用户名: 密码: 验证码:
局部应变场计算方法及其在多胞材料和结构中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多胞材料具有复杂的细观结构,存在明显的多尺度特征。由于细观结构的失稳而导致变形局部化是多胞材料准静态及动态响应的典型特征。基于连续介质力学定义的名义应变无法表征这种局部化的变形,而现有的局部应变计算方法尚有不同程度的局限性。本文的目的就是发展一种新的局部应变场计算方法以较好地表征多胞材料的局部化变形,并利用该方法研究多胞材料以及多胞材料复合结构的动态力学行为。
     本文基于离散局部变形梯度发展了局部应变场计算方法以表征多胞材料的非均匀变形。多胞材料首先被离散化为一系列节点,对于某一给定节点,由该节点及其周围一定范围内其他节点的相对运动计算出该节点位置处的基于最小二乘误差的最佳局部变形梯度。然后基于连续介质理论由局部变形梯度构造局部应变张量。本文发展的局部应变场计算方法可以考虑有限变形状态,既适合于规则多胞材料,也适合于不规则多胞材料。
     借助局部应变场计算方法,我们研究了塑性冲击波在多胞材料中的传播。Voronoi蜂窝二维应变场显示高速和中等速度冲击下均存在一维塑性冲击波。基于塑性冲击波传播的一维性,由二维应变场得到了沿加载方向的一维应变分布。应变分布揭示多胞材料中传播的冲击波,其波阵面处同样具有不连续性,就如连续固体中传播的冲击波一样,为一维冲击波模型的应用提供了基础。基于应变分布曲线,我们提出了确定冲击波波阵面位置的方法,由此进一步得到了冲击波的速度。这些基于胞元的细观有限元模型结果校验了基于连续介质力学的一维冲击波模型,发现基于非线性应变硬化材料模型的冲击波模型能够更准确地预测冲击波的速度。最后,我们还获取了冲击波波阵面两侧的应力-应变状态,从变形机理上解释了多胞材料动态压溃实验和数值模拟中均观察到的支撑端应力随冲击速度增大而减小的有趣现象。
     在我们发展的局部应变场计算方法中,截断半径决定了参与构建给定节点处最佳局部变形梯度的周围节点的个数,因此,局部应变场方法的局部性和准确性依赖于截断半径。本文对截断半径的敏感性进行了分析,进一步完善了局部应变场计算方法。我们引入了两种截断半径的可选方案,以表征恒速压溃下Voronoi蜂窝的非均匀变形为例对两种方案中截断半径的取值给出了建议,并进一步提出了截断半径的一种优化方案。计算所得平均应变与名义应变之间的比较结果表明,不论蜂窝是低速还是高速压溃,局部应变场计算方法的截断半径的优化方案均可以较好地表征多胞材料细观尺度上非均匀的变形。最后,利用局部应变场计算方法的截断半径的优化方案表征了两种不同构型的双层多胞牺牲层(DLCC)在三角脉冲爆炸载荷作用下的变形。二维应变场和一维应变分布揭示了塑性冲击波在两种构型中的传播规律,为双层多胞牺牲层的设计提供了建设性的思路。
     本文进一步提出了抗爆炸双层多胞牺牲层的设计方法。考察了两种不同构型的双层多胞牺牲层:一种是两层多胞材料芯层具有相同密度的构型,即Cladding-1,另一种是两层多胞材料芯层密度不同且高密度多胞材料靠近爆炸载荷、低密度多胞材料靠近支撑端的构型,即Cladding-2。利用经典的一维冲击波模型研究了两种构型双层多胞牺牲层中塑性冲击波的传播,发现Cladding-1中只有单一冲击波而Cladding-2中有两个冲击波同时传播。理论推导了Cladding-1完全吸收爆炸载荷所需的最小厚度即临界厚度的显式表达式。分析了Cladding-2的响应特征,在此基础上引入两个约束条件优化了Cladding-2中近层和远层芯层厚度的配置并得到了Cladding-2的临界厚度。在面板总质量相等的前提下,比较了单层多胞牺牲层(SLCC)和两种双层多胞牺牲层Cladding-1、Cladding-2的临界厚度,发现SLCC总是比Cladding-1更高效,而Cladding-2则可以比SLCC更高效。而且,通过选择最优的面板质量比和芯层密度比可以使Cladding-2的临界厚度最小。然后,我们提出了一种设计方法指导双层多胞牺牲层的抗爆炸防护设计。最后,利用Cladding-2的基于胞元的细观有限元模型校验了基于连续介质力学的一维冲击波模型的理论分析结果,两者整体吻合较好。借助局部应变场计算方法所得应变分布对导致理论预测结果和细观有限元模型结果出现偏差的原因进行了分析。
Cellular materials have complex meso-structrue and apparent multiscale features. Deformation localization caused by the collapse of meso-structures is a typical feature of both quasi-static and dynamic responses of cellular materials. The nominal strain, defined based on the continuum mechanics, can not characterize the localized deformation, and methods for calculating the local strain proposed in the literature have some limitations. This thesis aims at developing a new method to characterize the localized deformation in the cellular materials and further investigate the dynamic responses of cellular materials and cellular-core composite structures.
