合成一种新型分层结构TiO_2纳米管阵列,考察光催化分解水和有机物性能,探讨了其形成机理;使用电化学沉积法制备分散均匀的多面体Cu2O和TiO_2纳米管阵列复合,考察了其可见光催化活性和杀菌消毒能力;利用负载贵金属Ag和氮掺杂进行改性,提高TiO_2纳米管阵列在可见光下的光催化活性,深入探讨了修饰后的TiO_2纳米管阵列在可见光下的光催化机理,并通过光电化学性能实验揭示了光生电子和空穴的转移与复合,考察了不同因素对光催化效率的影响。主要内容如下:
     (1)将金属钛喷射在FTO导电玻璃上,采用阳极氧化法制备出具有上下双层结构的TiO_2纳米管阵列(HST),此阵列由上下两层组成,总长度约为2.0μm,上层厚度大约0.3μm,由多孔TiO_2纳米颗粒组成,下层厚度大约1.7μm,由TiO_2纳米管阵列组成,纳米管的外直径约为150nm。X-射线粉末衍射(XRD)分析表明,在空气氛围中500°C下退火2h所得样品锐钛矿的含量约为76%。合成的HST膜和用传统方法制备的TiO_2纳米管阵列(TNA)作为光阳极用于氧化水和有机物(如:葡萄糖)。实验结果表明,新型HST的光催化活性明显高于TNA,这一结果归因于HST是由具有大比表面积的多孔结构纳米粒子的上层和具有良好电子传递性能规则的纳米管阵列的下层组成,且两层具有很好的结合。两种纳米结构膜的光生电子的传输性能(固有电阻R0)通过简单的光电化学方法表征和计算。结果表明,虽然HST膜的R_0(85.5Ω)大于TNA膜(65.5Ω),但上层多孔纳米结构有效的增加光催化活性面,进而促进光催化活性。
     (2)用阳极氧化法制备的TNA在NH_3气氛中500°C退火4h,得到N掺杂TNA(N-TNA)。在含有EDTA的AgNO_3溶液中,通过电化学沉积方法将纳米Ag与N-TNA组装在一起得到Ag负载的N掺杂TiO_2纳米管阵列(Ag/N-TNA)。采用场致发射扫描电镜(FESEM)、X-射线光电子能谱(XPS)、紫外-可见光谱漫反射光谱(DRS)、XRD等方法对所得样品进行了表征,发现电化学沉积时间对纳米Ag的形貌有很大的影响。实验考察了不同电化学沉积时间对光催化的影响,结果表明,当电化学沉积纳米Ag时间为5s时的可见光催化效果最好。此时Ag/N-TNA的平均光电流密度和光催化降解酸性甲基橙染料效率分别是普通TiO_2纳米管的6.0和6.8倍。Ag/N-TNA是一种优良的可见光光催化降解有机污染物材料。
     (3)使用电化学沉积方法将纳米尺寸的多晶面Cu_2O均匀负载在整个TiO_2纳米管阵列结构上,获得复合纳米材料可见光催化剂Cu_2O/TNA。通过FESEM、XRD、XPS和DRS等方法对Cu_2O/TNA进行表征。结果表明,纳米管的长度约为900nm、内径约为100nm,壁厚约为20nm。实验考察了沉积电量对光催化效果的影响,随着沉积电量增加,沉积在TNA上的Cu_2O量越来越多,形貌由球形纳米颗粒逐渐转向具有多晶面Cu_2O晶体。当沉积电量为500mC时,多面体Cu_2O每个面的长度大约80nm。此Cu_2O/TNA在可见光下光分解水和光催化使酸性甲基橙II(AO-II)脱色的效果最好,分别是TNA的35.5和18.2倍。因此,多晶面Cu_2O修饰的TNA在太阳能转化和有机物降解上将是一种很有前途的可见光催化材料。
     (4)使用无毒Cu_2O/TNA薄膜作为高性能可见光杀菌光催化剂进行了研究,结果表明Cu_2O/TNA薄膜光催化剂在可见光的照射下,20min之内,便可以将高浓度的大肠杆菌(5×10~7CFU/mL)试样完全失活。经过可见光照射20min后,Cu_2O/TNA的对大肠杆菌的杀菌效率分别是同等光照条件下TNA的20.2倍和无光处理的Cu_2O/TNA的6.6倍。Cu_2O/TNA具有优越的可见光杀菌性能主要是由于Cu_2O狭窄能带隙使它能够吸收可见光,分别在导带和价带产生光生电子和空穴。光生电子从Cu_2O的导带转移到TiO_2的导带促进了电荷分离,产生更多的羟基自由基和活性氧物种。
Over the past decade, because of its high regulation, large surface areas, high recycleefficiency and excellent controllability, highly ordered TiO_2nanotube arrays (TNA) byanodization have attracted great attention on photocatalysis, gas sensing, biomedicine,environmental monitoring, and solar energy conversion. However, the band gap of TiO_2isvery wide (3.0-3.2eV) leading to its absorption only in UV light, otherwise, catalyst surfacephotoinduced charges recombination and lower IPCE limit the applicability of TNA. In orderto promote its visible light photocatalytic activity, many researches on the improved methodfor preparing TNA, reasonable modification were developed, which is great significance onthe wide range of practical applications. In this paper, a new hierarchically structured TiO_2(HST) film was prepared. The resultant HST films as photoanodes were evaluated byphotocatalytic oxidation of water or organics. The formation mechanism was investigated.Highly dispersed and nano-size polyhedral Cu_2O loaded on TiO_2nanotube arrays (Cu_2O/TNA)were successfully prepared by an electrodeposition method, which exhibited excellentphotocatalytic and good bactericidal activity under visible light. Ag nanoparticles loadedN-doped TiO_2nanotube arrays (Ag/N-TNA) were successfully synthesized, improved visiblelight photocatalytic activities were observed. The main contents are as follow:
     Transparent TiO_2nanostructured films composed of porous TiO_2nanoparticle top layer andhighly ordered TiO_2nanotube bottom layer were successfully fabricated onto metal titaniumdeposited FTO conducting substrates by anodization technique. For the hierarchicallystructured TiO_2(HST) film, the top porous nanoparticle film had a thickness of ca.300nm,and the bottom nanotubes have a mean length of1.7μm and a mean outer diameter of150nm.The total thickness of the hierarchically structured TiO_2film was around2.0μm. XRDanalysis revealed that the fabricated hierarchically structured TiO_2film after calcination at500°C was predominantly consisted of anatase (76%). The resultant HST films asphotoanodes were evaluated by photocatalytic oxidation of water or organics (i.e., glucose).The experimental results indicated that the HST film photoanodes exhibited higherphotocatalytic activity than the TNA film fabricated on titanium foil substrates as the samelength, which is due to larger photocatalytic activity area supplied by the top nanoparticleporous layer and excellent photoelectron transport in bottom nanotube layer of the HST filmcompared to the single nanotube film (TNA). Photoelectron transport property (reflected byconstant resistance, R0) in two nanostructured films were characterized by a simplephotoelectrochemical method. Although the constant resistance of HST film (R0=85.5Ω) is larger than that of TNA film (R0=65.5Ω), the porous nanoparticle top layer for the HST filmcould effectively enhance the photocatalytic activity area, and thus significantly improvingthe resultant photocatalytic activity compared to the TNA film.
     The highly ordered TiO_2nanotube array (TNA) films were fabricated on titanium foilsubstrates by anodization, and then annealed at500℃for4h under ammonia, N-TNA wasprepared. Ag loaded N-doped TiO_2nanotube arrays (Ag/N-TNA) were fabricated by anelectrodeposition method. The Ag/N-TNA was characterized by Field-emission scanningelectron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy(XPS), UV-vis diffusion refection spectroscopy (DRS). The effect of differentelectrochemical deposition time on photocatalytic activity was investigated. The resultsshowed the best depositon of time was5s. The average photocurrent density andphotocatalytic degradation efficiency of the Ag/N-TNA obtained from the degradation ofAcid Orange II(AO-II)weree6.0and6.8times higher than those of pure TNA, respectively.This bestows the Ag/N-TNA as a promising photocatalytic material for organic pollutantdegradation under visible light.
     Highly dispersed and nano-size polyhedral Cu_2O loaded on TiO_2nanotube arrays(Cu_2O/TNA) were successfully fabricated by an electrodeposition method. The obtainedsamples were characterized by FESEM, XRD, XPS and UV-vis diffusion refectionspectroscopy (DRS). The results showed nanotubes had a mean length of900nm, a meaninter diameter of100nm and the wall thickness of approximately20nm. The content of Cu_2Oloaded on the arrays was controlled by changing the deposition coulombs. The results showedthe photocurrent density and photocatalytic degradation efficiency of Cu_2O/TNA obtainedwhen the deposition coulombs arrived500mC were about35.5and18.2times as that of pureTiO_2nanotube arrays under visible light, respectively. The polycrystalline Cu_2O surfacemodified TNA will be a promising visible-light photocatalytic material in solar energyconversion and degradation of organic pollution.
     Using a non-toxic nanocrystal Cu_2O-loaded TiO_2nanotube array (Cu_2O/TNA) film washigh performance visible light bactericidal photocatalyst. This Cu_2O/TNA film photocatalystwas capable of complete inactivation of high concentration E. coli (5×10~7CFU/mL) within arecord short disinfection time of20min under visible light irradiation. The averagebactericidal percentage of the Cu_2O/TNA for E. coli under visible light irradiation were20times and6.6times higher than those of TNA under the same conditions and Cu_2O/TNAwithout light, respectively. This superior bacterial performance is mainly attributed to the high ability to produce OH radicals by both photogenerated electron and hole of the preparedphotocatalyst under visible light.
