用户名: 密码: 验证码:
电力市场环境下发电机组检修规划策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力工业市场化改革,产生了追求效益最大化的发电厂商和负责系统运行的独立调度机构ISO(Independent system operator)等市场主体,机组检修规划模式应由以系统运行为中心转向在发电厂商效益和系统运行之间取得均衡,传统策略不再适用,迫切需要开发新的规划模型。本文作为国家重点基础研究发展计划专项资助项目“电力市场对电力系统运行可靠性的影响研究(2004CB217905)”和国家自然科学基金资助项目“输电系统的状态检修和减灾抢修策略研究(50807043)”的一部分,集中对市场环境下发电机组检修规划及相关问题进行了研究,主要内容和研究结论如下:
     1.提出了基于浴盆曲线失效模式的发电机组故障率函数,相关参数通过历史运行数据采用最小二乘拟合方法得到,基于此可确定机组可用度并估计用于更新破损元件的期望费用支出。对比发电厂商和整个系统的机组检修安排可知,与以固定强迫停运率描述机组故障的运行-故障两状态模型相比,该模型更符合机组运行实际,反映了故障率和可用度随时间变化情况,可用于评估其突然故障对发电厂商或系统运行带来的风险损失。
     2.提出了基于电价空间分布的分类预测模型和用于中长期电价模拟的复合预测模型,以分析规划期内的发电厂商成本/效益水平。前者根据影响电价分布的各市场因素,利用邻近点和支撑向量机技术对未来时段电价进行分类并分别预测,降低了电价对时间的依赖程度,为中长期预测提供了有效思路。同时,建立了结合ARMA-ARCH时间序列模型和跳跃模型的复合预测模型,分别用来描述电价变化的自回归特性、异方差特性和所对应的尖峰电价,算例表明其可有效描述电价变化,适用于电价中长期模拟。
     3.机组检修规划模式与市场机制、系统容量充裕度密切相关。对于容量充裕度较低系统,提出了由ISO统一安排、以包括可靠性成本、发电成本、机组更新费用和检修费用在内的系统运行成本最小为目标的规划模型;对于容量充裕度较高、市场机制成熟系统,基于发电厂商和ISO的不同职责,提出了两步骤规划模式:首先各发电厂商根据所处市场环境及机组运行情况,以其效益最优确定检修计划并提交至ISO;然后由ISO协调各机组检修时段并合理分摊调整费用,确保系统运行可靠。
     4.基于日前能量市场,构建了考虑机组故障和市场电价波动两种风险因素的发电厂商的最优规划模型,确保其规划期内的经济效益最优,并扩展至包括双边合同、日前市场和备用市场的复杂市场模式,考虑相关约束条件后,采用遗传算法和线性规划方法相结合思想求解。算例表明,所述模型可规避相关风险损失,确保发电厂商的效益最优。由于并未考虑供求平衡、备用等系统运行约束,所得检修时段应由ISO协调后才能赋予实施。
     5.提出了基于运行成本分析的系统机组检修的迭代调整策略。各发电厂商将检修计划提交至ISO,ISO判断其是否满足预期要求并产生相应调整信号,若满足,则得到最终检修安排并将调整费用按负荷分摊至各用户,否则将调整信号传递至各发电厂商,并在其规划目标中以调整成本形式加以考虑,促使各发电厂商重新规划其检修时段。算例仿真结果表明,经过几次迭代即可获得满足双方要求的、可行的检修计划,在发电厂商经济效益和系统可靠、经济运行之间取得均衡,同时用户也乐意支付相应调整费用以获得更优的可靠性水平。
     6.提出了基于市场竞争的发电机组检修协调机制。首先各发电厂商评估其机组在不同窗口检修的成本/效益,确定其检修竞价费用并提交至ISO;然后,根据各发电厂商的检修竞价费用,ISO确定其满意度并构建了包括机组竞价费用、满意度和系统充裕度在内的多目标协调规划模型;最后,根据“谁获益、谁支付”的市场原则,给出了基于最终满意度水平的费用分摊机制。算例仿真结果表明,该方法简单、透明、公平,保证了各时段的系统充裕度;同时各发电厂商或者获得满意的检修窗口,或者获得一定经济补偿,确保了检修计划的顺利实施。
     发电机组检修安排,不仅影响各发电厂商的经济效益,也是确保系统安全运行和市场稳定的关键环节之一,本文对该问题进行了深入分析,提出了适合于不同市场发展阶段和不同系统充裕度水平的检修规划模式,在检修理论和市场实际运行上提出了一些新观点和模型,对于该问题的发展及进一步深入研究具有积极的参考意义。
The deregulation of power industry creates the independent market entities with differentobjectives, including the self-interested power producers to maximize their payoffs and theindependent system operator (ISO) to ensure the system reliability. Therefore, the traditionalsystem-centralized mechanism of unit maintenance scheduling (UMS) is not valued anymoreand appropriate decision-making models need to be built to strike a tradeoff between theproducers’ benefits and the system operation. As a part of “Research of operation andreliability of power systems in electricity market”, supported in part by the Special Fund ofthe National Priority Basic Research of China (2004CB217905) and in part by the NationalNature Science Foundation of China (50807043), a systematic study on the UMS and otherrelated aspects in the market environment are carried out in this dissertation. Major researchwork and contributions are summarized as follows.