     Local strain field calculation method based on discrete local deformation gradient is developed to characterize the heterogeneous deformation of cellular materials. In this approach, cellular materials are discretized into a series of nodes and the optimal local deformation gradient at a representative node, in a least squares sense, is calculated by the relative motions of the representative node and its neighboring nodes. Then, a local strain tensor related to the optimal local deformation gradient can be calculated based on the continuum mechanics theory. The local strain field calculation method allows considering general finite-strain states of both regular and irregular cellular materials.
     Plastic shock wave propagation in a cellular material is investigated by using the local strain field calculation method.2D strain fields of Voronoi honeycomb specimens provide evidences of the existence of a one-dimensional plastic shock front in the cellular material under a high or moderate velocity impact. Due to the feature of the shock front propagation, the2D strain fields are simplified to one-dimensional strain distributions in the loading direction. The strain distributions reveal that there exists a zone at the shock front across which there is a discontinuity in strain, which is just like a shock front in a solid continuum. This enhances the basis of one-dimensional shock models. Shock wave velocity is measured by an approach that gives the location of the shock front varying with the impact time. A comparison of the cell-based finite element model with continuum-based shock models indicates that the shock model based on a material accounting for the post-locking behaviour is much accurate in predicting the shock wave velocity. Finally, stress-strain states ahead of and behind the shock front are obtained. These results provide an explanation in terms of deformation mechanism for the stress reduction at the support end with increasing impact velocity, which was previously observed in experimental and numerical studies.
     In the local strain field calculation method, the cut-off radius determines the neighboring nodes of a representative node for calculating the optimal local deformation gradient. Therefore, the local nature and accuracy of the method are dependent on the cut-off radius. The sensitivity of the cut-off radius is investigated to further improve the local strain field calculation method. Two different schemes are first analyzed to determine the suitable cut-off radii by characterizing the heterogeneous deformation of Voronoi honeycombs under uniaxial compression. Then, an optimal scheme is further suggested. It is demonstrated that the local strain field calculation method with the optimal scheme characterizes the heterogeneous deformation of cellular materials reasonable well whether the compression rate is low or high. Finally, the local strain field calculation method is applied to reveal the evolution of the heterogeneous deformation of two different configurations of double-layer cellular claddings (DLCCs) under a linear decaying blast load.2D fields and ID distributions of local engineering strain are calculated. These results interpret the shock wave propagation mechanisms in both claddings and provide a useful understanding in the design of a double-layer cellular cladding.
     This thesis further presents a method for the design of a double-layer cellular cladding serving as a protective function against blast load. Two configurations of DLCCs are considered, i.e. cladding with cellular cores of identical density (Cladding-1) and cladding with a higher density cellular core layer close to the blast load (Cladding-2). Shock wave propagation in the two DLCCs is investigated by using the classical one-dimensional shock model. Single shock front propagates in Cladding-1, while double shock fronts propagate in Cladding-2. A closed-form solution of the critical thickness, which is the minimum thickness required to fully absorb the blast load, is given for Cladding-1. Response features of Cladding-2are analyzed and then the critical thickness of Cladding-2is determined by optimizing the layer thicknesses through introducing two constraints. With an equal total mass of cover plates, Cladding-1and Cladding-2are compared with a single-layer cellular cladding (SLCC) in terms of the critical thickness. It is demonstrated that the SLCC is always more efficient than Cladding-1as a protective structure for blast alleviation, while Cladding-2can be more efficient than the SLCC. Moreover, a maximum reduction of the critical thickness of Cladding-2can be achieved by choosing an optimal combination of density ratio of the two cellular cores and mass ratio of the two cover plates. A design method for Cladding-2against blast load is further presented. Finally, cell-based finite element simulations are carried out to verify the analytical predictions about the design of Cladding-2. Comparisons between the cell-based finite element results and the analytical predictions are generally good, and some difference is analyzed through the strain distributions measured by the local strain field calculation method.
引文
[1]Gibson LJ, Ashby ME Cellular solids:structure and properties.2nd ed. Cambridge, UK: Cambridge University Press; 1997.
