用户名: 密码: 验证码:
IL-33参与烧冲复合伤人与小鼠肺损伤机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:烧冲复合伤是军事冲突、恐怖袭击、交通事故等突发事件中最常见的损伤类型之一。烧冲复合伤后肺脏损伤导致即时死亡的发生率高达47%。急性肺损伤(ALI)和急性呼吸窘迫综合症(ARDS)是烧冲复合伤早期死亡的主要原因之一,烧冲复合伤后即刻引起低血容量性休克与炎症级联反应。大量研究结果显示在ALI/ARDS的发病过程中,细胞因子与中性粒细胞发挥了关键性的作用。IL-33是新近发现的一种细胞因子,属于IL-1家族。IL-33mRNA表达于人类与小鼠的多个器官和不同类型的细胞,在蛋白水平,IL-33主要表达在上皮细胞、内皮细胞和纤维细胞。IL-33能够促进中性粒细胞趋化至感染部位减轻脓毒症。然而,在烧冲复合伤后肺组织IL-33与中性粒细胞是否存在这种机制仍不清楚。因此,我们建立重度烧冲复合伤动物模型,探讨在烧冲复合伤动物模型与烧冲复合伤患者中IL-33是否参与肺损伤。
     方法:利用野生型C57BL/6小鼠与IL-33转基因小鼠分别建立烧冲复合伤、冲击伤、烧伤动物模型,小鼠随机分为正常对照组,烧伤组,冲击伤组,烧冲复合伤组。通过免疫组织化学法分别检测肺组织髓过氧化物酶(myeloperoxidase,MPO)、白介素-33(IL-33)、G蛋白偶联受体-2(GRK2)、趋化因子CXCR2的表达。透射电镜(transmission electron microscopy)观察肺组织超微结构的变化。real-time RT-PCR检测IL-33mRNA与GRK2mRNA的表达。酶联免疫吸附实验(ELISA)检测血浆IL-6与TNF-a浓度。Micro-CT观察肺组织的变化。同时,通过免疫组织化学法检测烧冲复合伤患者伤后24小时肺组织MPO、IL-33的表达。酶联免疫吸附实验检测烧冲复合伤患者血浆IL-6与TNF-a浓度。胸部X-ray观察肺组织的变化。
     结果:
     1.我们以5g8701炸药为爆炸源,距离爆炸源43cm,53cm,63cm分别建立冲击伤动物模型,压力值分别为200Kpa,94Kpa,88.3Kpa,根据冲击伤诊断标准确定中度冲击伤距离为53cm。
     2.我们的动物模型表明烧冲复合伤后肺组织严重损伤。与正常对照组小鼠肺组织肉眼观相比,烧伤组小鼠肺组织轻度充血;冲击伤组小鼠肺组织中度充血,可见约3处点灶状出血;复合伤组小鼠肺组织明显充血,可见约5处斑点状出血;烧冲复合伤组小鼠伤后24小时与正常对照组、烧伤组、冲击伤组相比,肺组织湿干比重、出血面积明显增大。
     3.与各实验组相比,在致伤后24小时烧冲复合伤小鼠的呼吸频率(Rr)、潮气量(Tv)、每分通气量(Mv)、最大呼气流量(PEF)明显降低降低,然而呼气时间(Te)与吸气时间(Ti)显著延长。
     4.伤后24小时micro-CT检查显示:正常对照组与烧伤组小鼠肺组织未见病变;冲击伤组小鼠左侧肺组织可见轻度的毛玻璃样变区域;烧冲复合伤组小鼠左侧肺组织可见中度毛玻璃样变区域。
     5.烧冲复合伤野生型C57BL/6小鼠伤后24小时肺组织髓过氧化物酶(MPO)、白介素一33(IL-33)、G-蛋白偶联受体-2(GRK2)表达明显增强。与烧冲复合伤后IL-33转基因小鼠伤后24小时相比,烧冲复合伤野生型C57BL/6小鼠趋化因子(CXCR2)明显减少;与各实验组相比,烧冲复合伤组小鼠血浆IL-6与TNF-α浓度均明显升高。
     6.在烧伤、冲击伤、烧冲复合伤小鼠肺组织中IL-33的阳性细胞数与GRK2阳性细胞数、MPO阳性细胞数均有显著的正相关(r=0.65,p=0.042;r=0.638, p=0.0047;r=0.764,p=0.001)(r=0.716,p=0.02;r=0.661,p=0.0037;r=0.755, p=0.012),与Mv呈负相关(r=-0.677,p=0.031;r=-0.68,p=0.03;r=-0.816,p=0.004).
     7.烧冲复合伤尸检见伤侧肺组织表面可见散在的斑片状出血,HE染色观察见大面积肺泡内出血。肺组织标本免疫组化染色见IL-33阳性细胞数高表达区域MPO阳性细胞数也高表达。
     8.烧冲复合伤患者伤侧肺组织呈中度毛玻璃样变。
     结论:
     1.成功的建立了一种烧冲复合伤小鼠动物模型,具体参数为:野生型C57BL/6小鼠距离爆炸源53cm,压力峰值94Kpa致中度冲击伤,即刻将中度冲击伤小鼠背部脱毛区置入90℃沸水中持续9s,造成小鼠背部25%TBSAⅢ度烫伤。
     2. IL-33通过激活GRK2通路阻断趋化因子CXCR2下调促进中性粒细胞迁移参与烧冲复合伤小鼠肺损伤。
     3.高表达的IL-33参与烧冲复合伤患者肺损伤。
Objective:Burn-blast combined injury is one of the most common injuries in military conflict, terrorist attacks, traffic accidents, and other emergencies. Lung injury after burn-blast combined injury results in immediate death in up to47%of cases. Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the main reasons for abrupt death in such injuries. Hypovolemic shock develops immediately after such injuries, initiating the generalized inflammatory cascade. Prior research in ALI and ARDS has demonstrated the importance of cytokines and neutrophils. Therefore, we focused on investigating cytokine-mediated neutrophils in the lungs after burn-blast combined injury. IL-33is a recently described member of the IL-1family, which also includes IL-1α/β, IL-1Ra, and IL-18. IL-33mRNA is expressed by multiple organs and cell types in humans and mice. IL-33protein is mainly expressed by epithelial cells, endothelial cells, and fibroblasts. IL-33attenuates sepsis by enhancing neutrophil influx to the site of infection. However, the function of IL-33-enhanced neutrophil influx in lung injury is unclear, specifically after burn-blast combined injury. Therefore, we established a burn-blast combined injury mice model. We investigated that IL-33would promote the participation of neutrophil migration in lung injury.
