用户名: 密码: 验证码:
铜基粉末冶金摩擦材料研制及其高温疲劳磨损和冲击性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究高速列车用铜基粉末冶金摩擦材料以及其高温疲劳磨损性能和冲击动态力学性能。
     (1)在综合国内外关于铜基粉末冶金摩擦材料配方的基础上,研制了三种比较相近的铜基粉末冶金摩擦材料配方。经混合压制烧结,最后制成试验所需样品。测量了三种材料的力学参数和热传导参数。在MM-1000实验机上做了三种材料的摩擦磨损试验。其中测量了摩擦系数随转速的变化,和摩擦系数随压力的变化。通过试验选出了稳定性、摩擦磨损性均较好的第三种材料。
     (2)测试了该材料的高温疲劳磨损性能,近似拟合了该材料的磨损随温度的变化规律曲线,并对材料进行了失效分析。试验结果表明:在室温~100℃之间材料的摩擦系数随着温度的升高而增大,在100℃~350℃之间时,随温度升高摩擦系数逐渐降低,在350~500℃之间摩擦系数随温度的升高又增大,直到500℃发生粘附现象。从疲劳磨损看,在室温和300℃时磨损最小,微观分析发现在300℃时,摩擦材料的表面形成了一层固体润滑层,表面化合物发生了变化,得出该材料疲劳磨损的临界温度为350℃。而在500℃时摩擦系数上升,微裂纹沿滑移面之间扩展,并逐步相互贯通,导致摩擦面呈层状剥落,使磨损率增加;做300℃磨损后X衍射分析表明,疲劳摩擦后材料表层的氧化物发生了改变,由原来的以FeO为主变为以FeN为主,且形成BN、PbO等固体润滑层,从而使磨损降低。在疲劳摩擦过程中,硬质颗粒SiO_2脱落,作为磨粒参与摩擦,是造成犁沟和微裂纹的起源之一。
     (3)研究了该材料的冲击动态性能。在做冲击动态实验之前为了与准静态试验比较并得到数值模拟的参数,又做了该材料的准静态试验,应变率范围为10~(-4)/s~10~(-3)/s,测出了材料的弹性模量和弹、塑性泊松比,从静态曲线看该材料有应变硬化效应,静态压缩破坏为剪切破坏,压缩后圆柱表面可以看到位错蚀坑。在Hopkinson压杆上做了材料的冲击实验,得出该材料在10~2/S~10~3/s应变率范围的动态应力应变曲线,从试验曲线看,该材料在应变率1000/s以下时,表现为应变率强化效应,但当应变率高于1000/s时,材料有损伤软化趋势,也就是说,该材料的冲击临界应变率为1000/s左右;通过微观分析可知,当应变率为1600/s时,材料发生了滑移剪切破坏,从试件表面可以看到大量的平行滑移裂纹使材料断裂;塑性变形以滑移为主伴有少量孪晶,同时有蜘蛛状裂纹交汇和柔性连接现象,也伴随有硬质颗粒的破碎,在裂纹中发现有大量的碳纤维组织,这些纤维对裂纹的扩展起抑制作用。最后在粘弹性模型的基础上用加入粘塑性项的组合模型拟合了这种材料在1000/s应变率下的本构方程,并与试验结果符合较好。
    
     (4)做了材料的被动围压实验,以20#钢为套筒,油膜为试件和套筒之间的传递介
    质。试验后微观分析发现组织中有大量的孪晶发生,也就是说,在被动围压情况下,
    材料由于环向和径向受到约束使滑移受限,形变以孪晶为主,微裂纹的扩展还是在初
    始裂纹和孔洞处,但与同一应变率不加围压的试件相比,在应变率为1650/5时,试件
    中既有微小裂纹,同时也有少量硬质颗粒的破碎,但没发现蜘蛛状裂纹交汇和柔性连
    接的现象,这说明这种受力状态对该材料来说是比较有益的,这也就是为什么粉末冶
    金摩擦材料总是要与钢背烧结或抱缘后使用的原因。无论是加围压或无围压破碎的硬
    质颗粒都是长条形的,圆形硬质颗粒却没发现破碎,而硬质颗粒起增强基体的强度和
    增强摩擦系数的作用,为此得出推论,硬质颗粒的粒度应细化,并以球形为主,即可
    延缓基体的强度下降。
    (5)用MARC软件对闸瓦刹车和制动盘刹车的情形进行了数值模拟,利用接触摩擦
    热祸合理论,得出了该材料刹车时闸瓦的温度场分布和应力分布,计算结果与实验数
    据符合较好,说明数值模拟是成功的。得出闸瓦表面的温度随时间呈幂次曲线分布,
    而闸瓦内部的温度随离摩擦表面的距离呈线性分布,在对制动盘进行计算时,利用锻
    钢制动盘的参数作为对偶材料,进行动态热祸合计算,得出了闸片中的温度场和应力
    分布。由计算结果看,闸片的变量变化首先发生在外边缘,为此得出推论,如果加固
    闸片的外边缘部位,或把钢背和闸片在焊接时人为的做成楔形,将有利于提高闸片的
    寿命。
This thesis focuses on the study of copper-based friction materials by powder metallurgy and their high temperature fatique wear properties and dynamic behaviors.