    [2]余同希.关于多胞材料和点阵材料的一点意见.力学与实践200527.
    [3]Yu JL, Li JR, Hu SS. Strain-rate effect and micro-structural optimization of cellular metals. Mech Mater 2006;38(1-2):160-170.
    [4]Romero PA, Soboyejo WO, Cuitino AM. Modeling of Dynamically Loaded Open-Cell Metallic Foams:Yielding, Collapse, and Strain Rate Effects. Journal of Applied Mechanics 2010;77(3):031002-031008.
    [5]Bastawros AF, Bart-Smith H, Evans AG Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J Mech Phys Solids 2000;48(2):301-322.
    [6]Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG Metal Foams:A Design Guide. Boston:Butterworth-Heinemann; 2000.
    [7]Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 2001;46(6):559-632.
    [8]Gu S, Lu TJ, Evans AG On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. Int J Heat Mass Tran 2001;44(11):2163-2175.
    [9]Evans AG. Hutchinson JW, Fleck NA, Ashby MF, Wadley HNG The topological design of multifunctional cellular metals. Prog Mater Sci 2001;46(3-4):309-327.
    [10]Kim T, Zhao CY, Lu TJ, Hodson HP. Convective heat dissipation with lattice-frame materials. Mech Mater 2004;36(8):767-780.
    [11]Wang XL, Lu TJ. Optimized acoustic properties of cellular solids. The Journal of the Acoustical Society of America 1999;106(2):756-765.
    [12]Lu TJ, Chen F, He DP. Sound absorption of cellular metals with semiopen cells. J Acoust Soc Am 2000; 108(4):1697-1709.
    [13]Fusheng H, Gary S, Yuyuan Z, Barry G. Acoustic absorption behaviour of an open-celled aluminium foam. J. Phys. D:Appl. Phys.2003;36(3):294.
    [14]朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的微波吸收特性.无机材料学报2002;17(6):1152-1156.
    [15]Shelby RA, Smith DR, Schultz S. Experimental Verification of a Negative Index of Refraction. Science 2001;292(5514):77-79.
    [16]Mead DJ. Wave propagation and natural modes in periodic systems:Ⅰ. Mono-coupled systems. J Sound Vib 1975;40(1):1-18.
    [17]Mead DJ. Wave propagation and natural modes in periodic systems:Ⅱ. Multi-coupled systems, with and without damping. J Sound Vib 1975;40(1):19-39.
    [18]Guruprasad S, Mukherjee A. Layered sacrificial claddings under blast loading Part I analytical studies. Int J Impact Eng 2000;24(9):957-973.
    [19]Guruprasad S, Mukherjee A. Layered sacrificial claddings under blast loading Part II experimental studies. Int J Impact Eng 2000;24(9):975-984.
    [20]Qiu X, Deshpande VS, Fleck NA. Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading. European Journal of Mechanics- A/Solids 2003;22(6):801-814.
    [21]Xue ZY, Hutchinson JW. Preliminary assessment of sandwich plates subject to blast loads. Int J Mech Sci 2003;45(4):687-705.
    [22]Xue Z, Hutchinson JW. A comparative study of impulse-resistant metal sandwich plates. Int J Impact Eng 2004;30(10):1283-1305.
    [23]Radford DD, Fleck NA, Deshpande VS. The response of clamped sandwich beams subjected to shock loading. Int J Impact Eng 2006;32(6):968-987.
    [24]Mohamed Shehata A. Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures:Experimental results. MatL 2007;61(14-15):3138-3141.
    [25]Li Z, Zheng Z, Yu J, Tang L. Effect of temperature on the indentation behavior of closed-cell aluminum foam. Mat Sci Eng A-Struct 2012;550(0):222-226.
    [26]Krishna BV, Bose S, Bandyopadhyay A. Strength of open-cell 6101 aluminum foams under free and constrained compression. Mat Sci Eng A-Struct 2007;452-453(0):178-188.
    [27]Amsterdam E, Onck P, De Hosson JTM. Fracture and microstructure of open cell aluminum foam. J Mater Sci 2005;40(22):5813-5819.
    [28]Onck PR, van Merkerk R, De Hosson JTM, Schmidt I. Fracture of Metal Foams:In-situ Testing and Numerical Modeling. Adv Eng Mater 2004;6(6):429-431.
    [29]Zhou J, Shrotriya P, Soboyejo WO. Mechanisms and mechanics of compressive deformation in open-cell Al foams. Mech Mater 2004;36(8):781-797.
