用户名: 密码: 验证码:
微器件细小喷淋冲击冷却流场及形成的薄液膜特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要采用数值计算和分析的方法,结合实验观测,研究了液滴冲击固体表面液膜的流动现象,以及液膜形状的演化过程;研究了受细小喷淋冷却液滴冲击时,热物体表面液膜的稳定性。初步明确了影响液滴与液膜撞击合并过程的诸因素,阐明了各种因素对受细小喷淋冷却液滴冲击的固体表面液膜稳定性的影响,为喷淋液滴冲击冷却的工程应用提供了一些理论依据。
     论文包括以下主要结果:
     (1)采用高速摄影仪,在不同液膜厚度条件下,实验观测了不同冲击速度的水滴和乙醇液滴冲击固体表面液膜后的流动现象,探讨了液滴冲击速度、液体粘性、表面张力、液膜厚度和液滴直径等对液滴撞击液膜后的流动现象的影响。实验结果表明:液体的粘性主要影响液滴撞击液膜后产生的水花的厚度及其稳定性;液体的表面张力主要影响撞击后产生的水花的高度,抑制飞溅的发生;液膜厚度增加时,液滴冲击产生的水花高度略有降低,水花的壁厚增加;飞溅出来的液滴个数与冲击液滴的直径有关。
     (2)采用VOF方法数值模拟了单个液滴撞击固体表面液膜后的流动过程,探讨了液滴撞击液膜形成水花的流动机理。液滴中液体持续冲击进入液膜,液膜内持续产生径向高速流动的流体,冲击周围液膜中原先静止的液体。在高速流动的流体和静止流体撞击位置,流动速度出现间断,该速度间断的位置不断向液滴冲击区域外扩展。速度间断两侧的流体的撞击作用形成冠状水花,水花形成后,由于继续有流体流入,其高度逐步增加。
     (3)数值分析了单个液滴冲击固体表面液膜时,液滴冲击的Weber数、Reynolds数以及液膜厚度等因素对液滴撞击固体表面液膜后出现的流动现象以及液膜形状演化的影响,与实验结果进行的比较定性地验证了计算结果的正确性。液滴冲击对液膜状态的影响表现为:液滴冲击的Weber数和Reynolds数较大时,液滴撞击液膜后,液膜状态不稳定;反之,液滴撞击液膜后,液膜状态稳定。减小液滴直径和冲击速度,采用张力和粘性较大的液体,都有利于抑制水花和飞溅,也有利于液膜的稳定。
     (4)数值分析了两个和三个液滴与固体表面液膜的撞击合并过程,得到的主要结论如下:液滴接连不断地冲击液膜时,上下液滴间距离较小时,在液膜上不易产生水花等流动现象,形成的液膜稳定;液滴间距离较大时,在液膜上易产生水花等流动现象,形成的液膜不稳定。液滴并排地同时冲击液膜时,液滴间距离不同,液膜形态的演化基本相同,变动幅度受液滴间距离的影响。多个液滴同时撞击液膜时,液膜形状随时间的演化,将随着液滴数的增加趋于复杂。
     (5)理论和数值分析了细小喷淋冷却液滴冲击对热物体表面薄液膜的质量和动量传输、液膜自身蒸发和表面张力等因素对液膜稳定性的影响。细小喷淋冲击冷却时选择气化潜热较大、热传导系数小的液体作为冷却液,可使热物体表面形成的薄液膜较为稳定。选择表面张力较大的液体作为冷却液,有利于在热物体表面形成稳定的薄液膜。恰当的喷淋流量分布,能使热物体表面形成的薄液膜保持稳定,冷却性能最佳。流量过小,液膜在各种因素作用下,会产生破裂。流量过大,虽能形成稳定的液膜,但形成的液膜厚度较大,冷却性能并非最佳。喷淋液滴冲击液膜产生的动压力是导致液膜不稳定的因素之一,因此应控制喷淋液滴冲击液膜前的动量。
Through numerical simulation and experimental observation, the influence of the droplet impingement on the evolution of the film at the solid surface is analysed. The stability of the film on the hot solid surface impacted by the small cooling droplets is also studied. The influencing factors in the course of coalition of impinging droplet and film are specified, and the effect of each factor on the stability of the liquid film impinged by the small droplets is also elucidated, which may provide the theoretical foundation for the application of small droplets impingement cooling in engineering.
     The main results of this dissertation are described as follows:
     (1)With the high-speed camera, the flow resulted from the impact of a water droplet and an ethanol droplet on the film of the same liquid with different thicknesses, is investigated. Based on the experimental results, the influence of the impact speed, the diameter of the droplet, the viscosity and surface tension of the liquid, and the thickness of the film on the evolution of the film are discussed. The fowllowing conclusions are reached. The viscosity of the fluid affects the thickness and stability of the crown formed after the impact of the droplet on the film. The surface tension appears to affect the height of the crown and retard the splash. With increasing thickness of the film, the crown height will be reduced and the thickness of the crown will be increased. The number of the splashing droplets is related with the diameter of the impacting droplet.