     Methods:Burn-blast combined injury was induced in wild-type (WT) mice and IL-33transgenic mice. Mice were randomly divided into control group, burn group, blast group and burn-blast combined group. Immunohistochemistry assay was used to detect myeloperoxidase (MPO), IL-33, GRK2and CXCR2in lung after burn-blast combined group. Transmission electron microscopy (TEM) was used for observation of changes in lung. Plasma IL-6and TNF-a levels were measured by ELISA kits. Micro-CT was used for observation of changes in lung. In addition, Immunohistochemistry assay was used to detect myeloperoxidase (MPO) and IL-33in humans with burn-blast combined (BBLP). Chest radiograph scans was used to detect lung in humans with burn-blast combined.
     Results:
     1.We found that the mice at a distance of53cm, which exposed to94Ka peak overpressure, was the moderate blast injury distance when compared to mice at a distance of43cm and63cm, in these distances they were exposed200Ka and88.3Ka peak-overpressure, respectively.
     2. The lungs of mice in burn-blast combined group (BBL) were severely congestive and most mice had more than5hemorrhage spots. However, the lungs of mice in burn (BU) or blast group (BL) showed less degree of congestion. In addition, the lungs of mice in control group (CO) were normal. The burn-blast combined injury group showed a significantly greater wet-to-dry weight ratio than the blast group and burn groups. The lung hemorrhage area in the burn-blast combined injury group was significantly higher than that for the blast injury and burn groups.
     3. Burn-blast combined injury mice showed concomitantly reduced respiratory rate (Rr), tidal volume (Tv), minute ventilation volume (Mv), peak expiratory flow (PEF) as compared to burn injured mice, blast injured mice, and control mice at24hours. However, after burn-blast combined injury, WT mice exhibited significant lengthening of expiratory time (Te) and inspiratory time (Ti) as compared to each experimental group of WT mice at24hours.
     4. We found moderate ground-glass shadows were seen in the left lung tissue in the burn-blast combined injury group on performing micro-CT. However, ground glass slightly appeared in various regions of left lung in the blast group and no lesions in the lung tissue of the control group and burn group.
     5. MPO-, IL-33-and GRK2-positive cells significantly increased in the lung after burn-blast combined injury. However, the number of CXCR2-positive cells in WT mice was lower than those in the lungs of IL-33transgenic mice after burn-blast combined injury; Burn-blast combined injury mice had elevated plasma concentrations of IL-6and TNF-α.
     6. In burn-blast combined injured IL-33transgenic mice, blast-injured IL-33transgenic mice, and burn-injured IL-33transgenic mice., some significant positive correlations were observed between IL-33-positive cells and both GRK2-positive cells (r=0.65, p=0.042; r=0.638, p=0.0047; r=0.764, p=0.001, respectively) and MPO-positive cells (r=0.716, p=0.02; r=0.661, p=0.0037; r=0.755, p= 0.012, respectively). The correlation coefficients suggested a strong association between IL-33-positive and Mv in burn-injured mice (r=-0.677, p=0.031), blast-injured mice (r=-0.68, p=0.03), and burn-blast combined injury mice(r=-0.816, p=0.004).
     7. A large area of alveolar hemorrhage was seen in the patient with burn-blast combined injury. Interestingly, an increased number of MPO cells accumulated in the same area that IL-33is typically expressed.
     8. Lung chest radiograph scans of the patient with burn-blast combined injury showed moderate ground-glass shadows in the left lung, while other areas appeared normal or nearly normal.
     Conclusions:
     1. We successfully established a stable mice model with burn-blast combined injury, which is inflicted with moderate blast injury by placing C57BL/6mice53cm away from explosive source, generating pressure peak of94Kpa, followed by induction of25%TBSA full-thickness burns on the back with90℃water for9s.
     2. Our results suggest IL-33increases neutrophil influx to the site of infection and inflammation through GRK2pathway to block the downregulation of CXCR2with burn-blast combined injury.
     3. Our results suggest that increased IL-33is involved in lung injury in humans with burn-blast combined injury.
引文
[1]杨宗城,陈璧,汪仕良,等.中华烧伤医学.北京:人民卫生出版,2008.751-756.
    [2]Pizov R, Oppenheim-Eden A, Matot I, et al. Blast lung injury from an explosion on a civilian bus. Chest.1999.115(1):165-172.
    [3]Langworthy MJ, Sabra J, Gould M. Terrorism and blast phenomena:lessons learned from the attack on the USS Cole (DDG67). Clin Orthop Relat Res.2004. (422):82-87.
    [4]Wightman JM, Gladish SL. Explosions and blast injures. Aannals of Emergency Medicine,2001,37:664-678.
    [5]Horrocks CL. Blast injuries:biophysics, pathophysiology and management principles.J R Army Corps,2001,147(1):28-40.
    [6]Cullis IG. Blast waves and how they interact with structures. J R Army Med Corps, 2001,147(1):16-26.
    [7]Sassert SM, Sattin RW, Hunt RC, et al. Blast lung injury. Prehops Emerg Care.2006,10 (2):165-172.
    [8]Elasay NM,Gorbunov NV. Interplay between high energy impulse noise (blast) and antioxidants in the lung.Toxicology,2003,189(1-2):63-74.
    [9]Yetiser S, Ustun T. Concussive blast-type aural trauma, eardrum perforations, and their effects on hearing levels:an update on military experience in Izmir, Turkey.Mil Med, 1993,158(12)803-806.
    [10]Mayorga MA. The pathology of primary blast overpressure injury. Toxicology,1997,121(1):17-28.