引文
[1] Fujishima A., Honda K. Electrochemical photocatalysis of water at a semiconductorelectrode[J]. Nature,1972,238(1):37-38
    [2] Cary J. H. Photodechlorination of PCB’s in the presence of titanium dioxide inaqueous suspensions[J]. Bulletin Environment. Contaminatin Toxicology,1976,16:697-701
    [3] Frank S. N., Bard A. J. Heterogeneous photocatalytic oxidation of cyanide ion inaqueous solutions at titanium dioxide powder[J]. Journal of the American ChemicalSociety,1977,99(1):303-304
    [4] Inoue T., Fujishima A., Konishi S., et al. Photoelectrocatalytic reduction of carbondioxide in aqueous suspensions of semiconductor powders[J]. Nature,1979,277(5698):637-638
    [5] Maeda K., Teramura K., Lu D., et al. Photocatalyst releasing hydrogen from water[J].Nature,2006,440(7082):295-295
    [6] Wang X., Maeda K., Thomas A., et al. A metal-free polymeric photocatalyst forhydrogen production from water under visible light[J]. Nature Materials,2009,8(1):76-80
    [7] Zou Z., Ye J., Sayama K., et al. Direct splitting of water under visible light irradiationwith an oxide semiconductor photocatalyst[J]. Nature,2001,414(68):625-627
    [8] Parmon V. N., Zamaraev K. I., Serpone N., et al. Wiley Interscience in PhotoCatalysis Foundamentals and Applications[B]. New York,1989: P565
    [9] Matsumura M., Saho Y., Tsubomura H. Photocatalytic hydrogen production fromsolutions of sulfite using platinized cadmium sulfide powder[J]. The Journal ofPhysical Chemistry,1983,87(20):3807-3808
    [10] Domen K., Kudo A., Onishi T., et al. Photocatalytic decomposition of water intohydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powderStructure of the catalysts[J]. The Journal of Physical Chemistry,1986,90(2):292-295
    [11] Yu J. C., Lin J., Kwok R. W. M. Ti1-xZrxO2Solid Solutions for the PhotocatalyticDegradation of Acetone in Air[J]. The Journal of Physical Chemistry B,1998,102(26):5094-5098
    [12] Lin J., Yu J. C., Lo D., et al. Photocatalytic Activity of Rutile Ti1-xSnxO2SolidSolutions[J]. Journal of Catalysis,1999,183(2):368-372
    [13] Noguchi T., Fujishima A., Sawunyama P., et al. Photocatalytic Degradation ofGaseous Formaldehyde Using TiO2Film[J]. Environmental Science&Technology,1998,32(23):3831-3833
    [14] Zhang L., Kanki T., Sano N., et al. Development of TiO2photocatalyst reaction forwater purification[J]. Separation and Purification Technology,2003,31(1):105-110
    [15] Gelover S., Mondragón P., Jiménez A. Titanium dioxide sol-gel deposited over glassand its application as a photocatalyst for water decontamination[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2004,165(1-3):241-246
    [16] Mohseni M., David A. Gas phase vinyl chloride (VC) oxidation using TiO2-basedphotocatalysis[J]. Applied Catalysis B: Environmental,2003,46(2):219-228
    [17] Choi W., Ko J. Y., Park H., et al. Investigation on TiO2-coated optical fibers forgas-phase photocatalytic oxidation of acetone[J]. Applied Catalysis B: Environmental,2001,31(3):209-220
    [18] Yao Y., Ohko Y., Sekiguchi Y., et al. Self-sterilization using silicone catheters coatedwith Ag and TiO2nanocomposite thin film[J]. Journal of Biomedical MaterialsResearch Part B: Applied Biomaterials,2008,85(2):453-460
    [19] Yu J. C., Ho W., Lin J., et al. Photocatalytic Activity, Antibacterial Effect, andPhotoinduced Hydrophilicity of TiO2Films Coated on a Stainless Steel Substrate[J].Environmental Science&Technology,2003,37(10):2296-2301
    [20] Minabe T., Sawunyama P., Kikuchi Y., et al. Photooxidation of long-chain organiccompounds on TiO2thin film[J]. Electrochemistry,1999,67(12):1132-1134
    [21] Liu Z., Zhang X., Murakami T., et al. Sol-gel SiO2/TiO2bilayer films withself-cleaning and antireflection properties[J]. Solar Energy Materials and Solar Cells,2008,92(11):1434-1438
    [22] He T., Ma Y., Cao Y., et al. Photochromism of WO3Colloids Combined with TiO2Nanoparticles[J]. The Journal of Physical Chemistry B,2002,106(49):12670-12676
    [23] He T., Yao J. Photochromism of molybdenum oxide[J]. Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,2003,4(2):125-143
    [24] Adachi M., Murata Y., Okada I., et al. Formation of titania nanotubes and applicationsfor dye-sensitized solar cells[J]. Journal of the Electrochemical Society,2003,150(8):G488-G493
    [25] Fisher A. C., Peter L. M., Ponomarev E. A., et al. Intensity dependence of the backreaction and transport of electrons in dye-sensitized nanacrystalline TiO2solar cells[J].Journal of Physical Chemistry B,2000,104(5):949-958
    [26] Paulose M., Shankar K., Yoriya S., et al. Anodic growth of highly ordered TiO2nanotube arrays to134μm in length[J]. Journal of Physical Chemistry B,2006,110(33):16179-16184
    [27] Larramona G., Chone C., Jacob A., et al. Nanostructured photovoltaic cell of the typetitanium dioxide, cadmium sulfide thin coating, and copper thiocyanate showing highquantum efficiency[J]. Chemistry of Materials,2006,18(6):1688-1696
    [28] Sun W. T., Yu Y., Pan H. Y., et al. CdS quantum dots sensitized TiO2nanotube-arrayphotoelectrodes[J]. Journal of the American Chemical Society,2008,130(4):1124-1128
    [29] Albu S. R., Kim D., Schmuki P. Growth of aligned TiO2bamboo-type nanotubes andhighly ordered nanolace[J]. Angewandte Chemie-International Edition,2008,47(10):1916-1919
    [30] Wang D., Chu X. F., Gong M. L. Single-crystalline LaFeO3nanotubes with rough tubewalls: synthesis and gas-sensing properties[J]. Nanotechnology,2006,17(21):5501-5505
    [31] Dinesh J., Eswaramoorthy M., Rao C. N. R. Use of amorphous carbon nanotubebrushes as templates to fabricate GaN nanotube brushes and related materials[J].Journal of Physical Chemistry C,2007,111(2):510-513
    [32] Han W. Q., Chang C. W., Zettl A. Encapsulation of one-dimensional potassium halidecrystals within BN nanotubes[J]. Nano Letters,2004,4(7):1355-1357
    [33] Mor G. K., Shankar K., Paulose M., et al. Enhanced photocleavage of water usingtitania nanotube arrays[J]. Nano Letters,2005,5(1):191-195
    [34] Paulose M., Mor G. K., Varghese O. K., et al. Visible light photoelectrochemical andwater-photoelectrolysis properties of titania nanotube arrays[J]. Journal ofPhotochemistry and Photobiology a-Chemistry,2006,178(1):8-15
    [35] Varghese O. K., Paulose M., Shankar K., et al. Water-photolysis properties ofmicron-length highly-ordered titania nanotube-arrays[J]. Journal of Nanoscience andNanotechnology,2005,5(7):1158-1165
    [36] Kuang D., Brillet J., Chen P., et al. Application of highly ordered TiO2nanotubearrays in flexible dye-sensitized solar cells[J]. Acs Nano,2008,2(6):1113-1116
    [37] Shankar K., Mor G. K., Paulose M., et al. Effect of device geometry on theperformance of TiO2nanotube array-organic semiconductor double heterojunctionsolar cells[J]. Journal of Non-Crystalline Solids,2008,354(19-25):2767-2771
    [38] Mills A., S.LeHunte. An overview of semiconductor photocatalysis[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,1997,108(1):1-35
    [39] Yang T. C. K., Wang S. F., Tsai S. H. Y., et al. Intrinsic photocatalytic oxidation ofthe dye adsorbed on TiO2photocatalysts by diffuse reflectance infrared Fouriertransform spectroscopy[J]. Applied Catalysis B: Environmental,2001,30(3-4):293-301
    [40] Gou Y., Chen D., Su Z. Photocatalyst of nanometer TiO2/conjugated polymer complexemployed for depigmentation of methyl orange[J]. Applied Catalysis A: General,2004,261(1):15-18
    [41] Saquib M., Muneer M. Titanium dioxide mediated photocatalyzed degradation of atextile dye derivative, acid orange, in aqueous suspensions[J]. Desalination,2003,155(3):255-263
    [42] Vulliet E., Chovelon J. M., Guillard C., et al. Factors influencing the photocatalyticdegradation of sulfonylurea herbicides by TiO2aqueous suspension[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2003,159(1):71-79
    [43] Horikoshi S., Watanabe N., Onishi H., et al. Photodecomposition of a nonylphenolpolyethoxylate surfactant in a cylindrical photoreactor with TiO2immobilizedfiberglass cloth[J]. Applied Catalysis B: Environmental,2002,37(2):117-129
    [44] Vione D., Minero C., Maurino V., et al. Degradation of phenol and benzoic acid in thepresence of a TiO2-based heterogeneous photocatalyst[J]. Applied Catalysis B:Environmental,2005,58(1-2):79-88