    (1) Three formulas for copper-based friction materials are proposed based on the previous work by others. The wt % of copper in the three formulas are 68~75,69-76,and 65-68, respectively. The test samples were made via compressive sintering. The mechanical and heat conductive parameters were measured, which showed that the heat conduction of the third material was slightly higher. The frictional wear tests for the three materials were conducted on MM-1000 test machine with 30CrSiMoVA steel as the couple material, referring to the JB3063-82 standard. The test samples were circular rings with inner and outer diameters of 53mm and 75mm, respectively. The working condition for measuring the variation of the coefficient of friction with the rotation speed was as follows: rotation speeds ~ 1000, 2000, 3000, 4000 and 5000r/min, respectively, pressure ~ 0.98MPa, and rotational inertia momentum ~ 0.196N.m.s. The pressure was adjusted to the desired value, and braking was performed three times at each rotation speed.
     Upon completion of a test, the sample and its couple were both cooled down to room temperature, and the changes in the height were measured on spots. The working condition for measuring the variation of the coefficient of friction with the pressure was as follows: rotation speed ~ 3000r/min, rotational inertia momentum ~ 0.196N.m.s., and the braking pressure ~ 0.5, 0.8, 1.1, 1.4, and 1.7 MPa, respectively. Through these tests, the third material was found to be superior in both stability and frictional wear property.
    (2) The high temperature fatigue wear behavior of this material was investigated. The relation between the wear and temperature was fitted approximately, and the failure of the material was analyzed. The experiments were conducted on the TE77 high temperature fatigue wear test machine with wheel steel as the couple material. It was shown from the experiments that, the coefficient of friction was relatively low at room temperature and gradually decreased with increasing temperature in the range from 100 C to 350 C, with cohesion taking place at 500 C. From this, the critical temperature for the fatigue wear of the material was determined to be 350 C. The fatigue wear at room temperature and 300C was most insignificant, and the microscopic analysis showed that at 300C a solid lubricant layer formed at the material surface and there was phase transition relating to the surface structure. At 500 C, the coefficient of friction increased, the microcracks extended beneath the sliding surfaces and gradually coalesc
    ence, leading to the spallation of the tribological surfaces and the increase in the wear fraction. The X-ray analysis for the 300 C sample showed that the components of the surface oxide changed after fatigue friction, from FeO to FeN dominant, and solid lubricant layer of BN and PbO etc. formed
    
    
    
    which reduced the wear. One source for the origin of the furrow and microcracks was due to the hard particles of SiO2 that spall and took part in the friction during the process of the fatigue wear.
    (3) The dynamic behavior of this material under shock loading was investigated, and a dynamic constitutive model was proposed. Quasi-static tests at strain rates of 10-4 /s~10-3 /s were performed before the dynamic tests in order to make a comparison and also acquire parameters for numerical simulations. The elastic moduli and elastic and plastic Poisson's ratios were measured. The static curves showed the strain-hardening effect. The static compression failure was due to shear failure, and dislocation erosion hold were seen on the surface of the test cylinder. Shock tests were conducted on Hopkinson pressure bar at strain rates of 250,560,780,1000 and 1600/s, respectively. Strain rate hardening effect was observed at rates under 1000/s, whereas weakening effect was seen at higher rates, which means that 1000/s is the critical shock strain
引文
1.刘芬来,乌云兴.国外高速列车摩擦制动元件的材料及制造工艺[J].机车车辆工艺,1999,(19):36~39.
