用户名: 密码: 验证码:
钢铁企业罩式炉装炉优化及煤气柜位预测问题研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年随着钢铁工业综合自动化技术及节能技术的普及,制造执行系统和能源管理系统已在各大型钢铁企业成功应用,作为系统核心的生产计划编制及能源平衡调度水平直接影响到企业的用能效果。本文依托国家“863计划”课题,分析了钢铁企业资源和能源优化的主要问题及特点,对钢铁生产过程中的罩式炉装炉优化和煤气系统柜位在线预测问题开展了深入系统的研究工作。主要内容如下:
     研究了冷轧过程中罩式炉装炉优化问题。首先将钢卷进行拼卷,接着对待装炉钢卷进行有效组合。在优化拼卷阶段:建立了多目标多背包拼卷模型,利用系统聚类法对钢卷分类来确定模型的背包中心,并构造了一种自适应量子遗传算法快速获得最优的拼卷结果。在最优装炉组合阶段:建立了多炉型、不确定炉数下的装炉组合多背包模型。利用拉格朗日松弛启发式算法求得装炉数的上界,并构造了一种新型单亲遗传算法进而求解,得到耗能最少的装炉优化组合。
     研究了炼焦过程焦炉煤气系统的柜位预测问题,通过分析焦炉煤气的产消及柜位变化特点,建立了基于最小二乘支持向量机的柜位预测模型。考虑参数和样本对模型精度的影响,构造了梯度网格搜索算法优选模型参数和大样本筛选方法选取训练样本。
     研究了炼铁过程高炉煤气系统的柜位在线预测问题,考虑实际高炉煤气柜位经常频繁大幅度变化,将其归结为一般非平坦变化的非线性回归问题。提出了基于简约梯度法的多核学习最小二乘支持向量机回归建模方法,该方法能较快建立基于丰富混合特征空间的柜位预测模型,充分预测各种柜位变化。
     研究了炼钢过程转炉煤气系统的多柜位预测问题,提出了一种一致T型灰色关联分析方法,确定柜位的主要影响用户。根据多个煤气柜同时并网运行的情况,提出了多输出最小二乘支持向量机回归算法,构建柜位预测模型。通过将其转换为求解线性方程组,快速得到模型的权系数和偏置公式表示,从而准确预测各转炉煤气柜位的变化。
     基于上述问题的研究,结合软件工程方法,开发了罩式炉装炉优化及煤气柜位预测系统,通过在上海宝钢股份有限公司冷轧薄板厂和能源中心的运行情况表明:该系统可以提高钢铁企业的资源和能源利用水平,达到了降低生产成本、节约能源、减轻环境污染的效果。
With the popularization of integrated automation and energy technology in steel industry, the manufacturing executive system and energy management system have been successfully applied in steel industry. As the core function of MES and EMS, the ability of production planning and energy balance scheduling make a direct influence on the utilization effect of enterprise's resource and energy. Based on the projects of National High-Tech Research and Development Programme, the main problems and characteristics of resource and energy optimization in steel plant are analyzed in this dissertation, in which the optimal charging for bell-type annealing furnace and the on-line prediction for gas holder level in steel production process are studied in detail. The dissertation has mainly carried on the following researches.
     The optimal charging for batch-type annealing furnace in cold rolling process is studied. Firstly, the coils are merged, and then the charging coils are effectively combinated. At the stage of coils merging, a multi-objective and multi-knapsack model is established, based on which, a clusters method acquires the classification of coils and the knapsack model's center. And an adaptive quantum genetic algorithm is developed to obtain the optimal coils merging results rapidly. At the stage of optimal charging combination, a multi-knapsack model with multi-furnace type and uncertain furnace numbers is suggested, where the furnace numbers upper limit is obtained by lagrangian relaxation heuristic algorithm and a new partheno genetic algorithm is proposed for solving the model. The charging results with the least energy consumption are obtained.
     The prediction problem for coke oven gas holder level in coke-making process is studied. A prediction model based on the least square support vector machine is established through analyzing the change characteristics of gas production-consumption and holder level. Considering the influence of model's parameters and samples on the prediction precision, a gradient grid search algorithm is proposed to opitimize the model's parameters, and an effective big samples selection method is suggested to build the training samples.