    [45] Cardona A. I., Candal R., Sánchez B., et al. TiO2on magnesium silicate monolith:effects of different preparation techniques on the photocatalytic oxidation ofchlorinated hydrocarbons[J]. Energy,2004,29(5-6):845-852
    [46]唐玉朝,胡春,王怡中。TiO2光催化反应机理及动力学研究进展[J]。化学进展,2002,14(3):192-199
    [47]籍宏伟,马万红,黄应平等.可见光诱导TiO2光催化的研究进展[J]。科学通报,2003,48(2):2199-2204
    [48] Carey J. H., Lawrence J., Tosine H. M. Photodechlorination of PCB's in the presenceof titanium dioxide in aqueous suspensions[J]. Bulletin of EnvironmentalContamination and Toxicology,1976,16(6):697-701
    [49] Vinodgopal K., Hotchandani S., Kamat P. V. Electrochemically assistedphotocatalysis: Titania particulate film electrodes for photocatalytic degradation of4-chlorophenol[J]. The Journal of Physical Chemistry,1993,97(35):9040-9044
    [50] Vinodgopal K., Bedja I., Kamat P. V. Nanostructured Semiconductor Films forPhotocatalysis. Photoelectrochemical Behavior of SnO2/TiO2Composite Systems andIts Role in Photocatalytic Degradation of a Textile Azo Dye[J]. Chemistry ofMaterials,1996,8(8):2180-2187
    [51] Vinodgopal K., Stafford U., Gray K. A., et al. Electrochemically AssistedPhotocatalysis: The Role of Oxygen and Reaction Intermediates in the Degradation of4-Chlorophenol on Immobilized TiO2Particulate Films[J]. The Journal of PhysicalChemistry,1994,98(27):6797-6803
    [52] Kim D. H., Anderson M. A. Photoelectrocatalytic degradation of formic acid using aporous titanium dioxide thin-film electrode[J]. Environmental Science&Technology,1994,28(3):479-483
    [53] Kesselman J. M., Lewis N. S., Hoffmann M. R. Photoelectrochemical Degradation of4-Chlorocatechol at TiO2Electrodes: Comparison between Sorption andPhotoreactivity[J]. Environmental Science&Technology,1997,31(8):2298-2302
    [54] Moazzem Hossain M., Raupp G. B. Polychromatic radiation field model for ahoneycomb monolith photocatalytic reactor[J]. Chemical Engineering Science,1999,54(15-16):3027-3034
    [55] Yang S., Quan X., Li X., et al. Photoelectrocatalytic treatment of pentachlorophenol inaqueous solution using a rutile nanotube-like TiO2/Ti electrode[J]. Photochemical&Photobiological Sciences,2006,5(9):808-814
    [56] Candal R. J., Zeltner W. A., Anderson M. A. Effects of pH and Applied Potential onPhotocurrent and Oxidation Rate of Saline Solutions of Formic Acid in aPhotoelectrocatalytic Reactor[J]. Environmental Science&Technology,2000,34(16):3443-3451
    [57] Yang S., Liu Y., Sun C. Preparation of anatase TiO2/Ti nanotube-like electrodes andtheir high photoelectrocatalytic activity for the degradation of PCP in aqueoussolution[J]. Applied Catalysis A: General,2006,301(2):284-291
    [58] Sene J. J., Zeltner W. A., Anderson M. A. Fundamental Photoelectrocatalytic andElectrophoretic Mobility Studies of TIO2and V-Doped TIO2Thin-Film ElectrodeMaterials[J]. The Journal of Physical Chemistry B,2003,107(7):1597-1603
    [59] Li X. Z., Liu H. L., Yue P. T., et al. Photoelectrocatalytic Oxidation of Rose Bengal inAqueous Solution Using a Ti/TiO2Mesh Electrode[J]. Environmental Science&Technology,2000,34(20):4401-4406
    [60] Quan X., Ruan X., Zhao H., et al. Photoelectrocatalytic degradation ofpentachlorophenol in aqueous solution using a TiO2nanotube film electrode[J].Environmental Pollution,2007,147(2):409-414
    [61] Quan X., Yang S., Ruan X., et al. Preparation of Titania Nanotubes and TheirEnvironmental Applications as Electrode[J]. Environmental Science&Technology,2005,39(10):3770-3775
    [62] Zhao X., Yao W., Wu Y., et al. Fabrication and photoelectrochemical properties ofporous ZnWO4film[J]. Journal of Solid State Chemistry,2006,179(8):2562-2570
    [63] Zhao X., Zhu Y. Synergetic Degradation of Rhodamine B at a Porous ZnWO4FilmElectrode by Combined Electro-Oxidation and Photocatalysis[J]. EnvironmentalScience&Technology,2006,40(10):3367-3372
    [64] Harper J. C., Christensen P. A., Egerton T. A., et al. Mass transport characterization ofa novel gas sparged photoelectrochemical reactor[J]. Journal of AppliedElectrochemistry,2001,31(3):267-273
    [65] Vinodgopal K., Kamat P. V. Enhanced Rates of Photocatalytic Degradation of an AzoDye Using SnO2/TiO2Coupled Semiconductor Thin Films[J]. Environmental Science&Technology,1995,29(3):841-845
    [66]鲁娜。非金属元素掺杂及分子印迹聚合物修饰TiO2纳米管阵列电极光电催化性能研究[D]。大连,大连理工大学,中国博士学位论文数据库,2008,P9
    [67] Zen J. M., Chung H. H., Yang H. H., et al. Photoelectrocatalytic Oxidation ofo-Phenols on Copper-Plated Screen-Printed Electrodes[J]. Analytical Chemistry,2003,75(24):7020-7025
    [68] Zhang F., Zhao J., Shen T., et al. TiO2-assisted photodegradation of dye pollutants II.Adsorption and degradation kinetics of eosin in TiO2dispersions under visible lightirradiation[J]. Applied Catalysis B: Environmental,1998,15(1-2):147-156
    [69] Sauer T., Cesconeto Neto G., JoséH. J., et al. Kinetics of photocatalytic degradationof reactive dyes in a TiO2slurry reactor[J]. Journal of Photochemistry andPhotobiology A: Chemistry,2002,149(1-3):147-154
    [70] Roy P., Kim D., Lee K., et al. TiO2nanotubes and their application in dye-sensitizedsolar cells[J]. Nanoscale,2010,2(1):45-59
    [71] Kim D., Ghicov A., Schmuki P. TiO2Nanotube arrays: Elimination of disordered toplayers ("nanograss") for improved photoconversion efficiency in dye-sensitized solarcells[J]. Electrochemistry Communications,2008,10(12):1835-1838
    [72] Mohapatra S. K., Misra M., Mahajan V. K., et al. Synthesis of Y-branched TiO2nanotubes[J]. Materials Letters,2008,62(12-13):1772-1774
    [73] Zhang G., Huang H., Zhang Y., et al. Highly ordered nanoporous TiO2and itsphotocatalytic properties[J]. Electrochemistry Communications,2007,9(12):2854-2858
    [74]阴育新。TiO2纳米管阵列的阳极氧化制备与光电催化性能[D]。天津:天津大学,中国博士学位论文数据库,2007,P14
    [75] Kim D., Ghicov A., Albu S. P., et al. Bamboo-Type TiO2Nanotubes: ImprovedConversion Efficiency in Dye-Sensitized Solar Cells[J]. Journal of the AmericanChemical Society,2008,130(49):16454-16455
    [76] Liu Z., Zhang X., Nishimoto S., et al. Efficient Photocatalytic Degradation of GaseousAcetaldehyde by Highly Ordered TiO2Nanotube Arrays[J]. Environmental Science&Technology,2008,42(22):8547-8551
    [77] Beranek R., Macak J. M., G rtner M., et al. Enhanced visible light photocurrentgeneration at surface-modified TiO2nanotubes[J]. Electrochimica Acta,2009,54(9):2640-2646
    [78] Ong K. G. V., Oomman K., Mor G. K., et al. Numerical simulation of lightpropagation through highly-ordered titania nanotube arrays:Dimension optimizationfor improved photoabsorption[J]. Journal of Nanoscience and Nanotechnology,2005,5(11):1801-1808
    [79] Zhuang H. F., Lin C. J., Lai Y. K., et al. Some Critical Structure Factors of TitaniumOxide Nanotube Array in Its Photocatalytic Activity[J]. Environmental Science&Technology,2007,41(13):4735-4740
    [80] Liang H. C., Li X. Z. Effects of structure of anodic TiO2nanotube arrays onphotocatalytic activity for the degradation of2,3-dichlorophenol in aqueous solution[J].Journal of Hazardous Materials,2009,162(2–3):1415-1422
    [81] Mor G. K., Varghese O. K., Paulose M., et al. A review on highly ordered, verticallyoriented TiO2nanotube arrays: Fabrication, material properties, and solar energyapplications[J]. Solar Energy Materials and Solar Cells,2006,90(14):2011-2075
    [82] Ogawa H., Nishikawa M., Abe A. Hall measurement studies and an electricalconduction model of tin oxide ultrafine particle films[J]. Journal of Applied Physics,1982,53(6):4448-4455
    [83] Tan L. K., Kumar M. K., An W. W., et al. Transparent, Well-Aligned TiO2NanotubeArrays with Controllable Dimensions on Glass Substrates for PhotocatalyticApplications[J]. Acs Applied Materials&Interfaces,2010,2(2):498-503
    [84] Smith Y. R., Kar A., Subramanian V. Investigation of Physicochemical ParametersThat Influence Photocatalytic Degradation of Methyl Orange over TiO2Nanotubes[J].Industrial&Engineering Chemistry Research,2009,48(23):10268-10276
    [85] Shankar K., Mor G. K., Prakasam H. E., et al. Highly-ordered TiO2nanotube arrays upto220μm in length: use in water photoelectrolysis and dye-sensitized solar cells[J].Nanotechnology,2007,18(6):5707-5717
    [86] Kontos A. G., Katsanaki A., Maggos T., et al. Photocatalytic degradation of gaspollutants on self-assembled titania nanotubes[J]. Chemical Physics Letters,2010,490(1-3):58-62