    [11]Kluger Y, Nimrod A, Biderman P, et al. The special injury pattern in terrorist bombings.J Am Coll Surg,2004,199(6):875-879.
    [12]Depalma RG, Burris DG, Champion HR, et al. Blast injuries.2005,352(13):1335-1342.
    [13]Wathen LM, DeGowin RL, Gibson DP, et al. Residual injury to the hemopoietic microenvironment following sequential radiation and busulfan.Int J Radiat Oncol Biol Phys.1982,8(8):1315-1322.
    [14]Centers for Disease Control and Prevention (CDC). Injuries associated with landmines and unexploded ordnance--Afghanistan,1997-2002. MMWR Morb Mortal WklyRep, 2003,52(36):859-862.
    [15]Fodor L, Ullmann Y, Soudry M,et al. Long-term results after Ilizarov treatment f or severe high-energy injuries of the elbow.J Trauma.2009,66(6):1647-1652.
    [16]Goldstein LE, Fisher AM, Tagge CA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model.Sci Transl Med. 2012,4(134):134-160.
    [17]Ciraulo DL, Frykberg ER, Feliciano DV, et al. A survey assessment of the level of preparedness for domestic terrorism and mass casualty incidents among Eastern Association for the Surgery of Trauma members.J Trauma.2004,56(5):1033-1039.
    [18]Ozer O, Sari I, Davutoglu V, et al.Pericardial tamponade consequent to a dynamite explosion:blast overpressure injury without penetrating trauma. Tex Heart Inst J, 2009,36(3):259-260.
    [19]Einav S, Aharonson-Daniel L, Weissman C, et al. In-hospital resource tilization during multiple casualty incidents.Ann Surg.2006,243(4):533-540.
    [20]王正国.冲击波所致多发伤.中华创伤杂志,2001,17(11):645-648.
    [21]於进文,王娟,夏裕银,等.兔颅脑冲击伤模型的建立.第四军医大学学报,2007,28(19):1786-1788.
    [22]李建虎,何黎升,雷德林,等.颌面部爆炸伤模型的建立及颞颌关节盘的损伤.第四军医大学学报,2002,23(8):732~734.
    [23]侯立军,张光霁,卢亦成.犬颅脑爆炸伤模型的建立.中华创伤杂志,2001,117(12):725-728.
    [24]王德文,刘耀.反恐应急救援.北京:人民军医出版社,2012.
    [25]Eskridge SL, Macera CA, Galarneau MR, et al. Combat blast injuries:Injury severity and posttraumatic stress disorder interaction on career outcomes in male servicemembers.J Rehabil Res Dev,2013,50(l):7-16.
    [26]Sheffy N, Mintz Y, Rivkind AI, et al. Terror-related injuries:a comparison of gunshot wounds versus secondary-fragments-induced injuries from explosives. J Am Coll Surg. 2006,203(3):297-303.
    [27]Ohnishi M, Kirkman E, Guy RJ, et al. Reflex nature of the cardiorespiratory response to primary thoracic blast injury in the anaesthetised rat.Exp Physiol. 2001,86(3):357-364.
    [28]岳茂兴,杨志焕,魏荣贵,等.爆炸致冲烧毒复合伤的特点和紧急救治.创伤外科杂志,2003,5(5):236
    [29]岳茂兴.特种燃料爆炸致冲毒复合伤的急救.急诊医学杂志,2000,9:126-128.
    [30]岳茂兴.爆炸致复合伤的基本特点和初期急救原则及抢救程序.中国急救医学杂志,2002,22:146-149
    [31]Liu Baosong, Wang Zhengguo, Leng Huaguang, et al. Pathological study of horacic impact injury involving a relatively impact implant pattern. J trauma,1996,40(3):85-88.
    [32]Ritenour AE, Wickley A, Ritenour JS, et al. Tympanic membrane perforationand hearing loss from blast overpressure in Operation Enduring Freedom and Operation Iraqi Freedom wounded. J Trauma.2008,64(2 Suppl):S174-178.
    [33]Jaffin JH, Ochsner MG, Cole FJ, et al. Alkaline phosphatase levels indiagnostic peritoneal lavage fluid as a predictor of hollow visceral injury.J Trauma.1993,34(6):829-833.
    [34]Szabo C, Salzman AL, Ischiropoulos H. Endotoxin triggers the expres-sion of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS Lett 1995,363:235-238.
    [35]Southan GJ, Zingarelli B, O'Connor M, et al. Spontane-ous rearrangement of aminoalkylisothioureas into mercaptoalky-lguanidines, a novel class of nitric oxide synthase inhibitors with selec-tivity towards the inducible isoform. Br J Pharmacol 1996,117:619-632.
    [36]Szabo A, Hake P, Salzman AL, Szabo C. Beneficial effects of mercapto-ethylguanidine, an inhibitor of the inducible isofonn of nitric oxide synthase and a scavenger of peroxynitrite, in a porcine mdel of de-layed hemorrhagic shock. Crit Care Med 1999,27:1343-1350.
    [37]Szabo C, Salzman AL, Ischiropoulos H. Peroxynitrite-mediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagicshock and ischemia-reperfusion injury. FEBS Lett,1995,372:229-232.
    [38]Leibovici D, Gofrit ON, Stein M, et al. Blast injuries:bus versus open-air bombings. A comparative study of injuries in survivors of open-air versus confined-space explosions.J Trauma,1996,41:1030-1035.
    [39]Tsokos M, Madea B, Koops E, et al. Pathologic features of suicidal deaths caused by explosives. Am J Forensic Med Pathol,2003,24:55-63.
    [40]Mellor SG, Cooper GJ. Analysis of 828 servicemen killed or injured by explosion in Northern Ireland 1970-84:the Hostile Action Casualty System. Br J Surg,1989,76:1006-1010.
    [41]Prat N, Rongieras F, Voiglio E. et al. Intrathoracic pressure impulse predicts pulmonary contusion volume in ballistic blunt thoracic trauma. J Trauma,2010,69(4):749-755.
    [42]Bass C, Bolduc M, Waclawik S. Development of a non-penetrating,9 mm, ballistic helmet trauma test method. Proceedings of the Personal Armour Systems Symposium 2002,2002:18-22.