     (2)Through analyzing numerically the flow in the liquid film with the VOF method, the hydrodunamic mechanism resulting in the crown caused by a droplet impingement on the liquid fim is elucidated. Induced by the droplet impingement, continuous high-speed radial flow in the liquid film is formed in the original ambient static fluid. At the striking position of the high-speed fluid to the static fluid, a velocity discontinuity appears, which propogates outwards in the film. The crown appears as a result of the collision of the hige-speed and static fluid on both side of the discontinuity. The height of the crown becomes greater with liquid flowing upward into the crown.
     (3)The influence of the thickness of the liquid film, the Weber number and the Reynolds number of an impinging droplet on the evolution of the film is numerically analysed. The numerical results herein are in qualitative agreement with the experimental results. The main results of droplet impact on the film are as follows. When the droplet impacts on the film, if the Weber number and the Reynolds number are large, the liquid will be unstable, whereas, if the Weber number and the Reynolds number are small, the liquid will be stable. However, reducing the diameter and the velocity of the droplet and increasing the surface tension and viscosity of the liquid of the droplet, will be favorable to restrain the formation of the crown and splash and to keep the film stable.
     (4) The collisions of two and three droplets with the liquid film are numerically analysed. The following conclusions are drawn. When the droplets impact the liquid film one by one continuously, if the vertical spacing between two droplets is small, the crown will not appear easily and the liquid film will be stable. If the vertical spacing between two droplets is large, the crown will appear easily and the liquid film will be unstable. When the droplets parallelly impact the liquid at the same time, the evolution of the liquid film is farely alike with different spacings between two droplets, but the rising amplitude is different. However, the flow pattern will be more complicated if more droplets impact on the liquid film.
     (5)The influences of the small refrigerant droplet impingement, evaporation, surface tension etc on the stability of the liquid film are numerically analysed. For small droplet impingement cooling, the liquid film on the solid surface will be stable if the refrigerant with larger latent heat and thermal conductivity is used. Choosing the refrigerant with larger surface tension will also be favorable for the stability of the liquid film. It is possible to keep stable liquid film on the solid surface with appropriate mass flow of the refrigerant. If the mass flow of the refrigerant is small, the liquid film will rupture, whereas, if the mass flow of the refrigerant is large, the liquid film will become too thick to have good capability of cooling. The dynamic pressure of small droplet impingement is one of the factors causing the liquid film to be unstable. Therefore, the momentun of the droplet should be controlled before it impacts on the liquid film.
引文
[1] Anderson, D. M., and S. H. Davis, The spreading of volatile liquid droplets on heated surfaces[J], Phys. Fluids, 1995, 7 (2): 248-265
    
    [2] Alekseenko S. V., Nakoryakov V. E., Pokusaev B. G., Wave formation on vertical falling liquid films [J]. Intl. J. Multiphase Flow, 1985, 11 (5): 607-627
    [3] Amon Cristina H., Murthy Jayathi, Yao S.C., Narumanchi Sreekant, Wu Chi-Fu, Hsieh Cheng-Chieh, MEMS-enabled thermal management of high-heat-flux devices EDIFICE: Embedded droplet impingement for integrated cooling of electronics[J], Experimental Thermal and Fluid Science, 2001, 25: 231-242
    [4] Anderson T. M. and Mudawar I., Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid, ASME J. Heat Transfer, 1989, 111: 752-759
    [5] Ashgriz N. and Poo J.Y., Flair: Flux line-segment model for advection and interface reconstruction, J. Comp. Phys., 1991, 93: 449-468
    [6] Bankoff S. G., Stability of liquid flow down a heated inclined plane[J], Intl. J. Heat Mass Transfer, 1971a, 14: 377-385
    [7] Bankoff S. G., Minimum thickness of a draining down liquid film[J], Intl. J. Heat Mass Transfer, 1971b, 14 (21): 2143-2146