    [87] Tang Y., Tao J., Zhang Y., et al. Preparation and Characterization of TiO2NanotubeArrays via Anodization of Titanium Films Deposited on FTO Conducting Glass atRoom Temperature[J]. Acta Physico-Chimica Sinica,2008,24(12):2191-2197
    [88] Michailowski A., AlMawlawi D., Cheng G. S., et al. Highly regular anatasenanotubule arrays fabricated in porous anodic templates[J]. Chemical Physics Letters,2001,349(1-2):1-5
    [89] Chakarvarti S. K., Vetter J. Template synthesis-A membrane based technology forgeneration of nano/micro-materials: A review[J]. Radiation Measurements,1998,29(2):149-159
    [90] Zhu X. D., Li Q. F. Template based synthesis and microstructure characterization ofTiO2nanoarray[J]. Journal of Process Engineering(China),2007,7(1):4-8
    [91] Zhao J. L., Wang X. H., Chen R. Z., et al. Fabrication of titanium oxide nanotubearrays by anodic oxidation[J]. Solid State Communications,2005,134(10):705-710
    [92] Kaneco S., Chen Y. S., Westerhoff P., et al. Fabrication of uniform size titanium oxidenanotubes: Impact of current density and solution conditions[J]. Scripta Materialia,2007,56(5):373-376
    [93] Chen X., Schriver M., Suen T., et al. Fabrication of10nm diameter TiO2nanotubearrays by titanium anodization[J]. Thin Solid Films,2007,515(24):8511-8514
    [94] Fang D., Huang K. L., Liu S. Q., et al. Electrochemical properties of ordered TiO2nanotube loaded with Ag nano-particles for lithium anode material[J]. Journal ofAlloys and Compounds,2008,464(1-2): L5-L9
    [95] Zhou C.,Wang L. H., Yi T. et al. Preparation of TiO2Porous Films on Pure TitaniumSurface[J]. Journal of Xiamen University of China(Natural Science),2006,45(6):58-63
    [96] Macak J. M., Tsuchiya H., Schmuki P. High-aspect-ratio TiO2nanotubes byanodization of titanium[J]. Angewandte Chemie-International Edition,2005,44(14):2100-2102
    [97] Shankar K., Mor G. K., Fitzgerald A., et al. Cation effect on the electrochemicalformation of very high aspect ratio TiO2nanotube arrays in formamide-Watermixtures[J]. Journal of Physical Chemistry C,2007,111(1):21-26
    [98] Prakasam H. E., Shankar K., Paulose M., et al. A new benchmark for TiO2nanotubearray growth by anodization[J]. Journal of Physical Chemistry C,2007,111(20):7235-7241
    [99] Mor G. K., Varghese O. K., Paulose M., et al. Fabrication of tapered, conical-shapedtitania nanotubes[J]. Journal of Materials Research,2003,18(11):2588-2593
    [100] Kun L., Lan S., Juan Z. Electrochemical Fabrication and Formation Mechanism ofTi02Nanotube Arrays on Metallic Titanium Surface[J]. Acta Phys.-Chim.Sin,2004,20(9):1063-1066
    [101] Liu S., Fang D., Li Z. Fabrication and FluOrescence Property of Titanium DioxideNanotube Arrays by Anodizing Processes[J]. Chinese Journal of Inorganic Chemistry,2007,23(5):827-832
    [102] Xu L., Wang L., Tao H. Effect of Electrolyte on Morphology of TiO2Porous Film onPure Titaniuln[J]. Journal of Materials Science&Engineering(Chinese)2007,25(3):406-410
    [103] Mohapatra S. K., Misra M., Mahajan V. K., et al. A novel method for the synthesis oftitania nanotubes using sonoelectrochemical method and its application forphotoelectrochemical splitting of water[J]. Journal of Catalysis,2007,246(2):362-369
    [104] Nguyen Q. A., Bhargava Y. V., Devine T. M. Titania nanotube formation in chlorideand bromide containing electrolytes[J]. Electrochemistry Communications,2008,10(3):471-475
    [105] Wu X., Jiang Q. Z., Ma Z. F., et al. Synthesis of titania nanotubes by microwaveirradiation[J]. Solid State Communications,2005,136(9-10):513-517
    [106] Ma D. L., Schadler L. S., Siegel R. W., et al. Preparation and structure investigation ofnanoparticle-assembled titanium dioxide microtubes[J]. Applied Physics Letters,2003,83(9):1839-1841
    [107] Quan X., Yang S. G., Ruan X. L., et al. Preparation of titania nanotubes and theirenvironmental applications as electrode[J]. Environmental Science&Technology,2005,39(10):3770-3775
    [108] Zhang Z. H., Yuan Y., Shi G. Y., et al. Photoelectrocatalytic activity of highly orderedTiO2nanotube arrays electrode for azo dye degradation[J]. Environmental Science&Technology,2007,41(17):6259-6263
    [109]万斌,沈嘉年.阳极氧化法制备TiO2纳米管及光催化性能[J]。应用化学,2008,25(6):665-668
    [110] Wang B., Sha J., Yang Y. Development of preparation and application of nano sizedTiO2as photocatalsts[J]. Chemical Industry Times,2006,20(7):4-7
    [111]邵绍燕,楚英豪,姚远。纳米TiO2在环境应用方面的研究进展[J]。环境科学与技术,2008,31(3):43-46
    [112] Raja K. S., Mahajan V. K., Misra M. Determination of photo conversion efficiency ofnanotubular titanium oxide photo-electrochemical cell for solar hydrogengeneration[J]. Journal of Power Sources,2006,159(2):1258-1265
    [113] Paulose M., Shankar K., Varghese O. K., et al. Application of highly-ordered TiO2nanotube-arrays in heterojunction dye-sensitized solar cells[J]. Journal of PhysicsD-Applied Physics,2006,39(12):2498-2503
    [114] Oregan B., Cratzel M. A low-cost, high-efficiency solar sellbased on dye-sensitizedcolloidal TiO2films[J]. Nature1991,353(6):737-741
    [115] Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitizedsolar cells[J]. Journal of Photochemistry and Photobiology a-Chemistry,2004,164(1-3):3-14
    [116] Macak J. M., Tsuchiya H., Ghicov A., et al. Dye-sensitized anodic TiO2nanotubes[J].Electrochemistry Communications,2005,7(11):1133-1137
    [117] Wang H., Yip C. T., Cheung A. B., et al. Titania-nanotube-array-based photovoltaiccells[J]. Applied Physics Letters,2006,89(2):3508-3511
    [118] Paulose M., Shankar K., Varghese O. K., et al. Backside illuminated dye-sensitizedsolar cells based on titania nanotube array electrodes[J]. Nanotechnology,2006,17(5):1446-1448
    [119]杨峰,蔡芳共,柯川,赵勇。TiO2纳米管阵列在太阳能电池中应用的研究进展[J]。材料导报,2010,24(6):50-53
    [120] Varghese O. K., Gong D. W., Paulose M., et al. Hydrogen sensing using titaniananotubes[J]. Sensors and Actuators B-Chemical,2003,93(1-3):338-344
    [121] Su Y., Zhang X., Han S., et al. F-B-codoping of anodized TiO2nanotubes usingchemical vapor deposition[J]. Electrochemistry Communications,2007,9(9):2291-2298
    [122] Ghicov A., Macak J. M., Tsuchiya H., et al. Ion Implantation and Annealing for anEfficient N-Doping of TiO2Nanotubes[J]. Nano Letters,2006,6(5):1080-1082
    [123] Liu S. H., Yang L. X., Xu S. H., et al. Photocatalytic activities of C-N-doped TiO2nanotube array/carbon nanorod composite[J]. Electrochemistry Communications,2009,11(9):1748-1751
    [124] Shankar K., Tep K. C., Mor G. K., et al. An electrochemical strategy to incorporatenitrogen in nanostructured TiO2thin films: modification of bandgap andphotoelectrochemical properties[J]. Journal of Physics D-Applied Physics,2006,39(11):2361-2366
    [125] Kim D., Fujimoto S., Schmuki P., et al. Nitrogen doped anodic TiO2nanotubes grownfrom nitrogen-containing Ti alloys[J]. Electrochemistry Communications,2008,10(6):910-913
    [126] Lu N., Quan X., Li J., et al. Fabrication of Boron-Doped TiO2Nanotube ArrayElectrode and Investigation of Its Photoelectrochemical Capability[J]. The Journal ofPhysical Chemistry C,2007,111(32):11836-11842
    [127] Li J., Lu N., Quan X., et al. Facile Method for Fabricating Boron-Doped TiO2Nanotube Array with Enhanced Photoelectrocatalytic Properties[J]. Industrial&Engineering Chemistry Research,2008,47(11):3804-3808
    [128] Wei F. Y., Sang L. Highly Photocatalytic Active and Easily Recycled Sulfur-DopedTiO2Nanotubes[J]. Chinese Journal of Catalysis,2009,30(4):335-339
    [129] Vitiello R. P., Macak J. M., Ghicov A., et al. N-Doping of anodic TiO2nanotubesusing heat treatment in ammonia[J]. Electrochemistry Communications,2006,8(4):544-548
    [130] Robert H., Ghicov A., Salonen J., et al. Carbon doping of self-organized TiO2nanotube layers by thermal acetylene treatment[J]. Nanotechnology,2007,18(10):105604
    [131] Shankar K., Paulose M., Mor G. K., et al. A study on the spectral photoresponse andphotoelectrochemical properties of flame-annealed titania nanotube-arrays[J]. Journalof Physics D-Applied Physics,2005,38(18):3543-3549
    [132] Tang X., Li D. Sulfur-Doped Highly Ordered TiO2Nanotubular Arrays with VisibleLight Response[J]. The Journal of Physical Chemistry C,2008,112(14):5405-5409
    [133] Geng J. Q., Hang Z. Y., Wang Y., et al. Carbon-modified TiO2nanotubes withenhanced photocatalytic activity synthesized by a facile wet chemistry method[J].Scripta Materialia,2008,59(3):352-355