    [43]Roberts JC, Merkle AC, Biermanna PJ. et al. Computational and experimental models of the human torso for non-penetrating ballistic impact. J Biomech,2007:40(1):125-136.
    [44]Sarron JC, Dannawi M, Faure A. et al. Dynamic Effects of a 9 mm Missile on Cadaveric Skull Protected by Aramid, Polyethylene or Aluminum Plate:An Experimental Study. J Trauma,2004,57(2):236-243.
    [45]Cannon L. Behind armour blunt trauma:an emerging problem. J R Army Med Corps, 2001,147(1):87-96.
    [46]Clemedson CJ, Pettersson H. Propagation of a high explosive air shock wave through different parts of an animal body. Am. J.Physiol,1995,184:119-126.
    [47]Langworthy MJ, Sabra J, Gould M, et al. Terrorism and blast phenomena:Lessons learned from the attack on the USS Cole(DDG67).Clinical Orthopaedics & Relateed Reasearch,2004,422:82-87.
    [48]Phillips YY, Zajtchuk JT. Blast injuries of the ear in military operations. Ann Otol Rhinol Lar-yngol Suppl 1989,140:3-4.
    [49]Chandler DW, Edmond CV. Effects of blast overpressure on the ear:case reports. J Am Acad Audiol,1997,8:81-88.
    [50]Fausti SA, Wilmington DJ, Gallun FJ, et al. Auditory and vestibular dysfunc-tion associated with blast-related traumatic brain injury. J Rehabil Res Dev,2009,46:797-810.
    [51]Wangemann P. Cochlear blood flow regulation.Adv Otorhinolaryngol 2005,59:51-57.
    [52]Mazurek B, Rheinlander C, Fuchs FU, et al. Influence of ischemia/hypoxia on the HIF-1 activity and expression of hypoxia-dependent genes in the cochlea of the newborn rat]. HNO,2006,54:689-697.
    [53]Darley DS, Kellman RM. Otologic consider-ations of blast injury. Disaster Med Public Health Prep,2010; 4:145-152.
    [54]Brown RF, Cooper GJ, Maynard RL. The ultrastructure of rat lung following acute primary blast injury. Int J Exp Pathol,1993,74:151-162.
    [55]Southan GJ, Zingarelli B, O'Connor M, et al. Spontaneous rearrangement of aminoalkylisothioureas into mercaptoalky-lguanidines, a novel class of nitric oxide synthase inhibitors with selectivity towards the inducible isoform. Br J Pharmacol, 1996,117:619-632.
    [56]Demling RH, Smith M, Gunther R, Wandzilak T, Pederson NC. Use of a chronic prefemoral lymphatic fistula for monitoring systemic capillary Bintegrity in unanesthetized sheep. J Surg Res,1981,31:136-144.
    [57]Quinn DA, Robinson D, Jung W, et al. Role of sulfidopeptide leu-kotrienes insynthetic smoke inhalation injury in sheep. J Appl Physiol,1990,68:1962-1969.
    [58]ChaiJK, ShengZY, LuJY, et al. Charaeteristics of and strategies for patients with severe bum- blast combined injury.ChinMedJ(Engl).2007,120:1783-178.
    [59]ChaiJK, ShengZY, YangHM, et al. Treatment strategies for mass bum casualties.ChinMedJ(Engl),2009,122:525-529.
    [60]Bao Z, Guan S, Cheng C, et al. A novel antiinflammatory role for andrographolide in asthma via inhibition of the nuclear factor- k B pathway. Am J Respir Crit Care Med,2009,179:657-665.
    [61]Turnage RH, Nwariaku F, Murphy J, et al. Mechanisms of pulmonary microvascular dysfunction during severe burn injury. World J Surg,2002,26:848-853.
    [62]Marko P, Layon AJ, Caruso L, et al. Burn injuries. Curr Opin Anaesthesiol 2003;16:183-191.
    [63]Arturson G. Pathophysiology of the burn wound and pharmacological treatment. The Rudi Hermans lecture,1995. Burns,1996,22:255-274.
    [64]Sheridan RL, Ryan CM, Yin LM, et al. Tompkins RG Death in the burn unit:sterile multiple organ failure. Burns,1998;24:307-311.
    [65]O'Connor TM, O'Connell J, O'Brien DI, et al. Bredin CP,Shanahan F. The role of substance P in inflammatory disease. J Cell Physiol,2004,201:167-180.
    [66]Grimsholm O, Guo Y, Ny T, et al.Are neuropeptides important in arthritis? Studies on the importance of bombesin/GRP and substance P in a murine arthritis model. Ann N Y Acad Sci,2007,1110:525-538.
    [67]Katz E, Ofek B, Adler J, et al. Primary blast injury after a bomb explosion in a civilian bus. Ann Surg,1989,209:484-488.
    [68]Brown RF, Cooper GJ, Maynard RL. The ultrastructure of rat lung following acute primary blast injury. Int J Exp Pathol,1993,74:151-162.
    [69]Zhang J, Wang Z, Leng H, et al. Studies on lung injuries caused by blast underpressure. J Trauma,1996,40(3 Suppl):S77-S80.
    [70]Mudd KL, Hunt A, Matherly RC, et al. Analysis of pulmonary fat embolism in blunt force fatalities. J Trauma 2000,48:711-715.
    [71]Gorbunov NV, Elsayed NM, Kisin ER, et al. Air blast-induced pulmonary o xidative stress:interplay among hemoglo-bin, antioxidants, and lipid peroxidation. Am J Physiol,1997,272:L320-L334.
    [72]Mellor SG. The pathogenesis of blast injury and its management. Br JHosp Med 1988,39:536-539.
    [73]Fulde GW, Harrison P. Fat embolism:a review. Arch Emerg Med,1991,8:233-239.