     The on-line prediction problem for blast furnace gas holder level in steel-making process is studied. Considering the practical level with frequent and great fluctuation, this problem is regarded as a general nonlinear regression problem with non-flat variation. A new multiple kernel learning based least square support vector regression is constructed based on a reduced gradient algorithm, which can rapidly give the resulting regressor under the optimal linear combination of kernels for predicting the various change trend of holder level.
     The multi-holder level prediction problem for linz donaniz gas in iron-making process is studied. A consistent T's grey relation analysis is developed to determine the main influencing users of holder level. According to the parallel running mode of several holders in practice, a multi-output least square support vector machine regression algorithm is proposed to establish the prediction model, in which the model's weighted values and bias are fast given by solving a series of linear equation system. The developed model can accurately predict the level trend of each LDG holder.
     Based on the studies mentioned above, two software systems for bell-type annealing charging optimization and gas holder level prediction are developed in combination with software engineering technology. The application in cold rolling plant and energy cernter of Shanghai Baosteel Co. Ltd. show that the system can improve the level of the utilization of resource and energy in steel enterprise, decrease the production cost and reduce the enviorenment pollution.
引文
[1]李世俊.钢铁行业节能减排现状,目标和工作思路[J].冶金管理,2007(2):18-24.
    [2]李烈军.钢铁行业节能减排的现状与途径[J].材料研究与应用,2008(4):328-331.
    [3]兰德年.钢铁行业节能减排方向及措施[J].冶金管理,2008(2):25-30.
    [4]娄湖山.国内外钢铁工业能耗现状和发展趋势及节能对策[J].冶金能源管理,2007(2):7-11.
    [5]周庆安.国内外钢铁企业节能水平对比分析[J].上海节能,2006(1):25-32.
    [6]李震.我国钢铁工业节能降耗技术的现状和发展趋势[J].鞍钢技术,2005(5):1-5.
    [7]丁常彦.钢铁行业节能降耗的三大法宝[N].计算机世界,2007.
    [8]荣刚.节能降耗MES任道重远[J].中国制造业信息化:应用版,2007(18):53-53.
    [9]王蔚林.冶金MES中优化排程技术的应用[C].杭州:第五届MES开发与应用专题研讨会,2006.
    [10]冯为民,丛力群.冶金企业能源管理系统[J].控制工程,2005(6):597-600.
    [11]王海风,张春霞.能源中心在钢铁企业中的应用和发展趋势[C].南京:全国能源与热工学术年会论文集,2008,490-493.
    [12]TANG L X,LIU J Y,RONG A Y,et al.A review of planning and scheduling systems and methods for integrated steel production. European Journal of Operational Research[J].2001(1):1-20.
    [13]江文德.钢铁企业能源动态平衡和优化调度问题研究和系统设计[D].杭州:浙江大学,2006.
    [14]柴天佑.节能降耗设计、制造、管理一体化MES发展趋势[J].中国制造业信息化:应用版,2007(18):42-42.
    [15]毕英杰.宝信冶金MES在钢铁行业的应用[J].中国制造业信息化:应用版,2007(18):52-52.
    [16]国仪器仪表网.国际制造执行系统(MES)应用与发展[EB],2005.
    [17]CIO时代网.国内外钢铁行业MES厂商信息综述[EB],2008.
    [18]魏海明.冶金能源管理系统的发展[J].宝钢技术,2007(2):28-32.
    [19]远藤胜等[日].鹿岛制铁所的能源管理系统[J].武钢技术,1995(4):55-61.
    [20]VALSALAM S R, MURALIDHARAN V, KRISHNAN N, et al. Implementation of energy management system for an integrated steel plant[J]. International Conference on EMPD,1998(2): 661-666.
    [21]WORRELL E, PRICE L, MARTIN N. Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector[J].Energy,2001,26(5):513-536.
    [22]AUER D, DOBLER H, WEISHAAR G. Design and implementation of an energy management system for an integrated iron and steel plant[J]. Eurocast,1997,1333:58-70.
    [23]李桂红.能源监控系统在宝钢不锈钢分公司的应用[J].冶金自动化,2006,30(1):12-14.
    [24]方彬.钢铁MES集成解决方案RMETAL[R].北京:红河谷自动化发展公司,2004.
    [25]赵刚.基于模糊集合论的冶铸轧一体化生产调度研究[D].北京:北京科技大学,2003.
    [26]宁树实.炼钢-连铸-热轧一体化生产调度研究及应用[D].大连:大连理工大学,2006.