    [134] Ghicov A., Tsuchiya H., Macak J. M., et al. Titanium oxide nanotubes prepared inphosphate electrolytes[J]. Electrochemistry Communications,2005,7(5):505-509
    [135] Su Y., Zhang X., Zhou M., et al. Preparation of high efficient photoelectrode ofN-F-codoped TiO2nanotubes[J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,194(2-3):152-160
    [136] Serpone N., Texier I., Emeline A. V., et al. Post-irradiation effect and reductivedechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presenceof prominent hole scavengers[J]. Journal of Photochemistry and Photobiologya-Chemistry,2000,136(3):145-155
    [137] Zhu B. L., Guo Q., Wang S. R., et al. Synthesis of metal-doped TiO2nanotubes andtheir catalytic performance for low-temperature CO oxidation[J]. Reaction Kineticsand Catalysis Letters,2006,88(2):301-308
    [138] Li H. L., Luo W. L., Chen T., et al. Preparation and photocatalytic performance oftitania nanotubes loaded with Ag nanoparticles[J]. Acta Physico-Chimica Sinica,2008,24(8):1383-1386
    [139] Malwadkar S. S., Gholap R. S., Awate S. V., et al. Physico-chemical, photo-catalyticand O-2-adsorption properties of TiO2nanotubes coated with gold nanoparticles[J].Journal of Photochemistry and Photobiology a-Chemistry,2009,203(1):24-31
    [140] Liu G., Guo X., Zheng L. Preparation of Zr-doped TiO2coposite nanotubes andinvestigation of their photocatalytic activity[J]. Journal of EnvironmentalSciences-China,2008,28(4):710-713
    [141] Xu Y. H., Chen C., Yang X. L., et al. Preparation, characterization and photocatalyticactivity of the neodymium-doped TiO2nanotubes[J]. Applied Surface Science,2009,255(20):8624-8628
    [142] Deng L. X., Wang S. R., Liu D. Y., et al. Synthesis, Characterization of Fe-dopedTiO2Nanotubes with High Photocatalytic Activity[J]. Catalysis Letters,2009,129(3-4):513-518
    [143] Hsieh C. T., Fan W. S., Chen W. Y., et al. Adsorption and visible-light-derivedphotocatalytic kinetics of organic dye on Co-doped titania nanotubes prepared byhydrothermal synthesis[J]. Separation and Purification Technology,2009,67(3):312-318
    [144] Huang C., Liu X., Kong L., et al. The structural and magnetic properties of Co-dopedtitanate nanotubes synthesized under hydrothermal conditions[J]. Applied Physicsa-Materials Science&Processing,2007,87(4):781-786
    [145] Tu Y. F., Huang S. Y., Sang J. P., et al. Synthesis and photocatalytic properties ofSn-doped TiO2nanotube arrays[J]. Journal of Alloys and Compounds,2009,482(1-2):382-387
    [146] Zaban A., Chen S. G., Chappel S., et al. Bilayer nanoporous electrodes for dyesensitized solar cells[J]. Chemical Communications,2000,22):2231-2232
    [147] Wang Z. S., Huang C. H., Huang Y. Y., et al. A highly efficient solar cell made from adye-modified ZnO-covered TiO2nanoporous electrode[J]. Chemistry of Materials,2001,13(2):678-682
    [148] Palomares E., Clifford J. N., Haque S. A., et al. Control of charge recombinationdynamics in dye sensitized solar cells by the use of conformally deposited metal oxideblocking layers[J]. Journal of the American Chemical Society,2003,125(2):475-482
    [149] Kim S. S., Yum J. H., Sung Y. E. Improved performance of a dye-sensitized solar cellusing a TiO2/ZnO/Eosin Y electrode[J]. Solar Energy Materials and Solar Cells,2003,79(4):495-505
    [150] Zhang X. T., Sutanto I., Taguchi T., et al. Al2O3-coated nanoporous TiO2electrode forsolid-state dye-sensitized solar cell[J]. Solar Energy Materials and Solar Cells,2003,80(3):315-326
    [151] Kumara G. R. A., Okuya M., Murakami K., et al. Dye-sensitized solid-state solar cellsmade from magnesiumoxide-coated nanocrystalline titanium dioxide films:enhancement of the efficiency[J]. Journal of Photochemistry and Photobiologya-Chemistry,2004,164(1-3):183-185
    [152] Huang L., Zhang S., Peng F., et al. Electrodeposition preparation ofoctahedral-Cu2O-loaded TiO2nanotube arrays for visible light-drivenphotocatalysis[J]. Scripta Materialia,2010,63(2):159-161
    [153]王伟,郝彦忠。量子点CdS修饰纳米结构TiO2复合膜电化学研究[J]。化学研究与应用,2007,19(2):199-202
    [154] Ellingson R. J., Beard M. C., Johnson J. C., et al. Highly efficient multiple excitongeneration in colloidal PbSe and PbS quantum dots[J]. Nano Letters,2005,5(5):865-871
    [155] Zhang Y., Deng B., Zhang T. R., et al. Shape Effects of Cu2O PolyhedralMicrocrystals on Photocatalytic Activity[J]. Journal of Physical Chemistry C,2010,114(11):5073-5079
    [156] Gratzel M. Perspectives for dye-sensitized nanocrystalline solar cells[J]. Progress inPhotovoltaics,2000,8(1):171-185
    [157] Fang D., Huang K., Liu S., et al. High density copper nanowire arrays depositioninside ordered titania pores by electrodeposition[J]. Electrochemistry Communications,2009,11(4):901-904
    [158] Park H., Kim W. R., Jeong H. T., et al. Fabrication of dye-sensitized solar cells bytransplanting highly ordered TiO2nanotube arrays[J]. Solar Energy Materials andSolar Cells,2011,95(1):184-189
    [159] Ghicov A., Tsuchiya H., Macak J. M., et al. Annealing effects on the photoresponse ofTiO2nanotubes[J]. Physica Status Solidi a-Applications and Materials Science,2006,203(4): R28-R30
    [160] Zheng Z., Teo J., Chen X., et al. Correlation of the Catalytic Activity for OxidationTaking Place on Various TiO2Surfaces with Surface OH Groups and Surface OxygenVacancies[J]. Chemistry-A European Journal,2010,16(4):1202-1211
    [1]黄垒,Cu2O/TiO2异质结构的制备表征及其光催化性能研究[D],广州,华南理工大学,中国博士学位论文全文数据库,2010,P26
    [1] Macak J. M., Zlamal M., Krysa J., et al. Self-organized TiO2nanotube layers as highlyefficient photocatalysts[J]. Small,2007,3(2):300-304
    [2] Paramasivalm I., Macak J. M., Schmuki P. Photocatalytic activity of TiO2-nanotubelayers loaded with Ag and Au nanoparticles[J]. Electrochemistry Communications,2008,10(1):71-75
    [3] Paulose M., Shankar K., Varghese O. K., et al. Application of highly-ordered TiO2nanotube-arrays in heterojunction dye-sensitized solar cells[J]. Journal of PhysicsD-Applied Physics,2006,39(12):2498-2503
    [4] Xu X., Fang X., Zhai T., et al. Tube-in-Tube TiO2Nanotubes with Porous Walls:Fabrication, Formation Mechanism, and Photocatalytic Properties [J]. Small,2011,7(4):445-449
    [5] Varghese O. K., Paulose M., Grimes C. A. Long vertically aligned titania nanotubes ontransparent conducting oxide for highly efficient solar cells[J]. Nature Nanotechnology,2009,4(9):592-597
    [6] Shankar K., Basham J. I., Allam N. K., et al. Recent Advances in the Use of TiO2Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry[J]. Journal ofPhysical Chemistry C,2009,113(16):6327-6359
    [7] Varghese O. K., Mor G. K., Grimes C. A., et al. A titania nanotube-arrayroom-temperature sensor for selective detection of hydrogen at low concentrations[J].Journal of Nanoscience and Nanotechnology,2004,4(7):733-737
    [8] Varghese O. K., Paulose M., LaTempa T. J., et al. High-Rate Solar PhotocatalyticConversion of CO2and Water Vapor to Hydrocarbon Fuels[J]. Nano Letters,2009,9(2):731-737
    [9] Heikkila M., Puukilainen E., Ritala M., et al. Effect of thickness of ALD grown TiO2films on photoelectrocatalysis[J]. Journal of Photochemistry and Photobiologya-Chemistry,2009,204(2-3):200-208
    [10] Macak J. M., Tsuchiya H., Schmuki P. High-aspect-ratio TiO2nanotubes by anodizationof titanium[J]. Angewandte Chemie-International Edition,2005,44(14):2100-2102
    [11] Zheng Q., Zhou B. X., Bai J., et al. Self-organized TiO2nanotube array sensor for thedetermination of chemical oxygen demand[J]. Advanced Materials,2008,20(5):1044-+
    [12] Bandara J., Shankar K., Basham J., et al. Integration of TiO2nanotube arrays intosolid-state dye-sensitized solar cells[J]. European Physical Journal-Applied Physics,2011,53(2):20602-20607
    [13] Zhu K., Neale N. R., Miedaner A., et al. Enhanced charge-collection efficiencies andlight scattering in dye-sensitized solar cells using oriented TiO2nanotubes arrays[J].Nano Letters,2007,7(1):69-74
    [14] Zhang H. M., Liu P. R., Liu X. L., et al. Fabrication of Highly Ordered TiO2Nanorod/Nanotube Adjacent Arrays for Photoelectrochemical Applications[J].Langmuir,2010,26(13):11226-11232
    [15] Yang M., Li L. H., Zhang S. Q., et al. Preparation, characterisation and sensingapplication of inkjet-printed nanostructured TiO2photoanode[J]. Sensors and ActuatorsB-Chemical,2010,147(2):622-628