    [74]汪昌荣,陈旭林.40例火药爆炸烧伤死因分析.安徽医科大学学报,1999,34:396-39
    [75]方林森.烟花火药爆炸伤106例临床分析.安徽医学,1999,20:26~27
    [76]王正国.原发冲击伤的发生机制.解放军医学杂志,1995,20:315~317
    [77]郑怀恩,程天民,林远,等.大鼠超压冲击伤和烧冲复合伤肺出血.的量化研究.第三军医大学学报,1993,15:313-315
    [78]郑怀恩,程天民,林远,等.冲击伤和烧冲复合伤后出现的肺泡内结晶体.第三军医大学学报,1995,17:99-102
    [79]汤慧芳,朱一亮,谢强敏,等.西维来司钠与急性肺损伤.世界临床药物,2003,24:432~436
    [80]Bierre AR, Koelmeyer TD. Pulmonary fat and bone marrow embolism inaircraft accident victims. Pathology,1983,15:131-135.
    [81]Cook MA. The science of high explosives. New York:Reynolds Publishing; 1958.
    [82]Argyros GJ. Management of primary blast injury.Toxicology 1997,21:105-115.
    [83]Prentiss JE, Imoto EM. Fat embolism, ARDS, coma, death:the four horsemen of the fractured hip. Hawaii Med J2001;60:15-19.
    [84]董海山,周芳芳.高能固体炸药及相关物性.北京:科技出版社,1995
    [85]李成兵,沈兆武.起爆方式对杆式弹丸成型和穿甲的影响.火炸药学2006,29(3):47~51.
    [86]Elsayed NM, Armstrong KL, William MT, et al. Antioxidant loading reduces oxidative stress induced by high-energy impulse noise (blast) exposure. Toxicology,2000,155:91-99.
    [87]Mellor SG, Cooper GJ. Analysis of 828 servicemen killed or injured by explosion in Northern Ireland 1970-84:the Hostile Action Casualty System. Br J Surg,1989,76:1006-1010.
    [88]Caseby NG, Porter MR Blast injuries to the lungs:clinical presentation,management and course. Injury 1976,8:1-12.
    [89]Brown RF, Cooper GJ, Maynard RL. The ultrastructure of rat lung following acute primary blast injury. Int J Exp Pathol,1993,74:151-162.
    [90]Ritenour A, Blackboure LH, Rittenour JS, et al. Incidence of primary blast injury among soldiers burned in combat explosions. J Burn Care Res,2007,28(2):S173.
    [91]Frykberg ER, Tepas JJ, Alexander RH. The 1983 Beirut airpot terrorist bombing:Injury patterns and implications for disaster management. American Surgeon,1989; 55(3):134-141.
    [92]Chai JK, Sheng ZY, Lu JY, et al. Characteristics of and strategies for patients with severe burn-blast combined injury. Chin Med J (Engl),2007,120(20):1783-1787.
    [93]Hawskin,A., Maclenna,P.A, McGwin,G, et al.The impact of combined trauma and burns on patient mortality. J Trauma,2005; 58(2):284-288.
    [94]Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit Care Med,2003,31:S213-20.
    [95]Gunther A, Mosavi P, Heinemann S. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia:comparison with the acute respiratory distress syndrome. Am J Respir Crit Care Med,2000,161:454-456.
    [96]Barnes PJ, Hansel TT Prospects for new drugs for chronic obstructive pulmonary disease. Lancet,2004,364:985-996.
    [97]Schmitz JA, Owyang E, Oldham Y. et al. IL-33, an interleukin-1-like ytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity,2005,23:479-490.
    [98]Hayakawa H, Hayakawa M, Kume ASoluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem,2007,282:26369-26380.
    [99]Beltran CJ, Nunez LE, Diaz-Jimenez D, et al. Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflammatory Bowel Diseases,2010,16(7):1097-1107.
    [100]Bowie A, O'Neill LAJ. The interleukin-1 receptor/Toll-like receptor superfamily:signal generators for pro-inflammatory interleukins and microbial products. Journal of Leukocyte Biology,2000,67(4):508-514.
    [101]Franchi L, Kamada N, Nakamura Y, et al. Suzuki S. NLRC4-driven production of IL-lbeta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nature Immunology.2012;13:449-456.
    [102]Liu ZJ, Yadav PK, Xu X, et al. The increased expression of IL-23 in inflammatory bowel disease promotes intraepithelial and lamina propria lymphocyte inflammatory responses and cytotoxicity. Journal of Leukocyte Biology,2011,89(4):597-606.
    [103]Seidelin JB, Bjerrum JT, Coskun M, et al. IL-33 is upregulated in colonocytes of ulcerative colitis. Immunology Letters,2010,128(1):80-85.
    [104]Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity,2005,23(5):479-490.
    [105]Wood IS, Wang B, Trayhurn P. IL-33, a recently identified interleukin-1 gene amily member, is expressed in human adipocytes. Biochemical and Biophysical Research Communications,2009,384(1):105-109.
    [106]Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo:a novel "Alarmin"? PLoS ONE,2008,3(10)e3331.
    [107]Bergers G, Reikerstorfer A, Braselmann S, Graninger P, Busslinger M. Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA soforms coding for either secreted or membrane-bound proteins related to the IL-1 receptor. EMBO Journal,1994,13(5):1176-1188.
    [108]Foo Y. Liew, Nick I. Pitman and Iain B.McInnes Disease-associated functions of IL-33: the new kid in the IL-1 family.Nature Immunology.2010; 10:103-110.
    [109]Hayakawa, H., M. Hayakawa, A. Kume, and S. Tominaga. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation.J.Biol.Chem.2007; 282: 26369-26380.
    [110]Sanada, S. et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest.2007; 117:1538-1549.
    [111]Miller, A. M. et al. IL-33 reduces the development of atherosclerosis. J. Exp. Med.2008; 205,339-346.
    [112]David Prefontaine, Stephane Lajoie-Kadoch, Susan Foley, Severine Audusseau, Ron Olivenstein, Andrew J. et al.Increased Expression of IL-33 in Severe Asthma:Evidence of Expression by Airway Asthma:Evidence of Expression by Airway. J Immunol.2009; 183:5094-5103.
    [113]Bulek K, Swaidani S, Qin J, et al. The essential role of single Ig IL-1 receptor-related molecule/Toll IL-1R8 in regulation of Th2 immune response. Journal of Immunology.2009; 182(5):2601-2609.