    [30]Shehata Aly M, Almajid A, Nakano S, Ochiai S. Fracture of open cell copper foams under tension. Mat Sci Eng A-Struct 2009;519(1-2):211-213.
    [31]Amsterdam E, De Hosson JTM, Onck PR. Failure mechanisms of closed-cell aluminum foam under monotonic and cyclic loading. AcMat 2006;54(17):4465-4472.
    [32]Zhou J, Allameh S, Soboyejo WO. Microscale testing of the strut in open cell aluminum foams. J Mater Sci 2005;40(2):429-439.
    [33]Liu YD. Yu JL, Zheng ZJ, Li JR. A numerical study on the rate sensitivity of cellular metals. Int J Solids Struct 2009;46(22-23):3988-3998.
    [34]Bastawros AF, Evans AG Deformation Heterogeneity in Cellular Al Alloys. Adv Eng Mater 2000;2(4):210-214.
    [35]Tan PJ, Harrigan JJ, Reid SR. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Mater Sci Tech-lond 2002; 18(5):480-488.
    [36]Jang W-Y, Kyriakides S. On the crushing of aluminum open-cell foams:Part I. Experiments. Int J Solids Struct 2009;46(3-4):617-634.
    [37]Radford DD, Deshpande VS, Fleck NA. The use of metal foam projectiles to simulate shock loading on a structure. Int J Impact Eng 2005;31 (9):1152-1171.
    [38]Zou Z, Reid SR, Tan PJ, Li S, Harrigan JJ. Dynamic crushing of honeycombs and features of shock fronts. Int J Impact Eng 2009;36(1):165-176.
    [39]Lee S, Barthelat F, Moldovan N, Espinosa HD, Wadley HNG. Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials. Int J Solids Struct 2006;43(1):53-73.
    [40]Tan PJ, Reid SR, Harrigan JJ. On the dynamic mechanical properties of open-cell metal foams-Are-assessment of the'simple-shock theory'. Int J Solids Struct 2012;49(19-20):2744-2753.
    [41]Liu Y, Zhang X-C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. Int J Impact Eng 2009;36(1):98-109.
    [42]Silva MJ, Hayes WC, Gibson LJ. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 1995;37(11):1161-1177.
    [43]Silva MJ, Gibson LJ. The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 1997;39(5):549-563.
    [44]Chen C, Lu TJ, Fleck NA. Effect of imperfections on the yielding of two-dimensional foams. J Mech Phys Solids 1999;47(11):2235-2272.
    [45]Zhu HX, Hobdell JR, Windle AH. Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J Mech Phys Solids 2001;49(4):857-870.
    [46]Zheng ZJ, Yu JL, Li JR. Dynamic crushing of 2D cellular structures:A finite element study. Int J Impact Eng 2005:32:650-664.
    [47]Zhu HX, Hobdell JR, Windle AH. Effects of cell irregularity on the elastic properties of open-cell foams. AcMat 2000;48(20):4893-4900.
    [48]Zhu HX, Windle AH. Effects of cell irregularity on the high strain compression of open-cell foams. AcMat 2002;50(5):1041-1052.
    [49]Roberts AP, Garboczi EJ. Elastic moduli of model random three-dimensional closed-cell cellular solids. AcMat 2001;49(2):189-197.
    [50]Song Y, Wang Z, Zhao L, Luo J. Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. Mater Design 2010;31(9):4281-4289.
    [51]Fortes MA, Ashby MF. The effect of non-uniformity on the in-plane modulus of honeycombs. AcMat 1999;47(12):3469-3473.
    [52]Li K, Gao XL, Wang J. Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness. Int J Solids Struct 2007;44(14-15):5003-5026.
    [53]Kou DP, Li JR, Yu JL, Cheng HF. Mechanical behavior of open-cell metallic foams with dual-size cellular structure. Scripta Mater 2008;59(5):483-486.
    [54]Zhang XC, Liu Y, Wang B, Zhang ZM. Effects of defects on the in-plane dynamic crushing of metal honeycombs. Int J Mech Sci 2010;52(10):1290-1298.
    [55]Zheng ZJ, Yu JL. Effect of random defects on dynamic response of honeycomb structures. in: MSF.706-709.2012, pp.805-810.
    [56]Ajdari A, Nayeb-Hashemi H, Canavan P, Warner G Effect of defects on elastic-plastic behavior of cellular materials. Mat Sci Eng A-Struct 2008;487(1-2):558-567.
    [57]Lu Z-X, Liu Q, Huang J-X. Analysis of defects on the compressive behaviors of open-cell metal foams through models using the FEM. Mat Sci Eng A-Struct 2011;530(0):285-296.