    [16] Zhang H. M., Zhao H. J., Zhang S. Q., et al. Photoelectrochemical manifestation ofphotoelectron transport properties of vertically aligned nanotubular TiO2photoanodes[J]. Chemphyschem,2008,9(1):117-123
    [17] Jiang D. L., Zhao H. J., Zhang S. Q., et al. Characterization of photoelectrocatalyticprocesses at nanoporous TiO2film electrodes: Photocatalytic oxidation of glucose[J].Journal of Physical Chemistry B,2003,107(46):12774-12780
    [18] Yu H., Zhang S. Q., Zhao H. J., et al. Photoelectrochemical quantification of electrontransport resistance of TiO2photoanodes for dye-sensitized solar cells[J]. PhysicalChemistry Chemical Physics,2010,12(25):6625-6631
    [19] Zhao H. J., Jiang D. L., Zhang S. Q., et al. Development of a directphotoelectrochemical method for determination of chemical oxygen demand[J].Analytical Chemistry,2004,76(1):155-160
    [20] Mor G. K., Shankar K., Paulose M., et al. Enhanced photocleavage of water usingtitania nanotube arrays[J]. Nano Letters,2005,5(1):191-195
    [21] Zhou X. S., Peng F., Wang H. J., et al. Preparation of B, N-codoped nanotube arraysand their enhanced visible light photoelectrochemical performances[J].Electrochemistry Communications,2011,13(2):121-124
    [22] Zhang S. S., Peng F., Wang H. J., et al. Electrodeposition preparation of Ag loadedN-doped TiO2nanotube arrays with enhanced visible light photocatalyticperformance[J]. Catalysis Communications,2011,12(8):689-693
    [23] Mor G. K., Shankar K., Paulose M., et al. Use of highly-ordered TiO2nanotube arraysin dye-sensitized solar cells[J]. Nano Letters,2006,6(2):215-218
    [24] Roy P., Kim D., Lee K., et al. TiO2nanotubes and their application in dye-sensitizedsolar cells[J]. Nanoscale,2010,2(1):45-59
    [25] Lin Z., Wang J., Chen X. S., et al. Research on Policy-based Access Control Model[J].Nswctc2009: International Conference on Networks Security, WirelessCommunications and Trusted Computing,2009,2:164-167
    [26] Zhang Q. F., Chou T. R., Russo B., et al. Aggregation of ZnO nanocrystallites for highconversion efficiency in dye-sensitized solar cells[J]. Angewandte Chemie-InternationalEdition,2008,47(13):2402-2406
    [27] Wang J., Lin Z. Q. Dye-Sensitized TiO2Nanotube Solar Cells with Markedly EnhancedPerformance via Rational Surface Engineering[J]. Chemistry of Materials,2010,22(2):579-584
    [28] Yang D. J., Park H., Cho S. J., et al. TiO2-nanotube-based dye-sensitized solar cellsfabricated by an efficient anodic oxidation for high surface area[J]. Journal of Physicsand Chemistry of Solids,2008,69(5-6):1272-1275
    [29] Shankar K., Bandara J., Paulose M., et al. Highly efficient solar cells using TiO2nanotube arrays sensitized with a donor-antenna dye[J]. Nano Letters,2008,8(6):1654-1659
    [30] Biswas S., Shahjahan M., Hossain M. F., et al. FTO Synthesis of thick TiO2nanotubearrays on transparent substrate by anodization technique[J]. ElectrochemistryCommunications,2010,12(5):668-671
    [31] Wan B., Chen M. B., Zhou X. Y., et al. Photoelectrocatalytic Performance ofAg/TiO2-xNxNanotube[J]. Journal of Inorganic Materials,2010,25(3):285-288
    [32] Wu X. M., Ling Y. H., Sun J. T., et al. Photoelectrocatalytic degradation of methyleneblue dye on titania nanotube array film[J]. Chemistry Letters,2008,37(4):416-417
    [33] Hou Y., Li X. Y., Zou X. J., et al. Photoeletrocatalytic Activity of a Cu2O-LoadedSelf-Organized Highly Oriented TiO2Nanotube Array Electrode for4-ChlorophenolDegradation[J]. Environmental Science&Technology,2009,43(3):858-863
    [34] Kang Q., Liu S. H., Yang L. X., et al. Fabrication of PbS Nanoparticle-Sensitized TiO2Nanotube Arrays and Their Photoelectrochemical Properties[J]. Acs Applied Materials&Interfaces,2011,3(3):746-749
    [35] Meng Q. Q., Wang J. G., Xie Q., et al. Water splitting on TiO2nanotube arrays[J].Catalysis Today,2011,165(1):145-149
    [36] Ling Y. H., Liao J. S., Liu X. Y., et al. Enhanced Hydrogen Production on Porous TiO2Nanotube Arrays[J]. Journal of Nanoscience and Nanotechnology,2010,10(11):7020-7024
    [37] Zhao X., Liu H. J., Qu J. H. Photoelectrocatalytic degradation of organic contaminantsat Bi2O3/TiO2nanotube array electrode[J]. Applied Surface Science,2011,257(10):4621-4624
    [38] Wang X., Zhao H. M., Quan X., et al. Visible light photoelectrocatalysis with salicylicacid-modified TiO2nanotube array electrode for p-nitrophenol degradation[J]. Journalof Hazardous Materials,2009,166(1):547-552
    [39] Wen W., Zhao H. J., Zhang S. Q., et al. Rapid photoelectrochemical method for in situdetermination of effective diffusion coefficient of organic compounds[J]. Journal ofPhysical Chemistry C,2008,112(10):3875-3880
    [40] Zhang S. Q., Jiang D. L., Zhao H. J. Development of chemical oxygen demand on-linemonitoring system based on a photoelectrochemical degradation principle[J].Environmental Science&Technology,2006,40(7):2363-2368
    [41] Zhang H., Zhao H., Zhang S., et al. Photoelectrochemical manifestation ofphotoelectron transport properties of vertically aligned nanotubular TiO2photoanodes[J]. ChemPhysChem,2008,9(1):117-123
    [42] Jiang D., Zhao H., Zhang S., et al. Characterization of Photoelectrocatalytic Processes atNanoporous TiO2Film Electrodes: Photocatalytic Oxidation of Glucose[J]. Journal ofPhysical Chemistry B,2003,107(46):12774-12780
    [43] Yu H., Zhang S., Zhao H., et al. Photoelectrochemical quantification of electrontransport resistance of TiO2photoanodes for dye-sensitized solar cells[J]. PhysicalChemistry Chemical Physics,2010,12(25):6625-6631
    [1] Tsai C. C., Nian J. N., Teng H. S. Mesoporous nanotube aggregates obtained fromhydrothermally treating TiO2with NaOH[J]. Applied Surface Science,2006,253(4):1898-1902
    [2] Liu G., Li F., Wang D. W., et al. Electron field emission of a nitrogen-doped TiO2nanotube array[J]. Nanotechnology,2008,19(2):250606-225611
    [3] Bendavid A., Martin P. J., Jamting A., et al. Structural and optical properties of titaniumoxide thin films deposited by filtered arc deposition[J]. Thin Solid Films,1999,356(11):6-11
    [4] Su Y. L., Zhang X. W., Zhou M. H., et al. Preparation of high efficient photoelectrodeof N-F-codoped TiO2nanotubes[J]. Journal of Photochemistry and Photobiologya-Chemistry,2008,194(2-3):152-160
    [5] Zhao H. M., Chen Y., Quan X., et al. Preparation of Zn-doped TiO2nanotubes electrodeand its application in pentachlorophenol photoelectrocatalytic degradation[J]. ChineseScience Bulletin,2007,52(11):1456-1461
    [6] Xu J. J., Ao Y. H., Chen M. D., et al. Photoelectrochemical property and photocatalyticactivity of N-doped TiO2nanotube arrays[J]. Applied Surface Science,2010,256(13):4397-4401
    [7] Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J]. Science,2001,293(5528):269-271
    [8] Rahman M. M., Wang J. Z., Wexler D., et al. Silver-coated TiO2nanostructured anodematerials for lithium ion batteries[J]. Journal of Solid State Electrochemistry,2010,14(4):571-578
    [9] Huang L., Zhang S., Peng F., et al. Electrodeposition preparation ofoctahedral-Cu2O-loaded TiO2nanotube arrays for visible light-driven photocatalysis[J].Scripta Materialia,2010,63(2):159-161
    [10] Nakano Y., Morikawa T., Ohwaki T., et al. Origin of visible-light sensitivity inN-doped TiO2films[J]. Chemical Physics,2007,339(1-3):20-26
    [11] Gai Y. Q., Li J. B., Li S. S., et al. Design of Narrow-Gap TiO2: A Passivated CodopingApproach for Enhanced Photoelectrochemical Activity[J]. Physical Review Letters,2009,102(3):036402-036404
    [12] Ahn K. S., Yan Y., Shet S., et al. Enhanced photoelectrochemical responses of ZnOfilms through Ga and N codoping[J]. Applied Physics Letters,2007,91(23):1909-1911
    [13] Tan K. Q., Zhang H. R., Xie C. F., et al. Visible-light absorption and photocatalyticactivity in molybdenum-and nitrogen-codoped TiO2[J]. Catalysis Communications,2010,11(5):331-335
    [14] Yuan Y. L., Ding J. Q., Xu J. S., et al. TiO2Nanoparticles Co-Doped with Silver andNitrogen for Antibacterial Application[J]. Journal of Nanoscience and Nanotechnology,2010,10(8):4868-4874
    [15] Wu M., Yang B. F., Lv Y., et al. Efficient one-pot synthesis of Ag nanoparticles loadedon N-doped multiphase TiO2hollow nanorod arrays with enhanced photocatalyticactivity[J]. Applied Surface Science,2010,256(23):7125-7130