     1. Generating units may experience outage caused by unexpected failures, which would posea serious risk on the producers’ benefits and the system operation. Thus, a hazard function ispresented to characterize the bathtub-shaped failure curve of generating units, and the relatedparameters can be estimated from the historical data by the least-square-fitting method.Based on this, the unit availability and the expected renewal cost for replacing the damagedcomponents can be calculated. The UMS simulation results of generating company and thepower system shows that compared with the traditional up-down dual state model, theproposed one is more helpful to evaluate and avoid the related risk.
     2. In power market, electricity price forecasting is an essential work for the UMS research. Aclassified forecasting model and a hybrid simulation model are presented. In the formermodel, based on the related market factors, the proximal point and support vector machinetechniques are used to classify the future prices, which are estimated respectively. Thismodel reduces the price dependence on time and provides effective information for themedium-and long-term price forecasting. On the other hand, the hybrid model is presentedfor medium-term price simulation and consists of one ARMA-ARCH model and one jumpmodel, which are used to characterize the autoregressive, heteroscedastic features and the price peaks. Simulation results show that it can simulate the electricity prices effectively.
     3. The UMS mode relates to the market mechanism and the system adequacy. For the systemwith insufficient adequate capacity, UMS should be determined by the ISO via minimizingthe system operation costs of the reliability costs, the production costs, the units’ renewal andmaintenance costs. Whereas, for the system with sufficient adequate capacity and highlycompetitive market, the outage planning should be scheduled through two procedures. Firstly,individual producers plan their outage periods by maximizing their benefits and submit themaintenance windows to the ISO. Subsequently, the ISO coordinates the outage requests toformulate a system-wide plan and allocates the relevant costs for its non-profit characteristic.
     4. In the market environment, power producers challenge some uncertain factors, includingunexpected unit failures and the fluctuating electricity prices. According to the pool-basedenergy market, the relative UMS models are proposed to optimize the producers’ payoffs,considering the two factors, respectively. They are both solved by the combination ofGenetic Algorithm and the linear programming methods. Furthermore, they are extended to ahybrid market including bilateral contracts, energy market and reserve market. Case studiesshow that they can maximize the producers’ benefits and reduce the relevant risk. Note that,the obtained outage planning is mainly analyzed from the perspective of power producersand should not be carried out without approval of the ISO.
     5. Based on the system operation cost analysis, an iterative coordinated UMS model isproposed, thoroughly considering the impacts of unexpected unit failures on the producersand the system. Individual producers submit their outage schedules to the ISO, and the ISOdetermines whether they can ensure the system economic operation and synthesizes thecorrective signals. If not, the obtained signals would be sent to the related producers to directthem to reschedule their outage periods. Moreover, the corresponding reschedule costs areshared pro rata among power consumers. Case studies show that through several iterations, afeasible outage planning can be obtained to ensure the producers’ benefits as well as lowerdown the system operation costs.
     6. According to the different functions of power producers and the ISO, a novelmarket-competitive UMS mechanism is presented. Firstly, power producers evaluate thebenefits/costs of its owned units for each available outage window and submit a set ofmaintenance bidding costs (MBCs) to the ISO. Subsequently, the ISO determines theirsatisfactory degrees (SDs) and coordinates the outage periods to attain a balance among theMBCs, SDs of generating units and the possible load curtailment. Thirdly, as a non-profitorganization, the ISO settles the final expenditure of individual producers in terms of theSD-based approach. Case studies show that the proposed scheme characterizes simplicity,fairness, efficiency and the competitive market rules, which can be adopted for a real-sizedsystem. Meanwhile, the producers obtain either the well-pleasing outage windows or the extra economic compensation, which ensure the smooth implementation of the outagescheduling.
     As one of the important problems in power market, outage scheduling of generating unitsaffects not only the producers’ benefits, but also the system reliability and the marketstability. This dissertation carries out a systematic research on the UMS problem andpresents the proper models for different market mechanism. Several novel points and modelson the UMS theory and application are proposed. These researches may provide animportant reference for the development of the UMS theory.
引文
[1] Li Z and Guo J. Wisdom about age [J]. IEEE Power Energy Magazine,2006,4(3):44-51.