    [8] Bankoff, S. G., Significant questions in thin liquid film heat transfer[J], Trans. ASME, J. Heat Transfer, 1994,116: 10-16
    [9] Benjamin T. B., Wave formation in laminar flow down aninclined plane [J], J. of Fluid Mechanics, 1957, 2: 554-574
    [10] Bergles A. E. and Chyu, M. C., Characteristics of nucleate boiling from porous metallic coatings[J], ASME J. Heat Transfer, 1982, 104: 279-285
    
    [11] Bernardin J.D., Stebbins C J., Mudawar I., Mapping of impact and heat transfer regimes of water drops impinging on a polished surface, Intl. J. Heat Mass Transfer, 1997, 40 (2): 247 -267
    [12] Bhavnani S. H., Tsai C. P., Jaeger R. C., and Eison D. L., An integral heat sink for cooling microelectronic components, ASME J. Electron. Package, 1993, 115: 284-291
    [13] Bintoro,Jemmy S.,Akbarzadeh, Aliakbar, Mochizuki, Masataka, A closed-loop electronics cooling by implementing single phase impinging jet and mini channels heat exchanger[J], Applied Thermal Engineering, 2005, 25: 2740-2753
    [14] Bohn M. S., Davis S. H., Thermocapillary breakdown of falling liquid films at high Reynolds numbers [J], Intl. J. Heat Mass Transfer, 1993, 36 (7): 1875-1881
    [15] Bowers M. B. and Mudawar I., Two-phase electronic cooling using mini-channel and micro-channel heat sinks-Part I. Design criteria and heat diffusion constraints, ASME J. Electron. Packag., 1994, 116: 290-297
    [16] Boyd R. D., Subcooled flow boiling critical heat flux (CHF) and its application to fusion energy components-Part I. A review of fundamentals of CHF and related data base[J], Fusion Tech., 1985, 7: 7-31
    [17] Brackbill J. U., Kothe D. B., and Zemach C., A continuum method for modeling surface tension, J. Comput. Phys. 100: 335 -354, 1992
    [18] Brauner N., Maron D. M., ZIJ L. W., Interfacial collocation equations of thin liquid film: stability analysis [J], Chem Eng Sci, 1987, 42 (8): 2025-2035
    [19] Budiman A. G, Florijianto C., Palen J. W. Breakdown of Evaporating Falling Films as a Function of Surface Tension Gradient [J], Heat Transfer Eng, 1996, 17 (4): 72-81
    [20] Burelbach, J. P., Bankoff S. G., and Davis S. H., Nonlinear stability of evaporating /condensing liquid films [J], J. Fluid Mechanics, 1988, 95: 463-494
    [21] Burelbach J. P., Bankoff S. G., Davis S. H., Steady thermocapillary flows of thin liquid layers. II experiment [J], Phys. Fluids A, 1990, 2 (3): 322-333
    [22] Bussmann, M., Mostahimi, J. and Chandra, S., On a three-dimensional volume tracking model of droplet impact[J], Phys. Fluids, 1999, 11 (6): 1406-1417
    [23] Bussmann, M., Chandra, S. and Mostahimi, J., Modeling the splash of a impacting a solid surface[J], Phys. Fluids, 2000, 12 (12): 3121-3132
    [24] Cai Y.K., Phenomena of a liquid drop falling to a liquid surface, Experiment in Fluids, 1989, 7:388 - 394
    [25] Campbell, Levi A.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan; Simons, Robert; Chu, Richard. Experimental investigation of the heat transfer performance of arrays of round jets with sharp-edged orifices and peripheral effluent; Convective behavior of water on a heated silicon surface, Proceedings of the ASME Summer Heat Transfer Conference, 2005, 629-636
    [26] Celata G. P., Cumo M., and Mariani A., Burnout in highly subcooled water flow boiling in small diameter tubes, Intl. J. Heat Mass Transfer, 1993, 36 (5): 1269-1285
    [27] Chang H. C., Demekhin E A., Kopelevich D. I., Nonlinear evolution ofwaves on a vertically falling film[J], J. Fluid Mechanics, 1993, 250: 433-480
    [28] Cheng P. J., Lai H. Y., Chen C. K., Stability analysis of thin viscoelastic liquid film flowing down on a vertical wall[J], J. Physics D, 2000, 33: 1674-1682
    [29] Copeland D., Single-phase and boiling cooling of small heat source by multiple nozzle jet impingement, Int J Microelectron Packag Mater Technol, 1998, 1 (2): 105-113
    [30] Cossali G. E., Coghe A., Marengo M., The impact of a single drop on a wetted solid surface, Experiment in Fluids, 1997, 22: 463 - 472
    [31] Cossali G. E., Marengo M., Coghe A., Zhdanov S., The role of time in single drop splash on thin film[J], Experiments in Fluids, 2004, 36: 888-900
    [32] Dalton J.E Harvie and David F. Fletcher, A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part I: Theoretical model[J], Intl. J. Heat Mass Transfer, 2001, 44 (14):2633-2642
