用户名: 密码: 验证码:
空中爆炸防护若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,除了接触爆炸对防护结构所造成的种种破坏作用外,越来越多的场合需要考虑空中爆炸所形成强冲击波的破坏作用,特别是在近距离大药量的情况下。早先的研究大多聚焦在防护结构本身的响应行为和变形上,对在防护结构背后能否产生可能杀伤内部人员的次生冲击波超压缺乏研究。
     爆炸容器作为一种爆炸试验和爆炸加工的重要装置,有着广泛的应用。研究爆炸容器的动力响应以及防护问题有重要的意义。这题可以视为空中爆炸防护问题的另一种形态。
     泡沫金属材料因其压缩应力应变曲线存在应力平台,有着优良的能量吸收特性,经常作为三明治结构的夹心层,应用在爆炸和冲击防护的场合。
     本文针对上述空中爆炸防护中的若干问题进行了研究,并考察了泡沫铝在防护中的应用。
     首先讨论了泡沫金属材料的特点和力学性能,并对七种不同的泡沫铝材料分别进行了准静态和动态压缩试验。这几种泡沫铝的压缩应力应变曲线均为典型的三段式曲线:包含弹性段、屈服段和致密段,并有明显的应变率敏感性。
     设计进行了外部空中爆炸引起密闭容器内部次生冲击波的试验。证明这种情况下完全可以产生可能造成冲击伤的冲击波超压,而使用泡沫铝夹心防护结构可以使超压峰值大幅衰减。
     讨论了空中爆炸和流固耦合问题的数值模拟方法和步骤。对上面的次生冲击波试验进行了有限元仿真。模拟的结果和试验符合得较好。这里的处理方法也可以用于处理其他类似的流-固-流耦合问题。
     对爆炸容器的动力响应问题的数值模拟方法进行了讨论。对球形和组合式两种爆炸容器的动力响应进行了有限元仿真。并进一步对容器的固有振动特性和响应的频谱特性进行了分析,讨论了应变增长现象的原因。还对爆炸容器的防护进行了初步的模拟和讨论,提出容器防护的目标应该是减少容器中的交变应力带来的疲劳,防护应从隔爆和吸振两方面考虑。
In recent years,except the damaging effects of contiguous explosion on protective structures,the effects of air-blast shock waves have to be evaluated in more and more situations,especially when the standoff distance is relatively close or the charge quantity is relatively large.The former studies mainly focused on the dynamic response behaviors and deformations of protective structures.It has not been investigated whether transmitted shock wave overpressure will occur at the back of the protective structure,which may cause blast injuries of the people inside.
     Explosion containment vessels have been widely used as important equipments in explosive experiments or explosive workings.It is of great importance to research the dynamics responses and protection of explosion vessels.The question here can be considered as another form of air-blast protection.
     The compressive stress-strain curve of metal foams has a long even region.So they have excellent energy absorption property and are widely used as the core of sandwich structures on protection of explosion and impact.
     In this thesis,some issues of air-blast protection mentioned above were investigated.And the utility of aluminum foams in protective structures is examined.
     First the characteristics and mechanical properties of mental foams were discussed.Quasi-static and dynamic compressive tests were carried out on seven different aluminum foam materials.Their compressive stress-strain curves are typically three-region curves,including elastic region,collapse region and densification region.And they show signally strain rate sensitivity.
     The experiments of transmitted shock wave in an airtight chamber due to air-blast outside were designed and carried out.It is proved that transmitted shock wave overpressure can occur here and may cause blast injuries.When aluminum foam sandwich structure panels were used,the peak overpressure was markedly attenuated.
     The numerical methods and process procedures on air-blast and fluid-structure simulations were discussed.And FEA simulations of the overpressure experiments above were carried out.The simulation results have good agreements with the experiments.In addition,the process method here can be used to solve other similar problems on fluid-structure-fluid interaction.
     The numerical simulation methods on dynamics response behaviors of explosion vessels were discussed.For a spherical explosion vessel and an assembled vessel, their dynamics responses were simulated by FEA.Moreover their vibration characteristics,the frequency spectrum characteristics of responses and the factor of strain growth were studied.The protection of explosion vessels was preliminarily simulated and discussed.The aim of protection should be reduce metal fatigue caused by alternating stresses.And the protection should be considered on two aspects:blast isolation and vibration absorption.