    [58]Wallach JC, Gibson LJ. Defect sensitivity of a 3D truss material. Scripta Mater 2001;45(6):639-644.
    [59]Jeon I, Asahina T. The effect of structural defects on the compressive behavior of closed-cell Al foam. AcMat 2005;53(12):3415-3423.
    [60]Zhu HX, Knott JF, Mills NJ. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J Mech Phys Solids 1997;45(3):319-343.
    [61]Zhu HX, Mills NJ, Knott JF. Analysis of the high strain compression of open-cell foams. J Mech Phys Solids 1997;45(11-12):1875-1904.
    [62]Mills NJ, Zhu HX. The high strain compression of closed-cell polymer foams. J Mech Phys Solids 1999;47(3):669-695.
    [63]Gioia G, Wang Y, Cuitino AM. The energetics of heterogeneous deformation in open-cell solid foams. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences 2001;457(2009):1079-1096.
    [64]Wang Y, Cuitio AM. Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation. Int J Solids Struct 2002;39(13-14):3777-3796.
    [65]Khan MK, Baig T, Mirza S. Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb. Mat Sci Eng A-Struct 2012;539:135-142.
    [66]Elnasri I, Pattofatto S, Zhao H, Tsitsiris H, Hild F, Girard Y. Shock enhancement of cellular structures under impact loading:Part I Experiments. J Mech Phys Solids 2007;55(12):2652-2671.
    [67]Mangipudi KR, Onck PR. Multiscale modelling of damage and failure in two-dimensional metallic foams. J Mech Phys Solids 2011;59(7):1437-1461.
    [68]Zheng ZJ, Liu YD, Yu JL, Reid SR. Dynamic crushing of cellular materials:Continuum-based wave models for the transitional and shock modes. Int J Impact Eng 2012;42:66-79.
    [69]Reid SR, Peng C. Dynamic uniaxial crushing of wood. Int J Impact Eng 1997; 19(5-6):531-570.
    [70]Harrigan JJ, Reid SR. Peng C. Inertia effects in impact energy absorbing materials and structures. Int J Impact Eng 1999;22(9-10):955-979.
    [71]Deshpande VS, Fleck NA. High strain rate compressive behaviour of aluminium alloy foams. Int J Impact Eng 2000;24(3):277-298.
    [72]Hall IW, Guden M, Yu CJ. Crushing of aluminum closed cell foams:density and strain rate effects. Scripta Mater 2000;43(6):515-521.
    [73]Tan PJ, Reid SR, Harrigan JJ, Zou Z, Li S. Dynamic compressive strength properties of aluminium foams. Part Ⅰ-experimental data and observations. J Mech Phys Solids 2005;53(10):2174-2205.
    [74]Wang Z, Ma H, Zhao L, Yang G. Studies on the dynamic compressive properties of open-cell aluminum alloy foams. Scripta Mater 206;54(1):83-87.
    [75]Lopatnikov SL, Gamaa BA, Jahirul Haque M, Krauthauser C, Gillespie Jr JW, Guden M, Hall IW. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment. Compos Struct 2003;61 (1-2):61-71.
    [76]Honig A, Stronge WJ. In-plane dynamic crushing of honeycomb. Part I:crush band initiation and wave trapping. Int J Mech Sci 2002;44(8):1665-1696.
    [77]Honig A, Stronge WJ. In-plane dynamic crushing of honeycomb. Part II:application to impact. Int J Mech Sci 2002;44(8):1697-1714.
    [78]Ruan D, Lu GX, Wang B, Yu TX. In-plane dynamic crushing of honeycombs—a finite element study. Int J Impact Eng 2003;28(2):161-182.
    [79]Lopatnikov SL, Gamaa BA, Jahirul Haque M, Krauthausera C, Gillespie Jr JW. High-velocity plate impact of metal foams. Int J Impact Eng 2004;30(4):421-445.
    [80]Lopatnikov SL, Gama BA, Gillespie JJW. Modeling the progressive collapse behavior of metal foams. Int J Impact Eng 2007;34(3):587-595.
    [81]Harrigan JJ, Reid SR, Tan PJ, Yella Reddy T. High rate crushing of wood along the grain. Int J Mech Sci 2005;47(4-5):521-544.
    [82]Harrigan JJ, Reid SR, Seyed Yaghoubi A. The correct analysis of shocks in a cellular material. Int J Impact Eng 2010;37(8):918-927.
    [83]Pattofatto S, Elnasri I, Zhao H, Tsitsiris H, Hild F, Girard Y. Shock enhancement of cellular structures under impact loading:Part II analysis. J Mech Phys Solids 2007;55(12):2672-2686.