    [33] Davalos-Orozco L. A., You X., Three-dimensional instability of a liquid layer flowing down a heated vertical cylinder[J], Phys. Fluids, 2000, 12 (9): 2198-2209
    [34] Davis, S.H., Thermocapillary instabilities[J], Annual Review of Fluid Mechanics, 1987, 19:403-435
    [35] Donald W.S., and Christopher J. R., Multi-dimensional modeling of thin liquid films and spray-wall interaction resulting from impinging sprays[J], Intl. J. Heat Mass Transfer, 1998, 41:3037-3054
    [36] Duffey R. B., Hughes E. D., Dryout stability and inception at low flow rates [J], Intl. J. Heat Mass Transfer, 1991, 34 (2): 473-481
    [37] Duncan A.B. and Peterson,G.P., Review of microscale heat transfer, Appl. Mech. Review, 1994,47(9): 397-427
    [38] Estes K. A. and Mudawar I., Comparison of Two-Phase Electronic Cooling using Free Jets and Sprays, ASME J. Electron. Package, 1995, 117: 323-332
    [39] Fujimoto H., Ogino T., Takuda H. and Hatta N., Collision of a droplet with a hemispherical static droplet on a solid, Intl. J. of Multiphase Flow, 2001, 27:1227-1245
    [40] Fujimoto H., Ito S., Takezaki I., Experimental study of successive collision of two water droplets with a solid, Experiments in Fluids, 2002, 33: 500-502
    [41] Fujita T., Ueda T., Heat transfer to falling liquid film and filmbreakdown-Part I: subcooling films [J]. Int J Heat Mass Transfer, 1978, 21(2): 97-108
    [42] Fukai J., Shiiba Y., Yamamoto T., Miyatake O., Poulikakos D., Megaridis C.M., Zhao Z. Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling, Phys Fluids, 1995, 7 (2): 236 - 247
    [43] Gersey C. O. and Mudawar I., Orientation effects on critical heat flux from discrete, in-line heat sources in a flow channel, ASME J. Heat Transfer, 1993, 115: 973-985
    [44] Ghodbane, M. and Holman, J.P., Experimental study of spray cooling with Freon-113, Intl. J. Heat Mass Transfer, 1991, 34 (4-5): 1163-1174
    [45] Guo Z.Y., and Li Z. X., Size effect on microscale single-phase flow and heat transfer, Intl. J. Heat Mass Transfer, 2003,46 (1): 149-159
    [46] Hallett V. A., Surface phenomena causing breakdown of falling liquid films during heat transfer [J]. Int J Heat Mass Transfer, 1966, 9 (4): 283-286
    [47] Hardalupas Y., Taylor A.M.K.P, Wilkins J.H, Experimental investigation of sub-millimeter droplet impingement onto spherical surfaces. Internal J. Heat Fluid Flow, 1999, 20:477 - 485
    [48] Harlow F.H., Shannon J.P., The splash of a liquid drop, J. of Applied Physics, 1967, 38: 3855-3866
    [49] Hartley D. E., Murgatroy D. W., Criteria for the breakup of thin liquid layers flowing isothermally over solid surfaces [J]. Int J Heat Mass Transfer, 1964,7 (7): 1003-1015
    [50] Hatta N., Fujimoto H., Takuda H., Deformation process of a water droplet impinging on a solid surface. J. Heat Transfer, 1995, 117:394 - 401
    [51] Hewitt G. F., Lacey P. M. C., The breakdown of the liquid film in annular two-phase flow [J]. Int J Heat Mass Transfer, 1965, 8 (5): 781-786
    [52] Hirt, C.W., Nichols, B.D., Volume of liuid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 1981, 39 (1): 201-225
    [53] Ho C-M and Tai Y-C, Micro-electro-mechanical systems(MEMS) and fluid flows, Annu Review of Fluid Mechanics, 1998, 30:579-612
    [54] Hobbs P.V., Osheroff T., Splashing of drops on shallow liquids. Science, 1967, 158: 1184 - 1186
    [55] Howard A. H. and Mudawar I., Orientation effects on pool boiling CHF and modeling of CHF for near-vertical surfaces, Intl. J. Heat Mass Transfer, 1999,42 (9): 1665-1688
    [56] Hughes D. T., Bott T. R., Minimum thickness of a liquid filmflowing down a vertical tube [J]. Intl. J. Heat Mass Transfer, 1998,41 (2): 253-260
    [57] Incropera F.P., Wolf D.H., Viskanto R., Local jet impingement boiling heat transfer[J], Intl. J. Heat Mass Transfer, 1996, 39 (7): 1395-1406
    [58] Joo S. W., Davis S. H., Bankoff S. G., Long-wave instabilities of heated films: two-dimensional theory of uniform layers [J], J. Fluid Mechanics, 1991, 230: 117-146
    [59] Kalliadasis S, Demekhin E.A., Ruyer-Quil C., Velarde M.G., Thermocapillary instability and wave formation on a film falling down a uniformly heated plane, J. Fluid Mechanics, 2003, 492:303-338
    [60] Kang B.S., Lee D.H., On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface, Experiment in Fluids, 2000, 29:380 - 387
    [61] Kapitza P. L., Wave Flow of Thin Layers of a Viscous Fluid layers [J], Zh Eksp Teor Fiz, 1948, 18(1): 3-28.