    [114]Talabot-Ayer D, Lamacchia C, Gabay C, Palmer G. Interleukin-33 is b iologically active independently of caspase-1 cleavage. Journal of Biological Chemistry,2009, 284(29):19420-19426.
    [115]Lucey DR, Clerici M, Shearer GM. Type 1, and Type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clinical Microbiology Reviews,1996,9(4):532-562.
    [116]Nelson MP, Christmann BS, Werner JL, et al. IL-33 and M2a alveolar macrophages promote lung defense against the atypical fungal pathogen Pneumocystis murina. Journal of Immunology,2011,186(4):2372-2381.
    [117]Hueber AJ, Alves-Filho JC, Asquith DL, et al. IL-33 induces skin inflammation with mast cell and neutrophil activation. European Journal of Immunology,2011,41(8):2229-2237.
    [118]Suzukawa M, Koketsu R, Iikura M, et al. Interleukin-33 enhances adhesion, CD11b expression and survival in human eosinophils. Laboratory Investigation.,2008,88(11):1245-1253.
    [119]Rank MA, Kobayashi T, Kozaki H, Bartemes KR, Squillace DL, Kita H. IL-33-activated dendritic cells induce an atypical TH2-type response. Journal of Allergy and Clinical Immunology,2009;123(5):1047-1054.
    [120]梁志敏IL一33及相关细胞因子在活动性类风湿关节炎患者血清中的表达及意义:[硕士学位论文].河北:河北医科大学,2012
    [121]Guo L, Wei G, Zhu J, et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proceedings of the National Academy of Sciences of the United States of America,2009; 106(32):13463-13468.
    [122]Jose C Alves-Filho, Fabiane Sonego, Fabricio O Souto, Andressa Freitas, Waldiceu A Verri Jr, Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection.Nature medicine.2010; 16:708-712.
    [123]张祎 彭道全 冠心病患者血清IL一33水平的研究:[硕士论文].湖南:中南大学,2010
    [124]Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002,418:191-195.
    [125]Brint EK, XuD, LiuH, et al. ST2 is an inhibitor of interleukinl receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol,2004,5:373-379.
    [126]Kearley J, Buckland KF, Mathie SA, et al. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway.Am J Respir Crit Care Med,2009,179(9):772-781.
    [127]Zhiguang X, Wei C, Steven R, et al. Over-expression of IL-33 leads to spontaneous pulmonary inflammation in mIL-33 transgenic mice.Immunol Lett,2010,131(2):159-165.
    [128]Moussion, C, Ortega N, Girard JP. The IL -1-like cytokine IL -33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo:a novel 'alarmin'? PLoS One,2008,3, e3331.
    [129]McLaren JE, Michael DR, Salter RCet al. IL- 33 reduces the development of atherosclerosis. J. Exp. Med,2008,205:339-346.
    [130]Carriere V, Roussel L, Ortega N, et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl Acad. Sci. USA, 2007,104:282-287.
    [131]Allakhverdi Z., Smith DE, Comeau MR, et al. Cutting edge:the ST2 ligand IL -33 potently activates and drives maturation of human mast cells. J. Immunol,2007, 179:2051-2054.
    [132]Kurowska-Stolarska M, Kewin P, Murphy G, et al. IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4. J. Immunol,2008 181:4780-4790.
    [133]]Mangan N E, Dasvarma A, McKenzie A N, et al. T1/ST2 expression on Th2 cells negatively regulates allergic pulmonary inflammation. Eur. J. Immunol,2007,37: 1302-1312.
    [134]Kearley J, Buckland, KF, Mathie, S A. & Lloyd, C. M. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am. J. Respir. Crit. Care Med,2009,179:772-781.
    [135]Hayakawa H, Hayakawa M., Kume,A. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol.Chem.2007,282:26369-26380.
    [136]Aschkenasy-Steuer G, Shair, M, Rivkind A, et al. Clinical Review:The Israeli experience:conventional terrorism and critical care. Critical Care.2005; 9:490-499.
    [137]D'Avignon LC, Chung KK, Saffle JR, et al.Prevention of infections associated with combat-related burn injuries. J Trauma.2011; 71:s282-289.
    [138]Jaffin,JH, Mckinney,L.,Kinney, R.C.et al. A laboratory model for studying blast overpressure injury. J Trauma.1987; 27:349-356.
    [139]Chai JK, Sheng ZY, Lu JY, et al. Characteristics of and strategies for patients with severe burn-blast combined injury. Chin Med J (Engl).2007,120(20):1783-1787.
    [140]Selena WS, Shabbir M, Jia Lu, et al. Early Protection from Brn-induced Acute Lung Injury by Deletion of Preprotachykinin-A Gene. Am J Respir Crit Care Med.2010; 181: 36-46.
    [141]Phillips YY. Primary blast injuries. Ann Emerg Med.1986; 15:1446-1450. [143] Mellor SG. The pathogenesis of blast injury and its management. Br Hosp Med 1988; 39:536-539.
    [142]Cooper GJ, Taylor DE. Biophysics of impact injury to the chest and abdomen. J R Army Med Corps.1989;135:58-67.
    [143]Stuhmiller JH, Ho KH, Vander Vorst MJ, Dodd KT, Fitzpatrick T, Mayorga M. A model of blast overpressure injury to the lung. J Biomech 1.996; 29:227-234.
    [144]Brown RF, Cooper GJ, Maynard RL.The ultrastructure of rat lung following acute primary blast injury. Int J Exp Pathol.1993; 74:151-162.
    [145]Cooper GJ, Maynard RL, Cross NL, Hill JF. Casualties from terrorist bombings. J Trauma.1983;23:955-967.
    [146]Schmitz JA. Owyang E, Oldham Y, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity.2005,23:479-490.
    [147]Jose C, Alves-Filho, Fabiane Sonego, et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection.Nature medicine.2010,16:708-712.
    [148]Schmitz JA. Owyang E, Oldham Y, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity.2005,23:479-490.
    [149]Jose C, Alves-Filho, Fabiane S6nego, et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection.Nature medicine.2010,16:708-712.