    2.饶忠.列车制动[M].北京:中国铁道出版社,1998.1~28,128~190.
    3.戴雅康.高速列车摩擦制动材料的现状与发展[J].机车车辆工艺,1994,(2):1~8.
    4.迁村太郎.材料最新动向[J].JREA,1992,(8):12~17.
    5. Knorr Bremse. Designs Systems to Break the ICE [J]. IRJ. 1990. (6): 71~73.
    6.迁村太郎.合金制[J].车辆电器,1993,(1):30~33.
    7.三部隆宏.中西宏之用摩擦材料[J].1991,36(3):189-194.
    8. K.D. Locker. Friction Material -on Overview [J]. Powder Metallurgy, 2002,35 (4): 253-255.
    9.姚萍屏,熊翔,刘强.高速电力机车制动闸瓦用粉末冶金刹车材料研究.非金属矿,2002,25(2):53~55.
    10. T. Kuse. Development of New Friction Material for Heavy Duty Application [J]. SAE Paper.941762.
    11.黄志辉,陈清,何翠微.我国首台高速动力车制动盘及制动闸瓦材料选择.机械工程材料,1997,21(3):34~36.
    12.任志俊.粉末冶金摩擦材料的研究发展概况.机车车辆工艺,2001,(6):1~5.
    13. Bream M, Von Doren V E. Properties of Porous Material [J]. Mater.Sci. 1999, 22, 2037-2045.
    14.李云堂.干式制动片摩擦材料的研制和性能试验.机械研究与应用,1999,12(1):51~53.
    15. Geng X, Sun W, Yan S. A Friction Material Made by Powder Metallurgy for Brake [P]. CN1257903, 1999,11,29.
    16. Blanken Hagen F, Puetz H. Sintered Brass Alloy Material for High Friction Surfaces in Clutch and Brake [P]. EP505345, 1991,03,20.
    17.王零森,杨兵,樊毅.基体成份对铜基摩擦材料性能的影响.中南工业大学学报,1996,27(2):194~198.
    18. Garson A L. Application of Porous Material [J]. Eng. Mater. Tech., 1999, 99: 2-15.
    19.黄培云.粉末冶金原理(第二版)[M].北京:冶金工业出版社,1997,373-375.
    20.杨永连.烧结金属摩擦材料[J].机械工程材料,1995(6):18-21.
    21.Louis B Newman著,张元民译,刹车材料最新进展[M],北京.中国建筑出版社.1986.22~78.
    22. Henty H, Hausner et al. Modem Developments in Powder Metallurgy [J]. Powder Metallurgy, 1982, 13: 160~165.
    23.翟智民译.联邦德国ICE列车的制动系统[J].国外铁道车辆,1989(6):25~29.
    24. J. Halling. Principles of Tribology, Macmillan press, London, 1975.
    
    
    25.赵田臣,樊运昌.高速列车铜基复合材料闸片研制方案研究[J].石家庄铁道学院学报,2001,14(4):11~13.
    26.【俄】.粉末冶金制动闸瓦与聚合物合成制动闸瓦的摩擦特性比较.国外内燃机车,2000,351(3):34~38.
    27. Artyukhov AN, Genkin VA, Komarov EM. Powdered Iron-based Sintered Friction Material [P]. SU1659176, 1989,05,03.
    28. Rhee S K, Jack M G, Tsang P H S. The role of friction, wear and noise of automotive brakes [J]. Wear, 1991,146: 89~97.
    29. Vukolo L A. Investigating of brake blocks made of update composite frictional materials [J]. Friction and Wear, 1995, 16(1): 78~82.
    30.刘建秀,李蔚,韩长生.高速列车刹车材料的性能综述[J].江苏冶金,2003,31(2):16-18.
    31. Yaga Y, Isogai A. Role of Alloying Elements in Friction and Wear of Copper Alloys [J]. Wear, 1999,44: 377-385.
    32.北京粉末冶金厂.JB3063-82(粉末冶金摩擦材料)[S].北京.中国标准出版社.1982.
    33. Lu Jinjun, Xue Qunji, Wang Jinbo et al. the Effect of CaF on the Mechanical and Tribological Properties of Ni-based Alloy [J]. Tribology International, 1997, 30(9).