    [62] Karl A., Frohn A., Experimental investigation of interaction processes between droplets and hot walls, Phys. Fluids, 2000,12 (4):785 - 796
    [63] Kim H.-Y. and Chun J.-H., The recoiling of liquid droplets upon collision with solid surfaces, Phys. Fluids, 2001, 13 (3): 643-659
    [64] Kim H.Y., Feng Z.C., Chun J.H., Instability of a liquid jet emerging from a droplet upon collision with a solid surface, Phys of Fluids, 2000, 12 (3): 531 - 541
    [65] Ko Y.S., Chung S.H., An experiment on the breakup of impinging droplets on a hot surface, Experiment in Fluids, 1996, 21:118-123
    [66] Kothe D.B. and Majolsness R.C., RIPPLE: A new model for incompressible flows with free surface, AIAA J., 1992, 30: 2694-2700
    [67] Krantz W. B., Goren S. L., Stability of thin liquid filmsflowing down a plane [J], Ind Eng Chem Fundam, 1971, 10: 91-101
    [68] Josserand C., Zaleski S., Droplet splashing on a thin liquid film, Phys Fluids, 2003, 15 (6): 1650- 1657
    [69] Liang P.Y., Numerical method for calculation of surface tension flows in arbitrary grids, AIAA J., 1991,29(2): 161-167
    
    [70] Lee J., Kapitza' s method of film flow description [J], Chem Eng Sci, 1969, 24: 1309-1320.
    [71] Lee J., Kim J. and Kiger K. T, Time- and space-resolved heat transfer characteristics of single droplet cooling using microscale heater arrays, Intl. J. Heat and Fluid Flow, 2001, 22: 188-200
    [72] Liu G.W., Morsi Y.S. and van der Walt, J.P., Analysis of spray cooling heat flux, J. of Heat Transfer, 1999, 121:742-745
    [73] Liu X., Lienhard J.H. and Lombara J.S., Convective heat transfer by impingement of circular liquid jets, ASME J. of Heat Transfer, 1991, 113: 571-581
    [74] Lopez P. G., Bankoff S. G., Miksis M. J., Nonisothermal spreading of a thin liquid film on an inclined plane [J]. J Fluid Mech, 1996, 324: 261-286
    [75] Maddox D. E. and Mudawar I., Single and two-phase convective heat transfer from smooth and enhanced microelectronic heat sources in a rectangular channel, J. Heat Transfer, 1989, 111: 1045-1052
    [76] Maddox D.E., Bar-Cohen A., Thermofluid design of single-phase submerged-jet impingement cooling for electronic components[J], J. of Electronic Packaging, 1994, 116: 237-240
    [77] Manzello S.L., Yang J.C., An experimental study of a water droplet impinging on a liquid surface. Exp Fluids, 2002, 32: 580 - 589
    [78] Marschall E., Lee C. Y., Stability of condensate flow down a vertical wall [J]. Int J Heat Mass Transfer, 1973, 16: 41-48
    [79] Matar O.K., CrasterR.V., Warner M.R.E., Surfactant transport on highly viscous surface films, J. Fluid Mechanics, 2002a, 466: 85-111
    [80] Matar O.K., Nonlinear evolution of thin free viscous films in the presence of soluble surfactant, Phys. Fluids, 2002b, 14: 4216-4234
    [81] Marto P. J. and Lepere V. J., Pool boiling heat transfer from enhanced surfaces to dielectric fluids," ASME J. Heat Transfer, 1982, 104: 292-299
    [82] Miladinova S., Slavtchev S., Lebon G., Legros J.C., Long-wave instabilities of non-uniformly heated falling films, J. Fluid Mechanics, 2002, 453: 153-175
    [83] Mishima K. and Nishihara H., The effect of flow direction and magnitude on CHF for low pressure water in thin rectangular channels, Nucl. Eng. Design, 1985,86: 165-181
    [84] Mohamed Gad-el-Hak, The fluid mechanics of microdevices - the freeman scholar lecture, ASME J. of Fluid Engineering, 1999, 121: 5-33
    [85] Morton D., Rudman M., Jong-Leng L., An investigation of the flow regimes resulting from splashing drops, 2000. Phys Fluids 12 (4): 747 - 763.
    [86] Mudawar I. and Maddox D. E., Critical heat flux in subcooled flow boiling of fluorocarbon liquid on a simulated electronic chip in a vertical rectangular channel, Intl. J. Heat Mass Transfer, 1989, 32 (2): 379-394
    [87] Mudawar I. and Anderson T. M., Parametric investigation into the effects of pressure, subcooling, surface augmentation and choice of coolant on pool boiling in the design of cooling systems for high-power density chips, ASME J. Electron. Package, 1990, 112: 375-382
    [88] Mudawar I. and Estes K. A., Optimizing and predicting CHF in spray cooling of a square surface, ASME J. Heat Transfer, 1996., Vol. 118: 672-679
    [89] Mudawar I. and Bowers M. B., Ultra-high critical heat flux (CHF) for subcooled water flow boiling -I. CHF data and parametric effects for small diameter tubes, Intl. J. Heat Mass Transfer, 1999,42(8): 1405-1428
    [90] Mudawar, I., Assessment of High-Heat-Flux Thermal Management Schemes[J], IEEE Transactions on components and packaging technologies, 2001, 2: 122-141
    [91] Mundo C. H. R., Sommerfeld M., Tropea C., Droplet-wall collisions: experimental studies of the deformation and breakup process, Internal J. Multiphase Flow, 1995, 21:151 - 173
    [92] Murgatroy D. W., The role of shear and form forces in the stability of a dry patch in two-phase film flow[J]. Intl. J. Heat Mass Transfer, 1965, 8 (2): 297-301.