    [150]Ford NL, Martin EL, Lewis JF, Veldhuizen RA, Holdsworth DW, Drangova M Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema. Phys Med Biol.2009; 54:2121-2130.
    [151]蔡建华中性拉细胞弹性蛋白酶在大鼠烧冲复合伤肺损伤中作用的实验研究:[博士学位论文].北京:军医进修学院,2010.
    [152]Kondo Y.Yoshimoto T, Yasuda K, et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol.2008,20:791-800.
    [153]chmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity.2005,23:479-490.
    [154]Loniewski K, Shi Y, Pestka J. et al. Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages. Mol. Immunol.2008,45:2312-2322.
    [155]Kakkar R, Lee RT. The IL-3 3/ST2 pathway:therapeutic target and novel biomark er. Nat R ev Drug Discov.2008,7:827-840.
    [156]Hayakawa M. Mature interleukin -33 is produced by calpain-mediated cleavage in vivo. Biochem. Biophys. Res. Commun.2009,387:218-222.
    [157]SuzukawaM. An IL-1 cytokine member,IL-33,induces human basophil activation via its ST2 receptor. J. Immunol.2008,181:5981-5989.
    [158]Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity.2005,23:479-490.
    [159]Sims JE, Nicklin MJ, Bazan JF, et al. A new nomenclature for IL-1-family genes. Trends Immunol.2001,22:536-537.
    [160]Ji MH, Zhu XL, Liu FF, et al. Alpha 2A-adrenoreceptor blockade improves sepsis-induced acute lung injury accompanied with depressed high mobility group box-1 levels in rats. Cytokine.2012,60(3):639-645.
    [161]Guan XJ, Song L, Han FF, et al.Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. 2013,114(2):323-335.
    [162]Min J, Luo FQ, Zhao WL. Regulation on the expression of Clara cell secretory protein in the lungs of the rats with acute lung injury by growth hormone.Chin Med J (Engl). 2012,125(15):2728-2733.
    [163]Ni YF, Jiang T, Cheng QS, et al. Protective effect of magnolol on ipopolysaccharide-induced acute lung injury in mice. Inflammation.2012,35(6):1860-1866.
    [164]Li J, Li D, Liu X, et al. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats.J Inflamm (Lond). 2012,13;9(1):33.
    [165]Kluger Y, Kashuk J, Mayo A. Terror bombing-mechanisms, consequencesm and implication. Scand J Surg,2004; 93(1):11-14.
    [166]Maynard RL, Cooper GJ. Mechanism of injury in bomb blasts and explosions.In: Westaby S, editor. Trauma:pathogenesis and treatment. London:Heinemann,1988, p. 30-41.
    [167]Leibovici D, Go frit ON, Stein M, et al. Blast injuries:bus versus open-air bombings. A comparative study of injuries in survivors of open-air versus confined-space explosions. J Trauma,1996,41:1030-1035.
    [168]Cooper GJ, Maynard RL, Cross NL, et al. Casualties from terrorist bombings. J Trauma 1983,23:955-967.
    [169]Mellor SG, Cooper GJ. Analysis of 828 servicemen killed or injured by explosion in Northern Ireland 1970-84:the Hostile Action Casualty System. Br J Surg.1989,76:106-1010.
    [170]Pizov R, Oppenheim-Eden A, Matot I, et al.Blast lung injury from an explosion on a civilian bus. Chest 1999,115:165-172.
    [171]Szabo C, Ferrer-Sueta G, Zingarelli B, et al. Mercaptoethylguanidine and guanidine Ⅰ nhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-in-duced oxidative damage. J Biol Chem.1997,272:9030-9036.
    [172]Herndon DN, Hilton JG, Traber DL, et al. Burn shock and its re-suscitation. Prog Clin Biol Res.1987,236:539-557.
    [173]Demling R, LaLonde C, Youn YK, et al. Effect of graded increases in smoke inhalation injury on the early systemic response to a body burn. Crit Care Med.1995,23:171-178.
    [174]Demling RH; Will JA, Belzer FO. Effect of major thermal injury on the pulmonary microcirculation. Surgery.1978,83:746-751.
    [175]Kubes P. Nitric oxide modulates epithelial permeability in the feline small intestine. Am J Physiol.1992,262:G1138-G1142.
    [176]Kooy NW, Royall JA, Ye YZ, et al.Evidence for in vivo peroxynitritrate production in human acute lung injury. Am J Respir Crit Care Med.1995,151:1250-1254.
    [177]Kumar A, Parrillo JE. Myocardial depression in septic shock:Role of ni-tric oxide and other mediators. In:Schlag G, Redl G, editors. Shock, sepsis, and organ failure-nitric oxide. Berlin, Heidelberg:Springer-Verlag; 1995,p.322-343.
    [178]Demling RH, Smith M, Gunther R, et al. Use of a chronic prefemoral lymphatic fistula for monitoring systemic capil-lary integrity in unanesthetized sheep. J Surg Res 1981,31:136-144.
    [179]Brazeal BA, Honeycutt D, Traber LD, et al. Pentafraction for superior resuscitation of the ovine thermal burn. Crit Care Med 1995,23:332-339.
    [180]Lund T, Bert JL, Onarheim H, et al. Microvascu lar exchange during burn injury:Ⅰ. A review. Circ Shock.1989,28:179-197.
    [181]Zuckerman S. Experimental study of blast injuries to the lungs. Lancet 1940,Ⅱ:219-224.
    [182]Zhang J, Wang Z, Leng H, et al. Studies on lung injuries caused by blast underpressure. J Trauma.1996,40(3 Suppl):S77-S80.
    [183]Lund T, Wiig H, Reed RK. Acute postburn edema:role of strongly negative interstitial fluid pressure. Am J Physiol 1988;255:H1069-H1074.
    [184]Szabo C, Ferrer-Sueta G, Zingarelli B, Southan GJ, Salzman AL, Radi R. Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-in-duced oxidative damage. J Biol Chem 1997;272:9030-9036.
    [185]Southan GJ, Zingarelli B, O'Connor M, Salzman AL, Szabo C. Spontane-ous rearrangement of aminoalkylisothioureas into mercaptoalky-lguanidines, a novel class of nitric oxide synthase inhibitors with selec-tivity towards the inducible isoform. Br J Pharmacol 1996; 117:619-632.