    34. Saka N, Karalekas D P. Friction and Wear of Particles Reinforced Metal Ceramic Composites[C]. Wear of Materials, April 1985, Canada.
    35. Kim J W, Kang B S, Kang S S, Kang S J L. Effect of Sintering Temperature and Pressure on Sintered and Friction Properties ofA Cu-base Friction Material [J]. Powder Metallurgy International, 1988,20(3): 32~34.
    36. Garson A L. application of porous material. Eng. Mater. Tech. 1999, 99: 2-15.
    37.陈继勤,陈敏熊,赵敬世著.晶体缺陷[M].杭州:浙江大学出版社,1992.204~270.
    38.袁国洲,张兆森.重负荷机械制动铁铜基摩擦材料的研制[J].粉末冶金技术,1999,17(3):205~209.
    39. Larry Carley. Brake Pad Wear Varies for Each Vehicle [J]. Brake &Front.
    40. Simons .C. Development of metallically bonded sintered brake liners for high-speed rail vehicles. Eng. Mater. Tech., 1996: 173
    41.李东生.重载制动摩擦材料在MM-1000型实验机上的模拟试验[A].第二次全国摩擦磨损润滑学术会议论文集[C].北京:机械工业出版社,1982.211~217.
    42. Scieszka S F. Tribological phenomena in steel-composite brake material friction pair [J]. Wear, 1978, 46(1): 213~218.
    43. Fumihiro Honda, Toshio Kometani, Koichi Nakajima. Tribochemical Characterization of Worn Surface of Ternary System Cu-Ni-Zn [J]. Wear, 2003,161: 187-196.
    44.刘家浚.材料磨损原理及其耐磨性[M].北京.清华大学出版社.1993.92~246.
    45.[苏]N M费多尔钦科,徐润泽译.现代摩擦材料[M] .北京.冶金工业出版社.1984.
    
    
    46. N Do Vib. Fatigue of in Homogeneous Low Alloy PM Steel [J]. PM, 1989, 32: 209~214.
    47.温诗铸.摩擦学原理[M].北京.清华大学出版社.1990.
    48. Hunt J. B., Torbe I., Spencer G. C. the phase-plane analysis of sliding motion. Wear. 1965, 8:455~465.
    49.杨慧敏.粉末冶金铝基固体自润滑材料的研究.长沙:中南大学,2002,41~61.
    50. N.P.Suh. An overview of the delamination theory of wear, Wear, 1977(44): 1~16.
    51. S.Jahanmir. on mechanics and mechanisms of laminar wear particle formation, Adv. Mech. Phys. Surf., 1986(3): 261~332.
    52. J.M.challen, P.L,B. Oxley, B.S. Hockennull. prediction of Archard's wear coefficient assuming a low-cycle fatique mechanism, wear, 1986(111): 275~288.
    53. A.R.Rosefield, A fracture mechanics approach to wear. wear, 1980(61): 125~132.
    54. Johannes V. I., Green M. A. Brockley C. A. the role of the rate of application of the tangential force in determining the static friction coefficient. Wear, 1973,24: 381~385.
    55. Ko, R L., Brockley. The measurement of friction and friction-induced vibration. ASME Journal of lubrication technology. 1970: 543~549.
    56. Bussac A DE. Prediction of the Competition Between Surface and Internal Fatigue Crack Initiation in PM Alloys[R]. Fatigue and Fracture of Engineering. 1994, 71319.
    57. Jiaren Jing, sloff F H, Stack M M. A Mathematical Model for Sliding Wear of Metals at Elevated Temperature [J]. Wear. 1995, 181/183: 20~31.
    58. Zam M A. Adhesive Wear of Hard Particles -reinforced Metal-matrix Powder Composites [J]. Metal. 1989, 43: 1158~1161.
    59.徐进.固体润滑涂层抗微动磨损研究[D].博士学位论文.成都:西南交通大学,2003,46~91,106~114.
    60. Roy M, Venkafaraman B, Bhanuprasad V V et al. the Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites [J]. Metal Trans, 1992, 23A: 2833~2847.
    61. R.C.D.Richardson: The Maximum Hardness of Strained Surfaces and the Abrasive Wear of Metals and Alloys. Wear, 1967, (10): 353~382.
    62.谭育熙.金属电子显微分析[M].北京:机械工业出版社,1988,81~126.