引文
[1]乔登江.1985.空中爆炸[M]//中国大百科全书编委会.中国大百科全书.力学卷.北京:中国大百科全书出版社.
    [2]JACINTO A C,AMBROSINI R D,DANESI R F.2001.Experimental and computational analysis of plates under air blast loading[J].International Journal of Impact Engineering,25:927-947.
    [3]RAJENDRAN R,Lee J M.2008.Blast loaded plates[J].Marine Structures.
    [4]NEUBERGER A,PELES S,RITTEL D.2007.Scaling the response of circular plates subjected to large and close-range spherical explosions[J].International Journal of Impact Engineering,34:859-873.
    [5]NEUBERGER A,PELES S,RITTEL D.2008.Springback of circular clamped armor steel plates subjected to spherical air-blast loading[J].International Journal of Impact Engineering.
    [6]HANSSEN A G,ENSTOCK L,LANGSETH M.2002.Close-range blast loading of aluminium foam panels[J].International Journal of Solids and Structures,27:593-618.
    [7]LAN S,LOK T S,HENG L.2005.Composite structural panels subjected to explosive loading[J].Construction and Building Materials,19:387-395.
    [8]GONG S,LU Y,JIN W.2006.Simulation of airblast load and its effect on RC structures[J].Transactions of Tianjin University,12:165-170.
    [9]LIBRESCU L,OH S,HOME J.2004.Linear and non-linear dynamic response of sandwich panels to blast loading[J].Composites:Part B,35:673-683.
    [10]HAUSE T,LIBRESCU L.2007.Dynamic response of doubly-curved anisotropic sandwich panels impacted by blast loadings[J].International Journal of Solids and Structures,44:6678-6700.
    [11]ANDREWS E W,MOUSSA N A.2009.Failure mode maps for composite sandwich panels subjected to air blast loading[J].International Journal of Impact Engineering,36:418-425.
    [12]VAZIRI A,HUTCHINSON J W.2007.Metal sandwich plates subject to intense air shocks[J].International Journal of Solids and Structures,44:2021-2035.
    [13]ZHU F,ZHAO L,LUG et al.2009.A numerical simulation of the blast impact of square metallic sandwich panels[J].International Journal of Impact Engineering,36:687-699.
    [14]DHARMASEN K P,WADLEY M N G,XUE Z,HUTCHINSON J W.2008.Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J].International Journal of Impact Engineering,35:1063-1074.
    [15]SRIRAM R,VAIDYA U K,KIM J.2006.Blast impact response of aluminum foam sandwich composites[J].Journal of Materials Science,41:4023-4039.
    [16]VULITSKY M Z,KARNI Z H.2004.Ship Structures Subject to High Explosive Detonation[C].7th International LS-DYNA Users Conference.
    [17]李晓彬,金咸定,吴卫国.2006.空中爆炸写下舰船桅杆结构变形及破裂的数值模拟[J].中国舰船研究,1(5-6):25-29.
    [18]吴迪,张世联.2007.空中爆炸下舰船动态响应数值模拟[J].舰船科学技术,29(6):165-168.
    [19]吴成,张向荣,方延和等.2007.空中爆炸冲击波作用下薄壁铝球壳体大变形响应的实验研究[J].北京理工大学学报,27(3):192-195.
    [20]SCHLEYER G K,LOWAK M J,POLCYN M A et al.2007.Experimental investigation of blast wall panels under shock pressure loading[J].International Journal of Solids and Structures,34:1095-1118.
    [21]ZHOU X Q,HAO H.2007.Prediction of airblast loads on structures behind a protective barrier[J].International Journal of Solids and Structures.
    [22]石少卿,刘仁辉,汪敏.2008.钢板-泡沫铝-钢板新型复合结构降低爆炸冲击波性能研究[J].振动与冲击,27(4):143-146.
    [23]朱文辉,薛鸿陆,韩钧万等.1996.爆炸容器动力学研究进展评述[J].力学进展,26(1):68-77.
    [24]霍宏发.2000.组合式爆炸容器动态特性分析及实验研究[D]:[博士].西安:西安交通大学.
    [25]巩水利.2001.爆炸容器焊接接头动态力学响应及断裂韧性研究[D]:[博士].西安:西安交通大学.
    [26]胡八一,刘仓理,刘光祚.2001.浅谈提高爆炸容器使用安全性的技术措施[J].中国安全科学学报,11(5):25-27.