    [93] Nguyen L. T., Balakotaiah V., Modeling and experimental studies of wave evolution on free falling viscous films [J], Phys. Fluids, 2000, 12 (7): 2236-2256
    [94] Nichols B. D., Hirt C. W., and Hotchkiss R. S., A solution algorithm for transient fluid flow with multiple free boundaries," Los Alamos Scientific Laboratory, LA-8355, UC-32, and UC-34-1980
    [95] Nikolopoulos N., Theodorakakos A., G. Bergeles G., Normal impingement of a droplet onto a wall film: a numerical investigation[J], Intl. J. Heat and Fluid Flow, 2005, 26: 119-132
    [96] Nonn T., Dagan Z., Jiji LM., Jet impingement flow boiling of a mixture of FC-72 and FC-87 liquids on a simulated electronic chip, ASME HTD-Heat Transfer in Electronics 1989,111: 121-128
    [97] Oguz Hasan N., and Prosperetti Andrea, Bubble entrainment by the impact of drop on liquid surfaces[J], J. Fluid Mechanics, 1990, 219:143-179
    [98] Oron, A., Davis S. H., and Bankoff S. G., Long-scale evolution of thin liquid films [J], Reviews of Modern Physics, 1997, 69 (3): 931-980
    [99] Oron, A., and P. Rosenau, On a nonlinear thermocapillary effect in thin liquid layers[J], J. Fluid Mechanics 1994, 273: 361-374
    [100] Park K, Watkins A. P., Comparison of wall spray impaction models with experimental data on drop velocities and sizes. Intl. J. Heat Fluid Flow, 1996, 17:424 - 438
    [101] Palmer H.J., The hydrodynamic stability of rapidly evaporating liquids at reduced pressure, J. Fluid Mechanics, 1976, 75: 487-511
    [102] Pasandideh-Fard M., Qiao Y.M., Chandra S., Mostaghimi J. Capillary effects during droplet impact on a solid surface, Phys. Fluids, 1996, 8 (3):650 - 659
    [103] Peck B., Sigurdson L., The three dimensional vortex structure of an impacting water drop, Phys. Fluids, 1994, 6 (2): 564 - 576
    [104] Penn D. G., De-Bertodano M. A. L. et al., Dry patch stability of shear driven liquid film [C]. Proc.NHTC' 00, 617-625, USA, 2000.
    [105] Range K., Feuillebois F., Influence of surface roughness on liquid drop impact. J. Colloid Interface Science, 1998, 203:16-30
    [106] Rein M., The translational regime between coalescing and splashing drops, J. Fluid Mechanics, 1996, 306: 145 - 165
    [107] Rieber M., Frohn A., A numerical study on the mechanism of splashing[J], Intl. J. Heat and Fluid Flow, 1999,20:455-461
    [108] Rioboo R., Bauthier C., Conti J., Voue M, De Connick J., Experimental investigation of splash and crown formation during single drop impact upon wetted surfaces, Experiments in Fluids, 2003, 32: 1 - 8
    [109] Rioboo R., Marengo M., Tropea C., Time evolution of liquid drop impact onto solid dry surfaces, Experiment in Fluids, 2002, 33: 112 - 124
    [110] Roisman I.V., Tropea C., Impact of a drop onto a wetted wall: description of crown formation and propagation, J. Fluid Mechanics, 2002,472: 373 - 397
    [111] Rozhkov A., Prunet-Foch B., Vignes-Adler M., Impact of water drops on small targets, Phys. Fluids, 2002, 14 (10):3485 - 3501
    [112] Rubinstein B.Y. , Bankoff S.G., Davis S.H., Instability of subcooled boiling film on a vertical wall[J], Intl. J. Heat Mass Transfer, 2002, 45: 4937 - 4948
    [113] Saber H. H., El-Genk M. S., Determination of the minimum thickness of an isothermal liquid film on a vertical surface [C]. Proc.NHTC' 00, 481-488, USA, 2000.