    [84]Zheng ZJ, Yu JL, Wang CF, Liao SF, Liu YD. Dynamic crushing of cellular materials:A unified framework of plastic shock wave models. Int J Impact Eng 2013;53(0):29-43.
    [85]Reid SR, Bell WW, Barr RA. Structural plastic shock model for one-dimensional ring systems. Int J Impact Eng 1983; 1(2):175-191.
    [86]Qiu XM, Zhang J, Yu TX. Collapse of periodic planar lattices under uniaxial compression, part Ⅱ:Dynamic crushing based on finite element simulation. Int J Impact Eng 2009;36(10-11):1231-1241.
    [87]Tan PJ, Reid SR, Harrigan JJ, Zou Z, Li S. Dynamic compressive strength properties of aluminium foams. Part Ⅱ-'shock' theory and comparison with experimental data and numerical models. J Mech Phys Solids 2005;53(10):2206-2230.
    [88]Hanssen AG, Enstock L, Langseth M. Close-range blast loading of aluminium foam panels. Int J Impact Eng 2002;27(6):593-618.
    [89]Main JA, Gazonas GA. Uniaxial crushing of sandwich plates under air blast:Influence of mass distribution. Int J Solids Struct 2008;45(7-8):2297-2321.
    [90]Nian WM, Subramaniam KVL, Andreopoulos Y. Dynamic compaction of foam under blast loading considering fluid-structure interaction effects. Int J Impact Eng 2012;50(0):29-39.
    [91]Li QM, Reid SR. About one-dimensional shock propagation in a cellular material. Int J Impact Eng 2006;32(11):1898-1906.
    [92]Nieh TG, Higashi K, Wadsworth J. Effect of cell morphology on the compressive properties of open-cell aluminum foams. Materials Science and Engineering A 2000;283(1-2):105-110.
    [93]Paul A, Ramamurty U. Strain rate sensitivity of a closed-cell aluminum foam. Materials Science and Engineering A 2000;281 (1-2):1-7.
    [94]Chan KC, Xie LS. Dependency of densification properties on cell topology of metal foams. Scripta Mater 2003;48(8):1147-1152.
    [95]Ramamurty U, Paul A. Variability in mechanical properties of a metal foam. AcMat 2004;52(4):869-876.
    [96]LI QM, MAGKIRIADIS I, HARRIGAN JJ. Compressive strain at the onset of densification of cellular solids. London, ROYAUME-UNI:Sage; 2006.
    [97]Hu LL, Yu TX. Dynamic crushing strength of hexagonal honeycombs. Int J Impact Eng 2010;37(5):467-474.
    [98]Deshpande VS, Fleck NA. Isotropic constitutive models for metallic foams. J Mech Phys Solids 2000;48(6-7):1253-1283.
    [99]Ma GW, Ye ZQ, Shao ZS. Modeling loading rate effect on crushing stress of metallic cellular materials. Int J Impact Eng 2009;36(6):775-782.
    [100]Karagiozova D, Langdon GS, Nurick GN. Propagation of compaction waves in metal foams exhibiting strain hardening. Int J Solids Struct 2012;49(19-20):2763-2777.
    [101]Zeng HB, Pattofatto S, Zhao H, Girard Y, Fascio V. Impact behaviour of hollow sphere agglomerates with density gradient. Int J Mech Sci 2010;52(5):680-688.
    [102]Ma GW, Ye ZQ. Energy absorption of double-layer foam cladding for blast alleviation. Int J Impact Eng 2007;34(2):329-347.
    [103]Karagiozova D, Langdon GS, Nurick GN. Blast attenuation in Cymat foam core sacrificial claddings. Int J Mech Sci 2010;52(5):758-776.
    [104]Langdon GS, Karagiozova D, Theobald MD, Nurick GN, Lu G, Merrett RP. Fracture of aluminium foam core sacrificial cladding subjected to air-blast loading. Int J Impact Eng 2010;37(6):638-651.
    [105]Hou B, Pattofatto S, Li YL, Zhao H. Impact behavior of honeycombs under combined shear-compression. Part Ⅱ:Analysis. Int J Solids Struct 2011;48(5):687-697.
    [106]Hu LL, Yu TX, Gao ZY, Huang XQ. The inhomogeneous deformation of polycarbonate circular honeycombs under in-plane compression. Int J Mech Sci 2008;50(7):1224-1236.
    [107]Bardenhagen SG, Brydon AD, Guilkey JE. Insight into the physics of foam densification via numerical simulation. J Mech Phys Solids 2005;53(3):597-617.