    [27]NICKELL R E,ROMERO C.2003.Containing explosions[EB/OL].USA:ASME,[2009-03-25].http://www.memagazine.org/backissues/membersonly/sept03/features/contexpl/c ontexpl.html.
    [28]ADUSHKIN V V,LEITH W.2001.The Containment of Soviet Underground Nuclear Explosions[R].USGS Open File Report 01-312.
    [29]ZHDAN S A.1981.Dynamic load action on the wall of an explosion chamber[J]. Physics of Combustion & Explosion,17(2):142-146.
    [30]BAKER W E,ALLEN F J.1958.The Response of Elastic Shells to Spherically Symmetric Internal Blast Loading[C]//Proceedings of the Third US National Congress of Applied Mechanics.New York.ASME,79-84.
    [31]BAKER W E.1960.Modeling of Large Transient Elastic and Plastic Deformations of Structures Subjected to Blast Loading[J].Journal of Applied Mechanics,27:139-144.
    [32]BAKER W E.1966.Elastic response of Thin Spherical Shells to Axisymmetric Blast Loading[J].Journal of Applied Mechanics,33:800-806.
    [33]DEMCHUK A F.1968.Method for designing explosion chambers[J].Journal of Applied Mechanics and Technical Physics,9:558-559.
    [34]朱文辉,薛鸿陆,刘仓理等.1995.爆炸容器承受内部加载的实验研究[J].爆炸与冲击,15(4):374-381.
    [35]ZHU W,XUE H,ZHOU G et al.1997.Dynamic response of cylindrical explosive chambers to internal blast loading produced by a concentrated charge[J].International Journal of Impact Engineering,19(9-10):831-845.
    [36]DUFFEY T A,ROMERO C.2003.Strain growth in spherical explosive chambers subjected to internal blast loading[J].International Journal of Impact Engineering,28(9):967-983.
    [37]LI Q M,DONG Q,ZHENG J Y.2008.Strain growth of the in-plane response in an elastic cylindrical shell[J].International Journal of Impact Engineering,35:1130-1153.
    [38]GIBSON L J,ASHBY M F.2003.多孔固体结构与性能[M].刘培生译.北京:清华大学出版社.
    [39]CURRAN D.2002.Metal foams[EB/OL].UK:Cambridge University,[2009-03-25].http://www.msm.cam.ac.uk/mmc/people/old/dave/.
    [40]卢天健,何地坪,陈常青等.2006.超轻多孔金属材料的多功能特性及应用[J].力学进展,36(4):517-535.
    [41]杨振海,罗丽芬,陈开斌等.2004.泡沫铝技术的国内外进展[J].轻金属,2004(6):3-6.
    [42]陈祥,李言祥.2003.金属泡沫材料研究进展[J].材料导报,17(5):5-11.
    [43]GERGELY V,CLYNE T W.2000.The FORMGRIP process:foaming of reinforced metals by gas release in precursors[J].Advanced Engineering Materials,2(4):175-178.
    [44]GAMAB A,BOGETTI T A,Fink B K et al.2001.Aluminum foam integral armor:a new dimension in armor design[J].Composite Structures,52:381-395.
    [45]EVANS A G,HUTCHINSON J W,ASHBY M F.1999.Multifunctionality of cellular metal systems[J].Progress in Materials Science,43:171-221.
    [46]朱震刚.1999.金属泡沫材料研究[J].物理,28(2).
    [47]ASHBY M F.1983.The mechanical properties of cellular solids[J].Metallurgical and Materials Transactions A,14(9):1755-1769.
    [48]杨桂通,熊祝华.1984.塑性动力学[M].北京:清华大学出版社.
    [49]DESHPANDE V S,FLECK N A.2000.High strain rate compressive behavior of aluminium alloy foams[J].International Journal of Impact Engineering,24:277-298.
    [50]PAUL A,RAMAMURTY U.2000.Strain rate sensitivity of a closed-cell aluminum foam[J].Materials Science and Engineering,A281:1-7.
    [51]DANNEMANN K A,LANKFORD J Jr.2000.High strain rate compression of closed-cell aluminium foams[J].Materials Science and Engineering,A293:157-164.
    [52]胡时胜,王悟,潘艺等.2003.泡沫材料的应变率效应[J].爆炸与冲击,23(1):13-18.