    [114] Sikalo S., Marengo M., Tropea C. and Ganic E.N., Analysis of impact of droplets on horizontal surface, Experimental Thermal and Fluid Science, 2002, 25: 503-510
    [115] Sivakumar D., Tropea C., Splashing impact of a spray onto a liquid film, Phys. Fluids, 2002 14(12): L85-L88
    [116] Skotheim J.M., Thiele U., Scheid B., On the instability of a falling film due to localized heating, J. Fluid Mechanics, 2003, 475: 1-19
    [117] Spindler B., Linear stability of liquid films with interfacial phase change [J], Int J Heat Mass Transfer, 1982,25(2): 161-173
    [118] Stow C. D., Hadfield M. G. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface, 1981, Proc R Soc Lond A 373:419 - 441
    [119] Strobel W.J., Whitaker S., The effect of surfactants on the flow characteristics of falling liquid films [J]. J AIChE, 1969, 15: 527-535
    [120] Takeshi O., Surface equation of falling film flows with moderate Reynolds number and large but finiteWeber number [J], Phys Fluids, 1999, 11 (11): 3247-3269
    [121]Terry M.D., Cloutman L.D., Mjosness R.C., Hirt C.W., NASA-VOF2D: a computer program for incompressible flow with free surface, Tech. Report, LA-101612-MS, Los Alamos National Lab., 1985
    [122]Terry M.D., Mjosness R.C., Stein L.R., NASA-VOF3D: a three-dimensional computer program for incompressible flow with free surface, Tech. Report, LA-11009-MS, Los Alamos National Lab., 1987
    [123] Thoroddsen S.T., Sakakibara J., Evolution of the fingering pattern of an impacting drop, Phys Fluids, 1998, 10 (6): 1359 - 1374
    [124] Thoroddsen S.T., Takehara K., The coalescence cascade of a drop, Phys. Fluids, 2000, 12 (6):1265 - 1267
    [125] Timm W., Weinzierl K., Leipertz A., Heat transfer in subcooled jet impingement boiling at high wall temperatures, Intl J. Heat Mass Transfer 2003, 46 (8): 1385 - 1393
    [126] Trujillo M.F., Lee C.F., Modeling crown formation due to the splashing of a droplet, Phys. Fluids, 2001, 13 (9):2503 - 2516
    [127] Tuckerman,B. and Pease R. F. W., High-performance heat sinking for VLSI[J], IEEE Electron Device Letter, 1981, 2: 126-129
    [128] Vandervort C. L., Bergles A. E., and Jensen M. K., An experimental study of critical heat flux in very high heat flux subcooled boiling, Intl. J. Heat Mass Transfer, 1994, 37 (Suppl): 161-173
    [129] Wal Randy L. Vander, Berger Gordon M. and Mozes Steven D., Droplets splashing upon films of the same fluid of various depths, Experiments in Fluids, 2006a, 40: 33 - 52
    [130] Wal Randy L. Vander, Berger Gordon M., Mozes Steven D., The splash/non-splash boundary upon a dry surface and thin fluid film, Experiments in Fluids, 2006b, 40: 53 - 59
    [131] Walzel P., Zerteilgrenze beim Tropfenaufprall, Chem. Ing. Tech., 1980, 52:338 - 339
    [132] Wang A.B., Chen C.C., Splashing impact of a single drop onto very thin liquid films, Phys. Fluids, 2000, 12 (9):2155 - 2158
    [133] Wang B.X. and Peng X.F., Experimental investigation of liquid forced-convection heat transfer through microchannels, Intl. J. Heat Mass Transfer, 1994, 37(suppl): 73-82
    [134] Wang B. X., Zhang J. T., Peng X. F., Thermal nonequilibriumeffect on stabilities of falling liquid film [J], Intl. J. Heat Mass Transfer, 1999, 42 (15): 2863-2868
    [135] Wang B. X., Zhang J. T., Peng X. F., Experimental study on the dryout heat flux of falling liquid film [J]. Int J Heat Mass Transfer, 2000, 43 (11): 1897-1903
    [136] Wang, Evelyn N., Zhang, Lian, Jiang, Linan, Koo, Jae-Mo, Maveety, James G., Sanchez, Eduardo A.,Goodson,Kenneth E.,Kenny,Thomas W.,Micromachined jets for liquid impingement cooling of VLSI chips[J],Journal of Microelectromechanical Systems,2004,13(5):833-842
    [137]Warner M.R.E.,Matar O.K.,CrasterR.V.,Unstable van der Waals driven line rupture in Marangoni driven thin viscous films,Phys.Fluids,2002,14:1642-1654
    [138]Weiss D.A.,Yarin A.L.,Single drop impact onto liquid films:Neck distorsion,jetting,tiny bubble entrainment and crown formation[J],J.Fluid Mechanics,1999,385:229-254.
    [139]White,Frank M.,Fluid Mechanics(Fifth edition),The McGraw-Hill Companies,Inc.,2003
    [140]Womac D.J.,Aharoni G.,Ramadhyani S.,Incropera F.P.,Single-phase liquid jet impingement cooling of small heat source,in:Heat transfer proceedings of the International Heat Transfer Conference,Hemisphere,New York,1990,pp.149-154.