    [27]赵珺.轧钢过程生产调度及其优化算法的研究与应用[D].大连:大连理工大学,2008.
    [28]邱东.基于节能目标的钢铁企业能源集成管理系统的研究与实现[D].吉林:吉林大学,2009.
    [29]张琦,蔡九菊,杜涛.钢铁联合企业煤气系统优化利用[J].冶金能源,2005,24(5):9-12.
    [30]HIGASHI I. Energy balance of steel mills and utilization of byproduct gases[J]. Transactions of the Iron and Steel Institute of Japan,1982,22(1):57-65.
    [31]李玲玲,邱东.钢铁企业煤气消耗预测模型及其应用研究[D].湖南:中南大学,2004.
    [32]姜曙光.济钢能源中心煤气平衡预测模型研究[D].济南:山东大学,2009.
    [33]王社斌,许并社.钢铁生产节能减排技术[M].北京:化学工业出版社,2009.
    [34]魏建新.钢铁企业节能减排的途径探讨[J].冶金经济与管理,2006(1):21-24.
    [35]KOSIBA E D, WRIGHT J R, COBBS A E.Discrete event sequencing as a traveling salesman problem[J]. Computers in Industry,1992,19(3):317-327.
    [36]KIM J H, YI H S, HAN C.A novel MILP model for plantwide multiperiod optimization of byproduct gas supply system in the iron and steel making process[J]. Chemical Engineering Research Design,2003,81(8):1015-1025.
    [37]FUKAYA N, KATAGIRI T. Expert system for manufacturing sequence determination hot rolling process of seamless steel pipe[J].川崎制铁技报,1991,23(3):191-195.
    [38]LEE H S, MURTHY S S, HAIDER S W, et al. Primary production scheduling at steelmaking industries[J]. IBM Journal Research Development,1996,40(2):231-252.
    [39]TANG L X, LIU J Y, RONG A Y, et al. A mathematical programming model for scheduling steelmaking-continuous casting production[J]. European Journal of Operational Research,2001, 120(2):423-435.
    [40]BELLABDAOUI A, TEGHEM J. A mixed-integer linear programming model for the continuous casting planning[J]. International Journal of Production Economics,2006,104(2):260-270.
    [41]TANG L X, LIU G L. A mathematical programming model and solution for scheduling production orders in Shanghai Baoshan Iron and Steel Complex[J]. European Journal of Operational Research, 2007,183(3):1453-1468.
    [42]TANG L X, WANG G S, LIU J Y. A branch-and-price algorithm to solve the molten iron allocation problem in iron and steel industry[J]. Computers & Operations Research,2007,34(10): 3001-3015.
    [43]TANG L X, WANG G S. Decision support system for the batching problems of steelmaking and continuous-casting production[J]. Omega,2008,36(6):976-991.
    [44]WANG X P, TANG L X. Integration of batching and scheduling for hot rolling production in the steel industry[J]. The International Journal of Advanced Manufacturing Technology,2008,36(5): 431-441.
    [45]TANG L X, LIU J Y, RONG A Y. A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex[J]. European Journal of Operational Research,2000,124(2):267-282.
    [46]LOPEZB L, CARTERA M W, GENDREAUC M. The hot strip mill production scheduling problem:A tabu search approach[J]. European Journal of Operational Research,1998,106(2): 317-335.
    [47]ATIGHEHCHIAN A, BIJARI M, TARKESH H. A novel hybrid algorithm for scheduling steel-making continuous casting production[J]. Computers & Operations Research,2009,36(8): 2450-2461.
    [48]ZHAO J, WANG W, LIU Q L, et al. A two-stage scheduling method for hot rolling and its application[J]. Control Engineering Practice,2009,17(6):629-641.
    [49]CHEN A L, YANG G K, WU Z M. Production scheduling optimization algorithm for the hot rolling processes[J]. International Journal of Production Research,2008,46(7):1955-1973.
    [50]COWLING P I, OUELHADJ D, PETROVIC S. Dynamic scheduling of steel casting and milling using multi-agents[J]. Production Planning & Control,2004,15(2):178-188.
    [51]DJAMILA O. A multi-agent system for the integrated dynamic scheduling of steel production[D]. Nottingham:the University of Nottingham,2003.
    [52]PARALIC J, CSONTO J. The CLP Approach to Solve a Scheduling Application[C]. Varazdin: The 7-th International Symposium on Information Systems,1996.