    [108]Evans AG, He MY, Deshpande VS, Hutchinson JW, Jacobsen AJ, Carter WB. Concepts for enhanced energy absorption using hollow micro-lattices. Int J Impact Eng 2010;37(9):947-959.
    [109]Cui X, Zhao L, Wang Z, Zhao H, Fang D. A lattice deformation based model of metallic lattice sandwich plates subjected to impulsive loading. Int J Solids Struct 2012;49(19-20):2854-2862.
    [110]Karagiozova D, Yu TX, Gao ZY. Stress--Strain Relationship for Metal Hollow Sphere Materials as a Function of Their Relative Density. Journal of Applied Mechanics 2007;74(5):898-907.
    [111]Liu Y, Wu H-X, Wang B. Gradient design of metal hollow sphere (MHS) foams with density gradients. Composites Part B:Engineering 2012;43(3):1346-1352.
    [112]Karagiozova D, Yu TX, Gao ZY. Modelling of MHS cellular solid in large strains. International Journal of Mechanical Sciences 2006;48(11):1273-1286.
    [113]Gong L, Kyriakides S, Jang WY. Compressive response of open-cell foams. Part I:Morphology and elastic properties. Int J Solids Struct 2005;42(5-6):1355-1379.
    [114]Jang W-Y, Kyriakides S. On the crushing of aluminum open-cell foams:Part II analysis. Int J Solids Struct 2009;46(3-4):635-650.
    [115]Jang W-Y, Kyriakides S. Kraynik AM. On the compressive strength of open-cell metal foams with Kelvin and random cell structures. Int J Solids Struct 2010;47(21):2872-2883.
    [116]Gan YX, Chen C, Shen YP. Three-dimensional modeling of the mechanical property of linearly elastic open cell foams. Int J Solids Struct 2005;42(26):6628-6642.
    [117]Wang XK, Zheng ZJ, Yu JL. Wang CF. Dynamic crushing models for density-graded cellular structures under high-velocity compression. Int J Mech Sci 2012; under review (Submitted on October 25,2012).
    [118]Brydon AD, Bardenhagen SG, Miller EA, Seidler GT. Simulation of the densification of real open-celled foam microstructures. J Mech Phys Solids 2005;53(12):2638-2660.
    [119]Harrigan JJ, Hung YC, Tan PJ, Bourne NK, Withers PJ, Reid SR, Millett JCF, Milne AM. High-Rate Compaction of Aluminium Alloy Foams. AIP Conference Proceedings 2006;845(1):1519-1522.
    [120]Michailidis N, Stergioudi F, Omar H, Tsipas DN. An image-based reconstruction of the 3D geometry of an Al open-cell foam and FEM modeling of the material response. Mech Mater 2010;42(2):142-147.
    [121]Gaitanaros S, Kyriakides S, Kraynik AM. On the crushing response of random open-cell foams. Int J Solids Struct 2012;49(19-20):2733-2743.
    [122]Youssef S, Maire E, Gaertner R. Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. AcMat 2005;53(3):719-730.
    [123]Bernal Ostos J, Rinaldi RG, m Hammetter C, Stucky GD, Zok FW, Jacobsen AJ. Deformation stabilization of lattice structures via foam addition. AcMat 2012;60(19):6476-6485.
    [124]Wang CF, Zheng ZJ. Yu JL. Micro-inertia effect and dynamic Poisson's ratio of closed-cell metallic foams under compression. Lancaster:Destech Publications, Inc; 2011.
    [125]Shim VPW, Tay BY, Stronge WJ. Dynamic crushing of strain-softening cellular structures—a one-dimensional analysis. J Eng Mater Technol 1990;112(4):398-405.
    [126]Li QM, Meng H. Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material. Int J Impact Eng 2002;27(10):1049-1065.
    [127]Gao ZY, Yu TX, Lu G. A study on type II structures. Part I:a modified one-dimensional mass-spring model. Int J Impact Eng 2005;31(7):895-910.
    [128]Gao ZY, Yu TX, Lu G. A study on type II structures. Part II:dynamic behavior of a chain of pre-bent plates. Int J Impact Eng 2005;31(7):911-926.
    [129]Evans AG. Hutchinson JW, Ashbyb MF. Multifunctionality of cellular metal systems. Prog Mater Sci 1999;43(3):171-221.
    [130]Qiu X, Deshpande V, Fleck N. Dynamic response of a clamped circular sandwich plate subject to shock loading. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF APPLIED MECHANICS 2004;71 (5):637-645.
    [131]Hutchinson JW, Xue Z. Metal sandwich plates optimized for pressure impulses. Int J Mech Sci 2005;47(4-5):545-569.