    63.范雄.金属X射线学[M].北京:机械工业出版社,1994,36~102.
    64. G. Capone, V. D'Agostino, S. Della Valle, D. Guida. influence of the variation between statics and kinetic friction on stick-slip instability, wear 1993 (161): 121~126.
    65.【苏】克拉盖尔斯基等.摩擦磨损计算原理[M].北京:机械工业出版社,1982.272~342.
    66.刘英杰,成克强.磨损失效分析[M].北京:机械工业出版社,1991.12~128.
    67. Gaydos, Peter A. self-lubricating materials for high temperature ring/cylinder application. SAE Technical Paper Series, Public. By SAE, PA, USA, 910455.
    
    
    68. Fan- J P G. molybdenum disulfide in lubrication-a review. Wear, 1975, 35: 1~25.
    69. Liu T, Rhee S K, Lawson K L. A study of wears rates and transfer material [J]. Wear, 1980, 60: 132~140.
    70. F. Van De Velde, P De Beats. Mathematical approach of influencing factors on stick-slip induced by decelerative motion. Wear, 1996: 80~93.
    71. K.L. Johson. Contact mechanics and the wear of metals. Wear, 1995, 190: 162~170.
    72. Shouxin Li. Estimation of Fracture of SiC Particulate Affected by Aluminum Alloy Matrix [J]. Sci Metal Mat, 1993,28: 869~872.
    73. Rice, S. L., Hans, N., Steven, F. W. the role of specimen stiffness in sliding and impact wear. Wear. 1982(77): 13~28.
    74.国家标准局.金属压缩试验方法.中华人民共和国标准.GB7314-87:24~39.
    75. Palmov V A. Stationary Wave in Elastic-Plastic and Viscous-plastic Bodies [A]. ICTAM-2000[C], Chicago, USA, 2000,No.KE1.
    76. Armstrong R W, Zerilli F J. Dislocation Aspects of Shock-wave and High -strain-rate Phenomena [A]. Proceeding of International Conference on Fundamental Issues and Applications of Shock-wave and High strain-rate Phenomena (EXPLOMET2000)[C]. Albuquerque, USA: [s.n.], 2000,No.27.
    77. Timoshenko S. Goodier J. N. theory of elasticity. 2nd edn, McGraw-Hill, 1951, 372.
    78. Carrasco C, Eftis J, Osegueda R. Constitutive Modeling of Spall-fracture on 1100 Aluminum after Hypervelocity Impact [A]. Proceeding of International Conference on Fundamental Issues and Applications of stock-wave and High strain-rate Phenomena (EXPLOMET2000) [C]. Albuquerque, USA: [s.n.], 2000,No.78.
    79.李英雷.装甲陶瓷的本构关系和抗弹机理研究[D].博士学位论文.合肥:中国科技大学,2003.79~99.
    80. Klepaczko J R. Shear Testing of Ti-6Al-4V Alloy at High Strain Rates up to 6×10~4 s~(-1)[A]. Proceeding of International Conference on Fundamental Issues and Applications of stock-wave and High strain-rate Phenomena (EXPLOMET2000) [C]. Albuquerque, USA: [s.n.], 2000,No.21.
    81. Bao G, Ramesh K T. Plastic Flow of a Tungsten-based Composite under Quasi-static Compression [J]. Acta Metal Mater, 1993,41(9): 2711-2719.
    82. Boustie M, Meyers M A. Shock Wave and High -strain-rate Phenomena in Materials [M]. New York, Basel, Hong Kong, Marcel Dekker Inc., 1992, 741~760.
    83.胡时胜.Hopkinson压杆技术[J].兵器材料科学与工程.1991,122(11):40~47
    84. E Van Walle. Evaluating Material Properties Dynamic Testing[C]. London, ESIS Publication, 1996,25-35.
    85. Wang L.L., Jiang Z.B., Chen J.Y. Studies on Rheological Relation of Materials by Taking Account of Rate-Dependent Evolution of Internal Defects at High Strain Rates [A]. IUTAM
    
    Symposium on Rheology of Bodies with Defect[C]s, (Sept. 2-6, 1997, Beijing, China), Wang Ren (ed.), Kluwer Academic Publishers, Boston, London, 1999, 167-178.