    [186]Staub NC, Bland RD, Brigham KL, Demling R, Erdmann AJ, Woolver-ton WC. Preparation of chronic lung lymph fistulas in sheep. J Surg Res 1975;19:315-320.
    [187]Hinder F, Booke M, Traber LD, Traber DL. Nitric oxide and endothe-lial permeability. J Appl Physiol 1997;83:1941-1946.
    [188]Sozumi T. The role of nitric oxide in vascular permeability after a ther-mal injury. Ann Plast Surg 1997;39:272-277.
    [189]Navar PD, Saffle JR, Warden GD. Effect of inhalation injury on fluid re-suscitation requirements after thermal injury. Am J Surg 1985; 150:716-720.
    [190]Demling RH, Smith M, Gunther R, Wandzilak T, Pederson NC. Use of a chronic prefemoral lymphatic fistula for monitoring systemic capil-lary integrity in unanesthetized sheep. J Surg Res 1981;31:136-144.
    [191]Adler H, Adler B, Peveri P, et al. Differential regulatio nof inducible nitric oxide synthase produc-tion in bovine and J Infect Dis.1996,173:971-978.
    [192]Adler H, Frech B, Thony M, et al. Inducible nitric oxide synthase in catle:differential cytokine regulation of nitric oxide synthase in bovine and murine macrophages. J I mmunol.1995,154:4710-4718.
    [193]Kluger Y, Kashuk J, Mayo A. Terror bombing-mechanisms, consequencesm and implication. Scand J Surg.2004; 93(1):11-14.
    [194]Moylan JP.1981. Inhalation injury:a primary derterminant of survival following major burns. J Burn Care Rehab.1981,2:78-84.
    [195]Knoferl MW, Liener UC, Seitz DH, et al. Cardiopulmonary, histological, and inflammatory alter-ations after lung contusion in a novel mouse model of blunt chest trauma. Shock.2003,19:519-525.
    [196]Brown RF, Cooper GJ, Maynard RL. The ultrastructure of rat lung following acute primary blast injury. Int J Exp Pathol.1993,74:151-162.
    [197]Mellor SG. The pathogenesis of blast injury and its management. Br J Hosp Med. 1988,39:536-539.
    [198]Komai-Koma M et al. IL-33 is a chemoattractant for human Th2 cells. Eur J Immunol, 2007,37:2779-2786.
    [199]Lohning, M. et al. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc. Natl Acad. Sci. USA 95,6930-6935 (1998).
    [200]Lefrancais E, Roga S, Gautier V. et al, IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A,2012,109(5):1673-1678
    [201]Li GX, Wang S, Duan ZH,et al. Serum levels of IL-33 and its receptor ST2 are elevated in patients with ankylosing spondylitis. Scand J Rheumatol,2013 in print.
    [1]Linrong Lu, Koichi Ikizawa, Dan Hu, Miriam B.F.et al Regulation of Activated CD4+T Cells by NK Cells via the Qa-1-NKG2A Inhibitory Pathway J. Immunology.2007,26,593-604
    [2]Alexander Marsonl, Karsten Kretschmer etal Foxp3 occupancy and regulation of key target genes during T-cell stimulation J. Nature.2007,445,1038-1046
    [3]Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. J.Nature.2010,463(7282):808-812
    [4]Sonja I. Gringhuis, Jeroen den Dunnen, Manja Litjens etal. C-Type Lectin DC-SIGN Modulates Toll-like Receptor Signaling via Raf-1 Kinase-Dependent Acetylation of Transcription Factor NF-KB. J. Immunity.2007,26(2):605-616
    [5]Lu LF, Thai TH, Calado DP, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. J. Immunity.2009,30(1):80-91
    [6]Shuxiong Xu, Zhaolin Sun, Lian Li, Jun Liu, Jian He, Dalong Song, Gang Shan, Hong Liu, Xiongfei Wu。Induction of T cells suppression by dendritic cells transfected with VSIG4 recombinant adenovirus.J. Immunology.2010, 128(1),46-50
    [7]Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA.IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells J. Immunology.2007,178(1):280-290
    [8]Yao Z, Kanno Y,Kerenyi M,et al.Nonredundant roles for Stat5a/b in directly regulating Foxp3 J. Blood.2007,109(10):4368-4375
    [9]Cohen AC, Nadeau KC, Tu W, et al. Cutting edge:Decreased accumulation and regulatory function of CD4+CD25(high)T cells in human STAT5b deficiency.J. Immunology.2006,177(5):2770-2774
    [10]陈振埕,邢飞跃Jagged-1对淋巴细胞生成细胞因子的影响.[J].细胞与分子免疫学杂2010,26(1):86-90
    [11]戴鸣,赵昌.可溶性Jagged-1/Fc融合蛋白对CD4+CD25+T细胞分化的作用.[J].细胞与分子免疫学杂2009,25(3):269-273
    [12]Meixiao Long, Sung-Gyoo Park, Ian Strickland, Matthew S. Hayden, and Sankar Ghosh1, Nuclear Factor-KB Modulates Regulatory T Cell Development by Directly Regulating Expression of Foxp3 Transcription Factor.J.immuniy.2009,31,921-931
    [13]Qingguo Ruan, Vasumathi Kameswaran, Yukiko Tone, et al Development of Foxp3+ Regulatory T Cells Is Driven by the c-Rel Enhanceosome.J. Immunity.2009,31,932-940
    [14]Wang J, Zhao F, Dou J, He XF, Chu L, Cao M, Liu C, Li Y, Gu N. Immunotherapy of melanoma by GPI-anchored IL-21 tumour vaccine involves down-regulating regulatory T cells in mouse model.J. Int Immunogenet. 2011,38(1):21-29
    [15]Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways.J. Nat Immunol.2007,8(9):967-974
    [16]Bucher C, Koch L, Vogtenhuber Cblood, etal IL-21 blockade reduces graft-versus-host disease mortality by supporting inducible T regulatory cell generation J. Blood 2009,114(26):5375-5384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700