    [132]Deshpande VS, Fleck NA. One-dimensional response of sandwich plates to underwater shock loading. J Mech Phys Solids 2005;53(11):2347-2383.
    [133]Radford DD, McShane GJ, Deshpande VS, Fleck NA. The response of clamped sandwich plates with metallic foam cores to simulated blast loading. Int J Solids Struct 2006;43(7-8):2243-2259.
    [134]Fleck N, Deshpande V. The resistance of clamped sandwich beams to shock loading. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF APPLIED MECHANICS.2004;71:386-401.
    [135]Qiu X, Deshpande VS, Fleck NA. Impulsive loading of clamped monolithic and sandwich beams over a central patch. J Mech Phys Solids 2005;53(5):1015-1046.
    [136]Ma GW, Ye ZQ. Analysis of foam claddings for blast alleviation. Int J Impact Eng 2007;34(1):60-70.
    [137]Karagiozova D. Velocity Attenuation and Force Transfer by a Single- and Double-layer Claddings Made of Foam Materials. International Journal of Protective Structures 2011;2(4):417-438.
    [138]Lu GX, Yu TX. Energy absorption of structures and materials. Cambridge, UK:Woodhead Publishing Ltd; 2003.
    [139]Tekoglu C, Gibson LJ, Pardoen T, Onck PR. Size effects in foams:Experiments and modeling. Prog Mater Sci 2011;56(2):109-138.
    [140]Li J, Shimizu F. Least-square atomic strain. June 12,2005. http://mt.seas.upenn.edu/Archive/Graphics/A/annotate atomic_strain/Doc/main.pdf.
    [141]Gullett PM, Horstemeyer MF, Baskes MI, Fang H. A deformation gradient tensor and strain tensors for atomistic simulations. Modelling Simul Mater Sci Eng 2008;16(1):015001.
    [142]Zimmerman JA, Bammann DJ, Gao H. Deformation gradients for continuum mechanical analysis of atomistic simulations. Int J Solids Struct 2009;46(2):238-253.
    [143]Reddy JN. An introduction to continuum mechanics:with applications. New York:Cambridge University Press; 2008.
    [144]Liao SF, Zheng ZJ, Yu JL. Dynamic crushing of 2D cellular structures:Local strain field and shock wave velocity. Int J Impact Eng 2013;57(0):7-16.
    [145]Li-li W. Foundations of Stress Waves. Amsterdam:Elsevier 2007.
    [146]Hanssen AG, Hopperstad OS, Langseth M, Ilstad H. Validation of constitutive models applicable to aluminium foams. Int J Mech Sci 2002;44(2):359-406.
    [147]Nurick GN, Langdon GS, Chi Y, Jacob N. Behaviour of sandwich panels subjected to intense air blast-Part 1:Experiments. Compos Struct 2009;91(4):433-441.
    [148]Theobald MD, Langdon GS, Nurick GN, Pillay S, Heyns A, Merrett RP. Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading. Compos Struct 2010;92(10):2465-2475.
    [149]Lim YW, Choi H-J, Idapalapati S. Design of Alporas aluminum alloy foam cored hybrid sandwich plates using Kriging optimization. Compos Struct 2013;96(0):17-28.
    [150]Cooper GJ, Townend DJ, Cater SR, Pearce BP. The role of stress waves in thoracic visceral injury from blast loading:Modification of stress transmission by foams and high-density materials. J Biomech 1991;24(5):273-285.
    [151]Skews BW, Atkins MD, Seitz MW. The role of stress waves in thoracic visceral injury from blast loading:Modification of stress transmission by foams and high-density materials. J Fluid Mech 1993;253:245-265.
    [152]Ben-Dor G, Mazor G, Igra O, Sorek S, Onodera H. Shock wave interaction with cellular materials. Part II:open cell foams; experimental and numerical results. Shock Waves 1994;3(3):167-179.
    [153]Liao SF, Zheng ZJ, Yu JL. On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials. Int J Solids Struct 2012; under review (Submitted on December 3,2012).
    [154]Kambouchev N, Noels L, Radovitzky R. Nonlinear compressibility effects in fluid-structure interaction and their implications on the air-blast loading of structures. J Appl Phys 2O06;100(6):063519.
    [155]Vaziri A, Hutchinson JW. Metal sandwich plates subject to intense air shocks. Int J Solids Struct 2007;44(6):2021-2035.
    [156]Wang EH, Wright J, Shukla A. Analytical and experimental study on the fluid structure interaction during air blast loading. J Appl Phys 2011;110(11):114901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700