    [53]潘艺,胡时胜,魏志刚.2002.泡沫铝动态力学性能的实验研究[J].材料科学与工程,20(3):341-343.
    [54]程和法,黄笑梅,王强等.2006.通孔泡沫铝的动态压缩行为[J].爆炸与冲击,26(2):169-173.
    [55]凤仪,朱震刚,潘艺等.2005.泡沫铝的动态力学性能研究[J].稀有金属材料与工程,34(4):544-548
    [56]田杰,胡时胜.2005.填充硅橡胶的泡沫铝复合材料的力学性能[J].爆炸与冲击,25(5):400-404.
    [57]WOOLAM W E.1968.A Study of the Dynamics of Low Energy Cushioning Materials Using Scale Models[J].Journal of Cellular Plastics,4(2):79-83.
    [58]HILYARD N C,DJIAUW L K.1971.Observations on the Impact Behaviour of Polyurethane Foams;I.The Polymer Matrix[J].Journal of Cellular Plastics,7:33-42.
    [59]GORDON J E,JERONIMIDIS G.1974.Work of fracture of natural cellulose[J].Nature,252:116.
    [60]RUSCH K C.1970.Energy-absorbing characteristics of foamed polymers[J].Journal of Applied Polymer Science,14(6),1433-1447.
    [61]MAITI S K,GIBSON L J,ASHBY M F.1984.Deformation and energy absorption diagrams for cellular solids[J].Acta metallurgica,32(11):1963-1975.
    [62]MEINECKE E A,SCHWABER D H.1970.Energy absorption in polymeric foams.I.Prediction of impact behavior from instron data for foams with rate-independent modulus[J].Journal of Applied Polymer Science,14(9):2239-2248.
    [63]MILTZ J,RAMON O.1990.Energy Absorption Characteristics of Polymeric Foams Used as Cushioning Materials[J].Polymer Engineering and Science,30(2):129-133.
    [64]胡时胜.1991.霍普金森压杆技术[J].兵器材料科学与工程,(11):40-47.
    [65]李翼祺,马素珍.1992.爆炸力学[M].北京:科学出版社.
    [66]孙忠良,孙慧明,刘江等.2003.对人体损伤的兵器噪声和冲击波的标准化测量[J].解放军医学杂志,28(1):19-22.
    [67]TAYLOR M,ADDLEY E.2007.Undiagnosed brain injury - the hidden legacy of Iraq:MoP begins study amid fears that up to 20,000 soldiers may be affected[EB/OL].UK:The Guardian,[2009-03-31].http://www.guardian.co.uk/uk/2007/oct/27/politics.military.
    [68]宋博,胡时胜,张寒虹等.2001.进入密闭容器冲击波超压的实验研究[J].弹道学报,13(3):68-72.
    [69]田杰,胡时胜,陈健.2007.次生冲击波超压的实验研究和数值模拟[J].兵工学报,28(12):1483-1488.
    [70]BAUER F.1986.Method and device for polarizing Ferroelectric materials:United States Paten,4611260[P].
    [71]GRAHAM R A,LEE L M,BAUER F.1988.Response of Bauer Piezoelectric Polymer stress Gauges(PVDF) to shock Loading[C]//SCHMIDT S C,HOLMES N C.Shock Waves of Condensed Matter 1987.North Holland:619-622.
    [72]BAUER F,LIGHTENBERGER A.1988.Use of PVF2 shock gauges for stress measurements in Hopkinson bar[C]//SCHMIDT S C,HOLMES N C.Shock Waves of Condensed Matter 1987.North Holland:631-634.
    [73]SOULARD L,BAUER F.1990.Application of standardized PVDF shock gauges for shock pressure measurements in explosives[C]//SCHMIDT S C,DAVISON LW.Shock Compression of Condensed Matter 1989.North Holland:817-820.
    [74]席道瑛,郑永来.1995.PVDF压电计在动态应力测量中的应用[J].爆炸与冲击,15(2):174-179.
    [75]李焰.2004.PVDF应力计的动态测量技术及其应用研究[D]:[博士].长沙:国防科学技术大学.
    [76]李焰,王凯民,谭红梅等.2003.PVDF应力计在起爆试验研究中的应用[J].火工品, (3):6-10.
    [77]BOYD S D.2000.Acceleration of a Plate Subject to Explosive Blast Loading[R].DSTO-TN-0270.