    [53]ASSAF I, CHEN M, Katzberg J. Steel production schedule generation [J]. International Journal of Production Research,1997,35:467-477
    [54]李耀华.热轧生产计划与板坯库优化管理模型及算法研究[D].大连:大连理工大学,2005.
    [55]TANG L X, LIU J Y, RONG A Y, et al. Modelling and a genetic algorithm solution for the slab stack shuffling problem when implementing steel rolling schedules[J]. International Journal of Production Research,2002,40(7):1583-1595.
    [56]SINGH K A, TIWARI S M K. Modelling the slab stack shuffling problem in developing steel rolling schedules and its solution using improved parallel genetic algorithms [J]. International Journal of Production Economics,2004,91(2):135-147.
    [57]孙一康,童朝南,彭开香.冷轧生产自动化技术[M].北京:冶金工业出版社,2006.
    [58]PENG W, SHI H. Software framework and tasks distribution for unit-operation planning[J]. Computer Integrated Manufacturing Systems,2002,8(3):213-218.
    [59]连云峰.冷轧薄板生产车间作业计划及调度系统的研究与实现[J].冶金自动化,2006,30(5):7-10.
    [60]OKANO H, DAVENPORT A J, TRUMBO M, et al. Finishing Line Scheduling in the steel industry[J]. IBM Journal research and development,2004,48(5):811-820.
    [61]WANG W P, YANG Z B, LI T K. Batch planning and scheduling method for cold rolling production line[J]. Metallurgical Industry Automation,2006,(5):11-15.
    [62]彭威,陈李军.冷轧生产线机组作业计划过程中的投料混合比算法[J].计算机集成制造系统,2005,11(4):582-586.
    [63]刘全利.罩式退火炉优化调度方法及其应用[D].大连:大连理工大学,2004.
    [64]VALLS V V, ANGELES P A M, PILAR L S M. Scheduling in a continuous galvanizing line[J]. Computers & Operations Research,2009,36(1):280-296.
    [65]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [66]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2005.
    [67]AKIMOTO K, SANNOMIYA N, NISHIKAWA Y, et al. An optimal gas supply for a power plant using a mixed integer programming model[J]. Automatica,1991,27(3):513-518.
    [68]KONG H N, QI E S, LI H, et al. An MILP model for optimization of byproduct gases in the integrated iron and steel plant[J]. Applied Energy,2010,87(7):2156-2163.
    [69]张建良,王妤.钢铁企业煤气系统的优化利用模型[J].包头钢铁学院学报,2002,21(3):280-282.
    [70]刘渺.钢铁企业主工序分厂煤气量预测方法研究[D].湖南:中南大学,2006.
    [71]聂秋平,吴敏,曹卫华,等.一种基于消耗预测的钢铁企业煤气平衡与数据校正方法[C].上海:中国过程系统工程年会暨中国MES年会论文集,2009.
    [72]梁青艳,孙彦广,顾佳晨,等.基于灰色时序组合模型的高炉热风炉煤气消耗量的预测[C].杭州:全国冶金自动化信息网会论文集,2009.
    [73]CHU Y H, KIM J H, MOON S J, et al. Control of gasholder level by trend prediction based on time-series analysis and process heuristics[C]. Hong Kong:IFAC Symposium on ADCHEM,2003.
    [74]AKIMOTO K, NAGARE T, ISHIDA N, et al. New energy control system at Kawasaki Steel's Mizushima Works[C]. Argentina:6th International Federation of Automatic Control Symp on Automation in Mining, Mineral and Metal Processing,1989,281-286.
    [75]王建军,蔡九菊,张琦,等.钢铁企业能量流模型化研究[J],中国冶金,2006,16(5):26-30.
    [76]王昊鹏.大型钢铁企业能源管理系统的建立及能耗分析方法研究[D].上海:上海交通大学,2002.
    [77]高阔.钢铁企业物流系统与能流系统的模型化研究[D].沈阳:东北大学,2002.
    [78]张川,高峰,翟桥柱等.基于滚动优化的钢铁企业电力优化调度算法[C].湖南:中国控制会议,2007.
    [79]史新祈,杜秀华,席裕庚,等.大型钢铁企业电力负荷的短期预测研究[C].上海:第四届全球华人智能控制与自动化大会,2002,1097-1100.
    [80]刘颖,赵珺,王伟,等.基于数据的改进回声状态网络在高炉煤气发生量预测中的应用[J].Acta Automatic Sinica,2009,35(6):731-739.