    [16] Shrestha N. K., Yang M., Nah Y. C., et al. Self-organized TiO2nanotubes: Visible lightactivation by Ni oxide nanoparticle decoration[J]. Electrochemistry Communications,2010,12(2):254-257
    [17] Chen Y., Hong L., Xue H. M., et al. Preparation and characterization ofTiO2-NTs/SnO2-Sb electrodes by electrodeposition[J]. Journal of ElectroanalyticalChemistry,2010,648(2):119-127
    [18] Yang L. X., He D. M., Cai Q. Y., et al. Fabrication and catalytic properties of Co-Ag-Ptnanoparticle-decorated titania nanotube arrays[J]. Journal of Physical Chemistry C,2007,111(23):8214-8217
    [19] Ping C., Wei L., Zhou T. L., et al. Physical and photocatalytic properties of zinc ferritedoped titania under visible light irradiation[J]. Journal of Photochemistry andPhotobiology a-Chemistry,2004,168(1-2):97-101
    [20] Peng F., Cai L. F., Yu H., et al. Synthesis and characterization of substitutional andinterstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity[J].Journal of Solid State Chemistry,2008,181(1):130-136
    [21] Livraghi S., Paganini M. C., Giamello E., et al. Origin of photoactivity ofnitrogen-doped titanium dioxide under visible light[J]. Journal of the AmericanChemical Society,2006,128(49):15666-15671
    [22] Chen X. B., Burda C. Photoelectron spectroscopic investigation of nitrogen-dopedtitania nanoparticles[J]. Journal of Physical Chemistry B,2004,108(40):15446-15449
    [23] Yu J. G., Xiong J. F., Cheng B., et al. Fabrication and characterization of Ag-TiO2multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. AppliedCatalysis B-Environmental,2005,60(3-4):211-221
    [24] Stathatos E., Lianos P., Falaras P., et al. Photocatalytically deposited silvernanoparticles on mesoporous TiO2films[J]. Langmuir,2000,16(5):2398-2400
    [25] Yu J. G., Yu H. G., Cheng B., et al. The effect of calcination temperature on the surfacemicrostructure and photocatalytic activity of TiO2thin films prepared by liquid phasedeposition[J]. Journal of Physical Chemistry B,2003,107(50):13871-13879
    [26] Yu J. G., Zhao X. J., Zhao Q. N. Effect of surface structure on photocatalytic activity ofTiO2thin films prepared by sol-gel method[J]. Thin Solid Films,2000,379(1-2):7-14
    [27] Zhu H. M., Yang B. F., Xu J., et al. Construction of Z-scheme type CdS-Au-TiO2hollow nanorod arrays with enhanced photocatalytic activity[J]. Applied CatalysisB-Environmental,2009,90(3-4):463-469
    [28] He J. H., Ichinose I., Kunitake T., et al. Facile fabrication of Ag-Pd bimetallicnanoparticles in ultrathin TiO2-gel films: Nanoparticle morphology and catalyticactivity[J]. Journal of the American Chemical Society,2003,125(36):11034-11040
    [29] Sun L., Li J., Wang C. L., et al. Ultrasound aided photochemical synthesis of Ag loadedTiO2nanotube arrays to enhance photocatalytic activity[J]. Journal of HazardousMaterials,2009,171(1-3):1045-1050
    [30] Szabo-Bardos E., Czili H., Horvath A. Photocatalytic oxidation of oxalic acid enhancedby silver deposition on a TiO2surface[J]. Journal of Photochemistry and Photobiologya-Chemistry,2003,154(2-3):195-201
    [31] Li H., Zhao G. L., Chen Z. J., et al. TiO2-Ag Nanocomposites by Low-TemperatureSol-Gel Processing[J]. Journal of the American Ceramic Society,2010,93(2):445-449
    [1] Xie Y. B. Photoelectrochemical reactivity of polyoxophosphotungstates embedded intitania tubules[J]. Nanotechnology,2006,17(14):3340-3346
    [2] Paramasivalm I., Macak J. M., Schmuki P. Photocatalytic activity of TiO2-nanotubelayers loaded with Ag and Au nanoparticles[J]. Electrochemistry Communications,2008,10(1):71-75
    [3] Macak J. M., Zlamal M., Krysa J., et al. Self-organized TiO2nanotube layers as highlyefficient photocatalysts[J]. Small,2007,3(2):300-304
    [4] Xu X., Fang X., Zhai T., et al. Tube-in-Tube TiO2Nanotubes with Porous Walls:Fabrication, Formation Mechanism, and Photocatalytic Properties [J]. Small,2011,7(4):445-449
    [5]廖建军,曹献坤,曹阳等。有序TiO2纳米管阵列光催化性能研究进展[J]。化工进展,2011,30(9):2003-2012
    [6] Macak J. M., Tsuchiya H., Taveira L., et al. Smooth anodic TiO2nanotubes[J].Angewandte Chemie-International Edition,2005,44(45):7463-7465
    [7] Wang D. A., Hu T. C., Hu L. T., et al. Microstructured Arrays of TiO2Nanotubes forImproved Photo-Electrocatalysis and Mechanical Stability[J]. Advanced FunctionalMaterials,2009,19(12):1930-1938
    [8] Albu S. P., Ghicov A., Macak J. M., et al. Self-organized, free-standing TiO2nanotubemembrane for flow-through photocatalytic applications[J]. Nano Letters,2007,7(5):1286-1289
    [9] Xie Y. B. Photoelectrochemical reactivity of a hybrid electrode composed ofpolyoxophosphotungstate encapsulated in titania nanotubes[J]. Advanced FunctionalMaterials,2006,16(14):1823-1831
    [10] Bendavid A., Martin P. J., Jamting A., et al. Structural and optical properties of titaniumoxide thin films deposited by filtered arc deposition[J]. Thin Solid Films,1999,356:6-11
    [11] Su Y. L., Zhang X. W., Zhou M. H., et al. Preparation of high efficient photoelectrodeof N-F-codoped TiO2nanotubes[J]. Journal of Photochemistry and Photobiologya-Chemistry,2008,194(2-3):152-160
    [12] Banerjee S., Mohapatra S. K., Das P. P., et al. Synthesis of Coupled Semiconductor byFilling1D TiO2Nanotubes with CdS[J]. Chemistry of Materials,2008,20(21):6784-6791
    [13] Sun W. T., Yu Y., Pan H. Y., et al. CdS quantum dots sensitized TiO2nanotube-arrayphotoelectrodes[J]. Journal of the American Chemical Society,2008,130(4):1124-1129
    [14] Seabold J. A., Shankar K., Wilke R. H. T., et al. Photoelectrochemical Properties ofHeterojunction CdTe/TiO2Electrodes Constructed Using Highly Ordered TiO2Nanotube Arrays[J]. Chemistry of Materials,2008,20(16):5266-5273
    [15] Gao X. F., Li H. B., Sun W. T., et al. CdTe Quantum Dots-Sensitized TiO2NanotubeArray Photoelectrodes[J]. Journal of Physical Chemistry C,2009,113(18):7531-7535
    [16] Zhang H., Quan X., Chen S., et al."Mulberry-like" CdSe Nanoclusters Anchored onTiO2Nanotube Arrays: A Novel Architecture with Remarkable PhotoelectrochemicalPerformance[J]. Chemistry of Materials,2009,21(14):3090-3095
    [17] Yu Y., Du F. P., Yu J. C., et al. One-dimensional shape-controlled preparation of porousCu2O nano-whiskers by using CTAB as a template[J]. Journal of Solid State Chemistry,2004,177(12):4640-4647
    [18] Bordiga S., Paze C., Berlier G., et al. Interaction of N2, CO and NO with Cu-exchangedETS-10: a compared FTIR study with other Cu-zeolites and with dispersed Cu2O[J].Catalysis Today,2001,70(1-3):91-105
    [19] Poizot P., Laruelle S., Grugeon S., et al. Nano-sized transition-metaloxides asnegative-electrode materials for lithium-ion batteries[J]. Nature,2000,407(6803):496-499
    [20] Ramirez-Ortiza J., Ogura T., Medina-Valtierra J., et al. A catalytic application of Cu2Oand CuO films deposited over fiberglass[J]. Applied Surface Science,2001,174(3-4):177-184
    [21] Bessekhouad Y., Robert D., Weber J. V. Photocatalytic activity of Cu2O/TiO2,Bi2O3/TiO2and ZnMn2O4/TiO2heterojunctions[J]. Catalysis Today,2005,101(3-4):315-321
    [22] Han C. H., Li Z. Y., Shen J. Y. Photocatalytic degradation of dodecyl-benzenesulfonateover TiO2-Cu2O under visible irradiation[J]. Journal of Hazardous Materials,2009,168(1):215-219
    [23] Hou Y., Li X. Y., Zou X. J., et al. Photoeletrocatalytic Activity of a Cu2O-LoadedSelf-Organized Highly Oriented TiO2Nanotube Array Electrode for4-ChlorophenolDegradation[J]. Environmental Science&Technology,2009,43(3):858-863
    [24] Yang L. X., Luo S. L., Li Y., et al. High Efficient Photocatalytic Degradation ofp-Nitrophenol on a Unique Cu2O/TiO2p-n Heterojunction Network Catalyst[J].Environmental Science&Technology,2010,44(19):7641-7646
    [25] Xu H. L., Wang W. Z., Zhu W. Shape evolution and size-controllable synthesis of Cu2Ooctahedra and their morphology-dependent photocatalytic properties[J]. Journal ofPhysical Chemistry B,2006,110(28):13829-13834
    [26] Nian J. N., Hu C. C., Teng H. Electrodeposited p-type Cu2O for H2evolution fromphotoelectrolysis of water under visible light illumination[J]. International Journal ofHydrogen Energy,2008,33(12):2897-2903
    [27] Ho J. Y., Huang M. H. Synthesis of Submicrometer-Sized Cu2O Crystals withMorphological Evolution from Cubic to Hexapod Structures and Their ComparativePhotocatalytic Activity[J]. Journal of Physical Chemistry C,2009,113(32):14159-14164