    [141]Wu Z.N.,Approximate critical Weber number for the breakup of an expanding torus,Acta Mechanica,2003,10:1-9
    [142]Yang C.,Leong K.C.,Influences of substrate wettability and liquid viscosity on isothermal spreading of liquid droplets on solid surfaces,Experiments in Fluids,2002 33:728-731
    [143]Yang,J.,Chow,L.C.and Pais,M.R.,Nucleate boiling heat transfer in spray cooling,J.of Heat Transfer,1996,118:668-671
    [144]Yang R.,Wood B.D.Numerical solution of the motion on a falling liquid film[J].Can J.Chem Eng,1991,69(6):723-728
    [145]Yarin A.L,Weiss D,Impact of drops on solid surface:selfsimilar capillary waves and splashing as a new type of kinematic discontinuity,J.Fluid Mechanics,1995,283:141-173
    [146]Yao S.C.,Deb S.,Hammouda N.,Impact spray boiling for thermal control using free jets and sprays,ASME HTD Heat Transfer in Electronics,1989,111:129-133
    [147]Yih C.S.,Stability of parallel laminar with a free surface[J].Quart Appl Math,1955,13:434-439
    [148]Yih C.S.,Stability of liquid flow down an inclined plane[J],Phys.Fluids,1963,6(3):321-334.
    [149]Youngs D.L.,Time dependent multi-material flow with large fluid distortion,Numerical methods for fluid dynamics,K.W.Morton and M.J.Baines(editors),Academic,New York,1982,933-938
    [150]Yu L.Q.,Wasden F.K.et al.,Nonlinear Evolution of Waves on Falling Films at High Reynolds Numbers[J],Phys.Fluids,1995,7(8):1886-1902
    [151]Zhao Z.,Poulikakos D.and Fukai J.,Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate-Ⅰ modeling,Intl.J.Heat Mass Transfer,1997,40:2490-2492
    [152]Zuber N.,Staub F.W.,Stability of dry patches forming in liquid films flowing over heated surfaces[J],Intl J.Heat Mass Transfer,1966,9(9):897-905
    [153]陈庆光,徐忠,张永建,用改进的RNG模式数值模拟湍流冲击射流流动[J],西安交通大学学报,2002,36:916-920
    [154]陈永昌,马重芳,雷道亨,微尺度平面射流冲击的强化传热实验研究[J],工程热物理学报,2001,22,增刊:71-74.
    [155]程尚模,传热学,高等教育出版社,1990年
    [156]过增元,国际传热研究前沿-微细尺度传热,力学进展,2000,30(1)1-7
    [157]蒋章焰,陶正文,阎维平.垂直表面自由降膜表面波的非线性演化[J],华北电力大学学报,1999,26(1):13-17
    [158]蒋章焰,马同泽等.过冷液膜的换热特性和破断特性[J],化工学报,1990,6(6):663-669.
    [159]蒋章焰,宋金田等,垂直加热管外自由降膜流的破断特性[J],工程热物理学报,1995,16(2):199-204.
    [160]刘儒勋,王志峰,数值模拟方法和运动界面追踪,中国科学技术大学出版社,2001
    [161]芦秋敏,雷树业,雾化喷射冷却的机理及模型研究[J],工程热物理学报,2005,5:817-819
    [162]罗朝霞,李会雄,陈听宽,陈善年,液滴冲击无限大液面过程的边界元模拟[J],工程热物理学报,2002,23:749-752
    [163]马重芳,陈永昌,自由表面二维平面射流冲击传热的理论分析[J],北京工业大学学报,2000,3:59-62,
    [164]苏铭德,黄素逸,计算流体力学基础,清华大学出版社,1997
    [165]王磊,苑中显,马重芳,陈永昌,R-113圆形射流冲击模拟电子芯片单相对流换热的实验研究[J],工程热物理学报,1999,20:487-490
    [166]徐超,何雅玲,杨卫卫,齐永强,现代电子器件冷却方法研究动态[J],制冷与空调,2003,4:10-13.
    [167]徐尧润,刘振义等.异形竖板上降落液膜破断特性[J],化工学报,1997,48(4):485-491.
    [168]阎维平,叶学民,李洪涛,液体薄膜流的流动和传热特性[J],华北电力大学学报,2005,32(1):59-65
    [169]杨建隆,液滴撞击液膜之现象分析,硕士学位论文,台湾大学,台北,2000
    [170]叶学民,阎维平.沿倾斜壁面下降的蒸发或冷凝降膜二维表面波的线性稳定性[J],西安交通大学学报,2002,26(1):25-29.
    [171]叶学民,阎维平,蒸发、等温或冷凝薄液膜二维表面波的通用时空稳定性方程[J],中国电机工程学报,2004,2(3):200-205
    [172]叶学民,阎维平,液体薄膜流稳定性和破断特性的研究进展,华北电力大学学报,2006,33(6):63-67
    [173]张丽春,马同泽,葛新石,平面蒸发薄液膜的稳定性分析[J],中国科学技术大学学报,2002,32(5):618-626
    [174]郑凌云,应济,基于MEMS的微介电液滴冲击冷却系统,机电工程,2006,23(8):21-23
    [175]周德俭,吴兆华,覃匡宇,MCM热分析和热设计技术[J],电子工艺技术,1997,1:11-14
    [176]周定伟,马重芳,圆形液体浸没射流冲击沸腾起始点的实验研究[J],工程热物理学报,2001,22:328-331
    [177]周定伟,马重芳,圆形液体浸没射流冲击驻点传热的数值模拟,北京工业大学学报,2001,27(3):316-320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700