    [81]温燕明,耿晓宁,崔雪梅.基于柜位预测的钢铁企业煤气动态平衡实时控制方法[R].济南钢铁集团总公司,2007.
    [82]何晓群.回归分析与经济数据建模[M].北京:中国人民大学出版社,1997.
    [83]王黎明,陈颖,杨楠.应用回归分析[M].上海:复旦大学出版社,2008.
    [84]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.
    [85]杨叔子,吴雅,轩建平,等.时间序列分析的工程应用[M].武汉:华中理工大学出社,2007.
    [86]刘思峰,郭天榜,党耀国.灰色系统理论及其应用[M].北京:科学出版社,2008.
    [87]朱大奇,史慧编.人工神经网络原理及应用[M].北京:科学出版社,2006.
    [88]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2004.
    [89]VAPNIK V. Statistical learning theory[M]. New York:John Wiler &Sons,1998.
    [90]SCHOLKOPF B, et al. New support vector algorithms [J]. Neural Computation,12(5):1207-1245.
    [91]VAPNIK V N,张学工译.统计学习理论本质[M].北京:清华大学出版社,2000.
    [92]GLENN F, MANGASARIAN O L. Proximal support vector machine classifiers[C]. New York: Proceedings KDD:Knowledge discovery and data Mining,2001:77-86.
    [93]CHUN F, WANG S D. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002,13(2):464-471.
    [94]ZHANG L, ZHOU W D, JIAO L C. Wavelet support vector machine[J]. IEEE Transaction on Systems, Man and Cybernetics-Part B:Cybernetics,2004,34(1):34-39.
    [95]杨志民,刘广利.不确定性支持向量机原理及应用[M].北京:科学出版社,2004.
    [96]PAI P F, HONG W C. Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms[J]. Electric Power Systems Research,2005,74(2):417-425.
    [97]胡根生,邓飞其.具有多分段损失函数的的多多输出支持向量机机回回归[J].控制理论与应用,2007,24(5):711-714.
    [98]XU Z L, JIN R, IRWIN K, et al. An extended level method for multiple kernel learning[J]. In Advances in Neural Information Processing Systems,2008,(2):1825-1832.
    [99]SUYKENS J A K, Gestel V T, BRABANTER D J, et al. Least squares support vector machines[M]. Singapore:World Scientific,2002.
    [100]王定成,姜斌.在线稀疏最小二乘支持向量机回归的研究[J].控制与决策,2007,22(2):132-137.
    [101]SUYKENS J A K, BRABANTER D J, et al. Weighted least squares support vector machines: robustness and sparse approximation[J]. Neurocomputing,2002,48(1):85-105.
    [102]SUYKENS J A K, VANDEWALLE J. Recurrent least squares support vector machines [J]. IEEE Transactions on Circuits and Systems,2000,47(7):1109-1114.
    [103]CHAPELLE O, VAPNIK V, BOUSQUET O, et al. Choosing multiple parameters for support vector machines[J]. Machine Learning,2002,46(1):131-159.
    [104]CHANG B R, TSAI H F. Forecast approach using neural network adaptation to support vector regression grey model and generalized auto-regressive conditional heteroscedasticity[J]. Expert Systems with Applications,2008,34(2):925-934.
    [105]HUANG K Y, JANE C J. A hybrid model for stock market forecasting and portfolio selection based on ARX, grey system and RS theories[J]. Expert Systems with Applications,2009,36(3): 5387-5392.
    [106]王晓兰,张万宏,王慧中.基于小波变换和AR-LSSVM的非平稳时间序列预测[J].控制与决策,2008,23(3):357-360.
    [107]NEMHAUSER G L, WOLSEY L A. Integer and combinatorial optimization[M]. New York:John Wiley&Sons,1998.
    [108]ZHAO J, LIU Q L, WANG W. Models and algorithms of production scheduling in tandem cold rolling[J]. Acta Automatic Sinica,2008,34(5):565-575.
    [109]董杰方,刘志新,谢金星.冷卷入库的数学模型及算法[J].控制与决策,2001,16(1):783-786.
    [110]王晓东,金吉凌,刘全利.一种改进的遗传算法及其在钢卷优化组合中的应用[J].控制理论与应用,2004,21(6):993-996.
    [111]石豪.装炉组合专家系统的研究与开发[D].大连:大连理工大学,2004.