    86.宋博,宋力,胡时胜.SHPB实验数据处理的解耦方法.爆炸与冲击.1998,18(2):167~171.
    87. Wang Li-Li, Dong X. -L. Positive and Negative Strain-Rate Effect for Materials with Damage and/or Phase Transformation at High Strain Rates [A]. International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena[C] (June 19-22, 2000, Albuquerque, New Mexico, USA),193-200.
    88. Rajagopalan S, Irfan M. A, PraKash V. Novel Experimental Techniques for Investigating Time Resolved High-speed Friction [J]. Wear, 225-229, 1999: 1222-1237.
    89. Vikas Prakash. A Pressure-shear Plate Impact Experiment for Investigating Transient Friction [J]. Experimental Mechanics 1995, 329-336.
    90. Meng H., Li Q.M. Correlation between the Accuracy of a SHPB Test the Stress Uniformity Based on Numerical Experiments [J]. Impact Engineering, 2003(28), 537~555.
    91.崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,2002,145~171.
    92. Hanmon T G, Ramakrishnan S, Wang E H. Confined Concrete Subjected to Uniaxial Monotonic Loading [J]. J of eng. Mech, 1998(2): 1303-1309.
    93. Gong J C, Malvern L E. Passively Confined Tests of Axial Dynamical Compressive Strength of Concrete [J]. Experimental Mechanics, 1990(3): 55-59.
    94.李雪梅,内爆加载下钢圆管的变形、损伤及层裂研究[D].硕士学位论文.合肥:中国科技大学,2003.62~68.
    95. H.A. Kuhn. deformation processing of sintered powder metals[A], powder metallurgy processing in New technigues and analyses[C]. Academic press, New York, 1978, 99.
    96. K.D. Pae. the microscopic yielding behavior of polymers in multiaxial stress fields. J. Mater. Sci. 1977, 12:1209.
    97.刘建秀,李蔚,韩长生,张祖根,王悟.铜基粉末冶金多孔材料在高应变率下的力学性能及本构关系[J].机械强度,2003,25(5):237-240.
    98. Zukas, J., Nicholas, T., Swift, H. Impact Dynamics [M]. Wiley-Interscience, New York, 1982.
    99.刘剑飞,王正道,胡时胜.低阻抗多孔介质材料的SHPB实验技术[J].实验力学.1998,13(2)218-223.
    100.【法】G亨利【德】D.豪斯特曼著,曾祥华等译.宏观断口学及显微断口学[M] .北京:机械工业出版社,1990.1~45.
    101.【法】J.Lemaitre,J.-L.Chaboche.著,余天庆,吴玉树译.固体材料力学[M].北京:国防工业出版社,1997.6~71.120~427.
    102.黄克智,黄永刚著.固体本构关系[M] .北京:清华大学出版社,1999.65~110.
    103. Y. Corapcioglu, T. Uz. constitutive equations for plastic deformation of porous materials[J]. J.
    
    powder tech. 1978,21:269.
    104.陈增涛,孙毅,王铎.考虑损伤的弹—粘塑性本构方程.固体力学学报.1997,18(2):173~178.
    105. R. Haynes, J. T. Egediege. Effect of porosity and sintered conditions on elastic constant of sintered irons[J]. PM. 1989,32: 47~52.
    106.李英雷,李大红,胡时胜.TATB钝感炸药本构关系的实验研究.爆炸与冲击.1999,19(4):353~359.
    107. Leland L E. continuous damage model for load response estimation of concrete [J]. Cement and concrete research, 1980, 10: 395~402.
    108.周凤华,王礼立,胡时胜.有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J].爆炸与冲击,1992,12(4)333~342.
    109. T. Mukai, T. Aizawa, K. Higashi. Experiment study of structural magnesium alloys with high absorption energy under dynamic loading[A]. In K.R Staudhammer, L.E.Murr, M.A. Meyers, Ed. Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena[C]. Elsevier Science Ltd., 2001, Amsterdam, 37~42.
    110. S.R. Bonder, Y. Partom. Constitutive equation for elastic-viscoplastic strain-hardening materials[J]. Journal of applied mechanics. 1975: 385~389.
    111.魏志刚,胡时胜,李永池.粉末烧结钨合金材料的绝热剪切变形局域化实验研究.金属学报.1999,35(8):829~833.