    [28] Zheng Z. K., Huang B. B., Wang Z. Y., et al. Crystal Faces of Cu2O and TheirStabilities in Photocatalytic Reactions[J]. Journal of Physical Chemistry C,2009,113(32):14448-14453
    [29] Huang L., Zhang S., Peng F., et al. Electrodeposition preparation ofoctahedral-Cu2O-loaded TiO2nanotube arrays for visible light-driven photocatalysis[J].Scripta Materialia,2010,63(2):159-161
    [30] Zhang S. S., Peng F., Wang H. J. et al. Electrodeposition preparation of Ag loadedN-doped TiO2nanotube arrays with enhanced visible light photocatalyticperformance[J]. Catalysis Communications,2011,12:689-693
    [31] Ping C., Wei L., Zhou T. L., et al. Physical and photocatalytic properties of zinc ferritedoped titania under visible light irradiation[J]. Journal of Photochemistry andPhotobiology a-Chemistry,2004,168(1-2):97-101
    [32] Leopold S., Herranen M., Carlsson J. O., et al. In situ pH measurement of theself-oscillating Cu(II)-lactate system using an electropolymerised polyaniline film as amicro pH sensor[J]. Journal of Electroanalytical Chemistry,2003,547(1):45-52
    [33] Wang L. C., de Tacconi N. R., Chenthamarakshan C. R., et al. Electrodeposited copperoxide films: Effect of bath pH on grain orientation and orientation-dependent interfacialbehavior[J]. Thin Solid Films,2007,515(5):3090-3095
    [34] Golden T. D., Shumsky M. G., Zhou Y., et al. Electrochemical Deposition of Copper(I)Oxide Films[J]. Chemistry of Materials,1996,8(10):2499-2504
    [35] Yu Z. Q., Wang C. M., Engelhard M. H., et al. Epitaxial growth and microstructure ofCu2O nanoparticle/thin films on SrTiO3(100)[J]. Nanotechnology,2007,18(11):5601-5605
    [36] Gao S. Y., Yang S. X., Shu J., et al. Green Fabrication of Hierarchical CuO HollowMicro/Nanostructures and Enhanced Performance as Electrode Materials forLithium-ion Batteries[J]. Journal of Physical Chemistry C,2008,112(49):19324-19328
    [1] Keller V., Keller N., Ledoux M. J., et al. Biological agent inactivation in a flowing airstream by photocatalysis[J]. Chemical Communications,2005,23(4):2918-2920
    [2] Li G. Y., Liu X. L., Zhang H. M., et al. In situ photoelectrocatalytic generation ofbactericide for instant inactivation and rapid decomposition of Gram-negativebacteria[J]. Journal of Catalysis,2011,277(1):88-94
    [3] Chen F. N., Yang X. D., Xu F. F., et al. Correlation of Photocatalytic Bactericidal Effectand Organic Matter Degradation of TiO2Part I: Observation of Phenomena[J].Environmental Science&Technology,2009,43(4):1180-1184
    [4] Wang P., Huang B. B., Qin X. Y., et al. Ag/AgBr/WO3H2O: Visible-LightPhotocatalyst for Bacteria Destruction[J]. Inorganic Chemistry,2009,48(22):10697-10702
    [5] Matsunaga T., Tomoda R., Nakajima T., et al. Photoelectrochemical Sterilization ofMicrobial-Cells by Semiconductor Powders[J]. Fems Microbiology Letters,1985,29(1-2):211-214
    [6] Wu P. G., Xie R. C., Imlay K., et al. Visible-Light-Induced Bactericidal Activity ofTitanium Dioxide Codoped with Nitrogen and Silver[J]. Environmental Science&Technology,2010,44(18):6992-6997
    [7] Pulgarin C., Rengifo-Herrera J. A., Kiwi J. N, S co-doped and N-doped Degussa P25powders with visible light response prepared by mechanical mixing of thiourea and urea.Reactivity towards E. coli inactivation and phenol oxidation[J]. Journal ofPhotochemistry and Photobiology a-Chemistry,2009,205(2-3):109-115
    [8] Wu T. S., Wang K. X., Li G. D., et al. Montmorillonite-Supported Ag/TiO2Nanoparticles: An Efficient Visible-Light Bacteria Photodegradation Material[J]. AcsApplied Materials&Interfaces,2010,2(2):544-550
    [9] Li Q., Sun C. X., Gao S. A., et al. Enhanced Photocatalytic Disinfection of Escherichiacoli Bacteria by Silver Modification of Nitrogen-Doped Titanium Oxide NanoparticlePhotocatalyst Under Visible-Light Illumination[J]. Journal of the American CeramicSociety,2010,93(11):3880-3885
    [10] Liu J. B., Pan X. B., Medina-Ramirez M., et al. Nanocharacterization and bactericidalperformance of silver modified titania photocatalyst[J]. Colloids and SurfacesB-Biointerfaces,2010,77(1):82-89
    [11] Gholami M. R., Elahifard M. R., Rahimnejad S., et al. Apatite-coated Ag/AgBr/TiO2visible-light photocatalyst for destruction of bacteria[J]. Journal of the AmericanChemical Society,2007,129(31):9552-9553
    [12] Kang Q., Lu Q. Z., Liu S. H., et al. A ternary hybrid CdS/Pt-TiO2nanotube structure forphotoelectrocatalytic bactericidal effects on Escherichia Coli[J]. Biomaterials,2010,31(12):3317-3326
    [13] Hayden S. C., Allam N. K., El-Sayed M. A. TiO2Nanotube/CdS Hybrid Electrodes:Extraordinary Enhancement in the Inactivation of Escherichia coli[J]. Journal of theAmerican Chemical Society,2010,132(41):14406-14408
    [14] Zhuang H. F., Lin C. J., Lai Y. K., et al. Some critical structure factors of titanium oxidemanotube array in its photocatalytic activity[J]. Environmental Science&Technology,2007,41(13):4735-4740
    [15] In S. I., Nielsen M. G., Vesborg P. C. K., et al. Photocatalytic methane decompositionover vertically aligned transparent TiO2nanotube arrays[J]. Chemical Communications,2011,47(9):2613-2615
    [16] Akhavan O., Azimirad R., Safa S., et al. Visible light photo-induced antibacterialactivity of CNT-doped TiO2thin films with various CNT contents[J]. Journal ofMaterials Chemistry,2010,20(35):7386-7392
    [17] Mai L. X., Wang D. W., Zhang S., et al. Synthesis and bactericidal ability of Ag/TiO2composite films deposited on titanium plate[J]. Applied Surface Science,2010,257(3):974-978
    [18] Ren J., Wang W., Songmei Sun, et al. Crystallography Facet-Dependent AntibacterialActivity:The Case of Cu2O[J]. Ind. Eng. Chem. Res.,2011,50(10366-10369
    [19] Pang H., Gao F., Lu Q. Morphology effect on antibacterial activity of cuprous oxide[J].Chem Commun2009,9):1076-1078
    [20] Huang L., Peng F., Yu H., et al. Preparation of cuprous oxides with different sizes andtheir behaviors of adsorption, visible-light driven photocatalysis and photocorrosion[J].Solid State Sciences,2009,11(1):129-138
    [21] Zhang S., Zhang S., Peng F., et al. Electrodeposition of polyhedral Cu2O on TiO2nanotube arrays for enhancing visible light photocatlytic performance[J]. ElectrochemCommun,2011,13:861-864
    [22] Hou Y., Li X. Y., Zou X. J., et al. Photoeletrocatalytic Activity of a Cu2O-LoadedSelf-Organized Highly Oriented TiO2Nanotube Array Electrode for4-ChlorophenolDegradation[J]. Environmental Science&Technology,2009,43(3):858-863
    [23] Zhang S. S., Peng F., Wang H. J. et al. Electrodeposition preparation of Ag loadedN-doped TiO2nanotube arrays with enhanced visible light photocatalyticperformance[J]. Catalysis Communications,2011,12:689-693
    [24] Cheng P., Wei L., Zhou T. L., et al. Physical and photocatalytic properties of zinc ferritedoped titania under visible light irradiation[J]. Journal of Photochemistry andPhotobiology a-Chemistry,2004,168(1-2):97-101
    [25] Hirakawa T., Nosaka Y. Properties of O2and OH formed in TiO2aqueous suspensionsby photocatalytic reaction and the influence of H2O2and some ions[J]. Langmuir,2002,18(8):3247-3254
    [26] Luo S. L., Yang L. X., Li Y., et al. High Efficient Photocatalytic Degradation ofp-Nitrophenol on a Unique Cu2O/TiO2p-n Heterojunction Network Catalyst[J].Environmental Science&Technology,2010,44(19):7641-7646
    [27] Paulose M., Shankar K., Varghese O. K., et al. Application of highly-ordered TiO2nanotube-arrays in heterojunction dye-sensitized solar cells[J]. Journal of PhysicsD-Applied Physics,2006,39(12):2498-2503
    [28] McBroom A. J., Kuehn M. J. Release of outer membrane vesicles by gram-negativebacteria is a novel envelope stress response[J]. Molecular Microbiology,2007,63(2):545-558
    [29] Hou Y., Li X. Y., Zhao Q. D., et al. Fabrication of Cu2O/TiO2nanotube heterojunctionarrays and investigation of its photoelectrochemical behavior[J]. Applied PhysicsLetters,2009,95(9):093108
    [30] Jiang D. L., Zhang S. Q., Zhao H. J. Photocatalytic degradation characteristics ofdifferent organic compounds at TiO2nanoporous film electrodes with mixedanatase/rutile phases[J]. Environmental Science&Technology,2007,41(1):303-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700