    [112]刘荣华.基于拉格朗日松弛的罩式炉排产优化问题的研究[D].沈阳:东北大学,2006.
    [113]王颖.罩式炉批量计划模型与启发式算法[D].沈阳:东北大学,2006.
    [114]何晓群.多元统计分析[M].北京:中国人民大学出版社,2004.
    [115]NARAYANAN A, MOORE M. Quantum inspired genetic algorithms[C]. Japan:IEEE International Conference on Evolutionary Computation,1996.
    [116]HAN K H. Quantum-inspired evolutionary algorithm[D]. Korea:Korea Advanced Institute of Science and Technology,2003.
    [117]HAN K H, KIM J H.Quantum Inspired Evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation,2002,6(6):1354-1360.
    [118]TALBI H, DRAA A, BATOUCHE M. A new quantum-inspired genetic algorithm for solving the travelling salesman problem[C]. Canada:IEEE International Conference on Industrial Technology, 2004.
    [119]HAN K H, KIM J H. Quantum inspired evolutionary algorithms with a new termination criterion, gate, and two-phase scheme[J]. IEEE Transaction on Evolutionary Computation,2004,8(2): 156-169.
    [120]YANG J A, ZHANG Z Q. Research of quantum genetic algorithm and its application in blind source separation[J]. Journal of Electronics,2003,20(1):62-68.
    [121]张葛祥,李娜,金炜东.一种新量子遗传算法及其应用[J].电子学报,2004,32(3):476-479.
    [122]邢换来,潘炜,邹喜华.一种解决组合优化问题的改进型量子遗传算法[J].电子学报,2007,35(10):1999-2002.
    [123]解平,李斌,庄镇泉.一种新的混合量子进化算法[J].计算机科学,2008,35(2):166-179.
    [124]焦李成,杜海峰,刘芳等.免疫优化计算、学习与识别[M].北京:科学出版社,2006.
    [125]LI Y Y, JIN L C. Quantum-inspired immune global multiobjective optimization algorithm [J]. Lecture Notes in Computer Science,2007,4426:672-679.
    [126]周殊,潘炜,罗斌等.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901.
    [127]ZHANG G X, RONG H N. Parameter setting of quantum inspired genetic algorithm based on real observation[J]. Lecture Notes in Computer Science,2007,4481:492-499.
    [128]WOLPERT D H, MACREADY W G. No free lunch theorems for search[J]. IEEE Transactions on Evolutionary Computation,1997,1 (1):67-82.
    [129]BEASLEY J E. OR-Library:Distributing test problems by electronic mail[J]. Journal of Operational Research Society,1990,41(11):1069-1072.
    [130]MARTELLO S, TOTH P. Knapsack problems:algorithms and computer implementation[M]. UK: John Wiley & Sons Ltd,1990.
    [131]虞安波,杨家本.多背包问题的遗传算法求解[J].计算技术与自动化,2002,21(2):59-63.
    [132]FISHER M. The lagrangian relaxation method for solving integer programming problems[J].Management Science,1981,2791:1-18.
    [133]李茂军,童调生.单亲遗传算法及其全局收敛性分析[J].自动化学报,1999,25(1):68-71.
    [134]姜大为,杨西龙.车辆路径问题的遗传算法研究[J].系统工程理论与实践,1999,19(6):40-44.
    [135]GALAMBOS G, WOEGINGER G J. On-line binpacking a restricted survey [J]. Mathematical Methods of Operations Research,1995,42(3):25-45.
    [136]HAN J, LIU G F, ZHAO J K. EMS and energy conservation[J]. Shanghai Energy Conservation, 2005, (1):39-43.
    [137]明德廷,李娟,尹怡欣.钢铁企业煤气优化调度模型研究[J].计算机工程与设计,2008,29(6):1575-1578.
    [138]黄景涛,马龙华,茅建波,等.基于支持向量回归的300MW电站锅炉再热汽温建模[J].中国电机工程学报,2006,26(7):19-24.
    [139]GAO L J, TAY F E H. Support vector machine with adaptive parameters in financial time series forecasting[J]. IEEE Transactions on Neural Networks,2003,14(6):1506-1518.
    [140]吕志军,杨建国,项前,等.基于支持向量机的纺纱质量预测模型研究[J].控制与决策,2007,23(6):693-696.
    [141]KRUIF B J, VRIES T J A. Pruning error minimization in least squares support vector machines[J]. IEEE Transactions on Neural Networks,2003,14(3):696-702.