    112. Bonder, S. R. constitutive equation for dynamic material behavior[A], mechanical behavior of materials under dynamic loads[C], ed lindholm, U. S., springer-verlag, New York, 1968, 176~190.
    113. M Irfan V prakash, contact temperature during sliding in pressure shear impact[A]., proceedings society of experimental mechanics conference SEM[C]., USA, 1994: 173~182.
    114.乌云兴.日本德国法国高速列车用盘形制动元件的材料及工艺[J].机车车辆工艺,1996,(2):35~40.
    115. Ramsay A C A, Sbresny H. Evolution of Some Error Estimators for the Four Nodded Lagrange Quadrilateral [J]. Commune Num Math Eng, 1995,11: 497-506.
    116.【西德】霍斯特.契可斯,刘钟华,陈善雄.摩擦学[M].北京:机械工业出版社,1984,37~138.
    117. Wiberg N E, Abdulwahab F, Ziukas S. Improved Element Stress for Node and Element Patch Using Super Convergent Patch Recovery [J]. Commun Num Meth Eng, 1995,11: 619-627
    118. Liu D, Jiang F, Zhang Z, et al. Experimental Study on Non-Fourier Heat Conduction in Several kinds of Porous Material [A]. In: Proceedings of 1st International Conference on Engineering Thermo Physics (ICET). Beijing: International Academic Publishers, 1999.
    119.韩玉阁,宣益民,汤瑞峰.摩擦接触界面传热规律研究[J].南京理工大学学报,1998,22(3).
    120.常颖,崔岸,张军.离合器摩擦过程中的温度研究[J].机械科学与技术,1998,17(5).
    
    
    121.马保吉,朱均.摩擦制动器接触表面温度计算模型[J].西安工业学院学报,1999,19(1):36-39.
    122.曾泽斌,姚安佑.摩擦材料中热传导模型的建立及分析[J].武汉工业大学学报,1997,19(4):109-111.
    123.董光能,彭旭东,谢友柏等.销盘摩擦磨损试验中聚醚醚酮试销的温度场测定[J].摩擦学学报,1999,19(2).
    124.孔祥安,王琪.摩擦接触热传导有限元研究[J].高分子材料科学与工程,1996,12(6):15-19.
    125.蒋方明,刘登瀛.多孔材料内非傅立叶导热现象的实验研究结果及理论分析[J] .工程热物理学报,2001,22(1).
    126.Marc软件,温度场及其耦合场的有限元分析[M],1998.
    127.Marc软件,接触分析[M].1997.
    128. Lee C K, Lo S H. An Automatic Adaptive Refinement Procedure Using Triangular and Quadrilateral Meshes [J]. Engineering Fracture Mech, 1995,50(5/6): 639-651.
    129. Kayaba T., Takano M., Konishi T. Normal displacement in frictional process[J]. J. Japan Soc. Precision Engrs. 1972,38(12): 1002~1010.
    130.刘建秀,邵建敏,韩长生.铜基粉末冶金闸瓦温度分布[J].煤矿机械,2003,10:34~37.
    131. Marc software, theory and User Information A, B, C [M].
    132.李庆扬,王能超,易大义.数值分析[M].华中理工大学出版社.2000,61~114.
    133. Barber J R. the conduction of heat from sliding solids [J]. Int J Heat Mass Transfer, 1970, 13: 857~869.
    134.钱坤才,孙颢,何正禄.250km/h高速客车锻钢制动盘和粉末冶金闸片的研究[J].机车车辆工艺,2000(2):8~11.
    135. Day A J. the dissipation of friction energy from the interface of an annular disc brake [A]. proc. inst. Mech. Engrs.[C]. 1984, 198(11): 201~209.
    136.陈瑜梅,朱健希,许云华.不同温度下铁基粉末冶金材料的冲击磨损规律[J].西安交通大学学报,2001,35(9):24~28.
    137. Guillemot. R, Barton. J. P., Roach C. experimental route to non-Fourier heat conduction[J], Int. J. Heat mass transfer 1997(40): 4043~4053.
    138.张萌,谈育熙,杨平生.低碳钢在冲击疲劳过程中的微观形变[J].钢铁,1999,34(9):46-49.
    139. Watari A. Sugimoto T. Vibrations caused by dry friction[J]. Trans. Japan Soc. Mech. Engrs., 1963,200(29): 769~782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700