    [78]WIKI.2009.LS-DYNA[EB/OL].USA:Wikipedia,the free encyclopedia,[2009-04-03].http://en.wikipedia.org/wiki/LS-DYNA.
    [79]LSTC.2007.LS-DYNA Keyword User's Manual[DB/OL].USA:Livermore Software Technology Corporation,[2009-04-03].http://lstc.com/pdf/ls-dyna_971_manual_k.pdf.
    [80]Benson D J.2007.The History of LS-DYNA[EB/OL].San Diego:University Of California,[2009-04-03].http://blog.d3view.com/wp-content/uploads/2007/06/benson.pdf.
    [81]GADALA M S,WANG J.1998.ALE formulation and its application in solid mechanics[J].Computer methods in applied mechanics and engineering,167:33-35.
    [82]张雄,陆明万,王建军.1997.任意拉格朗日-欧拉描述法研究进展[J].计算力学学报,14(1):91-102.
    [83]曾江红,王照林.1996.粘性流体大幅晃动的ALE有限元模拟[J].强度与环境,(3):22-31.
    [84]邢景棠,周盛,崔尔杰.1997.流固耦合力学概述[J].力学进展,27(1):19-38.
    [85]LSTC.2006.LS-DYNA Theoretical Manual[DB/OL].USA:Livermore Software Technology Corporation,[2009-04-03].http://lstc.com/pdf/ls-dyna_theory_manual_2006.pdf.
    [86]曹德青,恽寿榕,丁刚毅等.2000.用ALE方法实现射流侵彻靶板的三维数值模拟[J].北京理工大学学报,20(2):171-173.
    [87]RANDERS-PEHRSON,BANNISTER.1997.Airblast loading model for DYNA2D and DYNA3D[R].ARL-TR-1310.
    [88]YEN C F,SKAGGS R,CHEESEMAN B A.2005.Modeling of shock mitigation sandwich structures for blast protection[C]//The 3rd First International Conference on Structural Stability and Dynamics.Kissimmee Florida.
    [89]MULLIN M J,O' TOOLE B J.2004.Simulation of Energy Absorbing Materials in Blast Loaded Structures[C]//8th International LS-DYNA Users Conference.Dearborn Michigan.
    [90]段卓平,恽寿榕.1994.密闭爆炸容器实验研究及数值模拟[J].中国安全科学学报,4(3):1-7.
    [91]GIGLIO M.1997.Spherical vessel subjected to explosive detonation loading[J].International journal of pressure vessels and piping,74:83-88.
    [92]胡八一,柏劲松,张明等.2001.真实爆炸容器壳体动力响应的强度分析[J].应用力学学报,18(3):91-95.
    [93]霍宏发,于琴,黄协清.2003.组合式爆炸容器冲击载荷及其动力响应的数值模拟[J].西南交通大学学报,38(5):513-516.
    [94]蔡清裕,曾新吾,胡永乐.2003.钢-混凝土复合爆炸容器内爆响应数值模拟[J].国防科技大学学报,25(3):28-32.
    [95]王定贤,王万鹏,石培杰等.2008.柱形爆炸容器动力学响应的有限元模拟与实验检验[J].压力容器,25(7):13-16.
    [96]安世亚太.2007.ANSYS动力学分析指南[EB/OL].[2009-04-03].http://pera.e-works.net.cn/document/200707/articlel156.htm.
    [97]陈塑寰.1999.结构动态设计的矩阵摄动理论[M].北京:科学出版社.
    [98]孙红灵.2007.振动主动控制若干问题的研究[D]:[博士].合肥:中国科学技术大学.
    [99]刘利军,樊江玲,张志谊等.2007.密频系统模态参数辨识及其振动控制的研究进展[J].振动与冲击,26(4):109-115.
    [100]徐涛,陈塑寰,赵建华.1998.接近亏损系统的矩阵摄动法[J].力学学报,30(4):503-507.
    [101]文潮,金志浩,关锦清等.2002.国内首台1kg TNT当量复合板爆炸容器的设计[J].压力容器,19(7):12-14,37.
    [102]龙建华,胡八一.2006.100g(TNT)当量真空密封爆炸容器的设计[J].机械,33(2):27-28.31.
    [103]霍宏发,黄协清,陈花玲等.2000.椭球封头圆柱形爆炸容器振动特性研究[J].机械科学与技术,19(6):968-970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700