    [142]GESTEL V T, SUYKENS J A K, et al. Financial time series prediction using least squares support vector machines within the evidence framework[J]. IEEE Transactions on Neural Networks,2001, 12(4):809-821.
    [143]CAWLEY G C, TALBOT N L C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines[J]. Neural Networks,2004,17(10):1467-1475.
    [144]LI L J, SU H Y, CHU J. Generalized predictive control with online least squares support vector machines[J]. Acta Automatic Sinica,2007,33(11):1182-1188.
    [145]KIM J H, YI H S, HAN C. A novel MILP model for plantwide multiperiod optimization of byproduct gas supply system in the iron and steel making process[J]. Chemical Engineering Research Design,2003,81(8):1015-1025.
    [146]GOETHALS I, PELCKMANS K, SUYKENS J A K, et al. Subspace identification of hammerstein systems using least squares support vector machines[J]. IEEE Transactions on automatic control, 2005,50(10):1509-1519.
    [147]ESPINOZA M, SUYKENS J A K, MOOR B. Fixed-size least squares support vector machines:A large scale application in electrical load forecasting[J]. Neural network,2006,3(2):113-129.
    [148]BORIN A, FERRAO M F, MELLO C, et al. Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk[J]. Analytica Chimica Acta,2006,579(1):25-32.
    [149]BAYLAR A, HANBAY D, BATAN M. Application of least support vector machines in the prediction of aeration performance of plunging overfall jets from weirs[J]. Expert systems with applications,2008,36(4):8368-8374.
    [150]LANCKRIET G R G, CRISTIANINI N, BARTLETT P, et al. Learning the kernel matrix with semidefinite programming[J]. Journal of Machine Learning Research,2004(5):27-72.
    [151]张军峰,胡寿松.基于多重核学习支持向量回归的混沌时间序列预测[J].物理学报,2008,57(5):2708-2712.
    [152]BACH F R, LANCKRIET G R G, JORDAN M I. Multiple kernel learning, conic duality, and the SMO algorithm[C]. New York:Proceedings of the Twenty-First International Conference on Machine Learning,2004.
    [153]SONNENBURG S, RATSCH G, SCHAFER C, et al. Large scale multiple kernel learning[J]. Journal of Machine Learning Research,2006,7(7):1531-1565.
    [154]RAKOTOMAMONJY A, BACH F R, Canu S, et al. SimpleMKL[J]. Journal of Machine Learning Research,2008,9(11):2491-2521.
    [155]BONNANS J F, SHAPIRO A. Optimization problems with pertubation:A guided tour[J]. SIAM Review,1998,40(2):202-227.
    [156]MCORMICK G P. NONLINEAR Programming[J]. New York:Wiley,1983.
    [157]赖炎连,贺国平.最优化方法[M].北京:清华大学出版社,2008.
    [158]http://www.esat.kuleuven.ac.be/sista/lssvmlab.
    [159]http://asi.insa-rouen.fr/enseignants/-arakotom/code/mklindex.html.
    [160]http://asi.insa-rouen.fr/enseignants/-arakotom/toolbox/index.html.
    [161]DENG J L. Control problems of grey systems[J]. Systems and Control Letters,1982,5(2):288-294.
    [162]KUO Y L. A novel grey relation method with analytic hierarchy process for stock selection[J]. Journal of Grey System,2008,11(2):97-106.
    [163]李勇,邵诚.一种新的灰关联分析算法在软件测量中的应用[J].自动化学报,2006,32(2):311-317.
    [164]孙玉刚,党建国.灰色T型关联度的改进[J].系统工程理论与实践,2008,24(4):135-139.
    [165]田民,刘思峰,志坤.灰色关联度算法模型的研究综述[J].统计与决策,2008,24(1):24-27.
    [166]VAPNIK V N. The Nature of statistical learning theory [M]. New York:Springer-Verlag,1995.
    [167]FERNANEZ S M, Prado C M, Arenas G J, et al. SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems[J]. IEEE Transactions on Signal Processing, 2004,52(8):2298-2307.
    [168]蔡艳宁,胡昌华.辨识非线性MIMO系统的多输出ε-SVR模型研究[J].控制与决策,2008,23(7):813-822.
    [169]SCHOELKOPF B, SMOLA A. Learning with kernels[M]. Boston:MIT Press,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700