    [2] Vaahedi E and Shahidehpour SM. Decision support tools in restructured electricity systems: anoveriew[J]. IEEE Transactions on Power Systems,1999,19(4):1999-2005.
    [3]王锡凡.电力市场条件下电网的安全保证体系[J].电网技术,2004,28(9):7-13.
    [4] Wang H. A survey of maintenance policies of deteriorating systems[J]. European Journal ofOperational Research,2002,139(3):468-489.
    [5]许婧,王晶,高峰等.电力设备状态检修技术研究综述[J].电网技术,2000,24(8):48-52.
    [6] Smith SM, Reliability-centred maintenance[M]. New York: McGraw-Hill,1993.
    [7] Krishnasamy L,Khan FI,Haddara M. Development of a risk-based maintenance(RBM) strategy for apower-generating plant[J]. Journal of Loss Prevention in the Process Industries,2005,18(2):69-81.
    [8] Khan FI and Haddara M. Risk-based maintenance (RBM): a new approach for process plantinspection and maintenance[J]. Process Safety Progress,2004,23(4):252-265.
    [9] Tan CM and Raghavan N. A framework to practical predictive maintenance modeling formulti-state systems[J]. Reliability Engineering and System Safety,2008,94(3):776-780.
    [10] Cheung KW,Shamsollahi P,Sun D,et al. Energy and ancillary service dispatch for the interim ISONew England electricity market[J]. IEEE Transactions on Power Systems,2000,15(3):968-974.
    [11] Hesmondhalgh M. Is NETA the blueprint for wholesale electricity trading arrangements of thefuture?[J]. IEEE Transations on Power Systems,2003,18(2):548-554.
    [12] Alvey T,Goodwin D,Ma X,et al. A security constrained bid-clearing system for New Zealandwholesale electricity market[J]. IEEE Transactions on Power Systems,1998,13(2):340-346.
    [13] Andrew LO. Experience with PJM market operation, system design, and implementation[J]. IEEETransactions on Power Systems,2003,18(2):528-534.
    [14] Mielczarski W and Widjaja M. Analysis of bids and re-bids of generators in the Australian nationalelectricity market[C]. IEEE Power Engineering Society Winter Meeting, New York, USA: IEEE,1999:833-838.
    [15] Ma X, Sun DI, Cheung KW. Evolution toward standardized market design[J]. IEEE Transactions onPower Systems,2003,18(2):460-469
    [16]国家发展改革委员会.能源发展“十一五”规划[EB/OL].[2007-04-10].http://www.ndrc.gov.cn/nyjt/nyzywx/P020070410417020191418.pdf.
    [17]王锡凡,王秀丽,陈皓勇.电力市场基础[M].西安:西安交通大学出版社,2003.
    [18] Shahidehpour SM and Marwali MKC. Maintenance scheduling in restructured power systems [M].Norwell, MA: Kluwer,2000.
    [19]文福拴,David AK.加州电力市场失败的教训[J].电力系统自动化,2001,25(5):1-5.
    [20]胡学浩.美加联合电网大面积停电事故的反思和启示[J].电网技术,2003,27(9):2-6.
    [21]国家电力监管委员会电力可靠性管理中心.2007年火电100兆瓦、水电40兆瓦及以上容量机组和核电机组运行可靠性指标[EB/OL].[2008-06-25]. http://www.chinaer.org/lmsjshow_cache.aspx?Id=280.
    [22] Wang XF and McDonald JR. Modern power system planning[M]. London: McGraw-Hill,1994.
    [23] Garver LL. Adjusting maintenance schedules to levelize risk[J]. IEEE Transations on PowerApparatus and Systems,1972,91(5):2057-2063.
    [24] Stremel JP and Jenkins RT. Maintenance scheduling under uncertainty[J]. IEEE Transations onPower Apparatus and Systems,1981,100(2):460-465.
    [25] Chen LN and Toyoda J. Maintenance scheduling based on two level hierarchical structure toequalize incremental risk[J]. IEEE Transactions on Power Systems,1990,5(4):1510-1516.
    [26]苏惠玲,王淳,秦茹静等.基于GA改进算法的多目标机组优化检修计划[J].电力系统及其自动化学报,2008,20(6):27-31.
    [27] Yare Y,Venayagamoorthy GK,Aliyu UO. Optimal generator maintenance scheduling using amodified discrete PSO[J]. IET Generation, Transmission and Distribution,2008,2(6):834-846.
    [28] Dahal KP and Chakpitak N. Generator maintenance scheduling in power systems usingmetaheuristic-based hybrid approaches[J]. Electric Power Systems Research,2007,77(7):771-779.
    [29] Wang Y and Handschin E. A new genetic algorithm for preventive unit maintenance scheduling ofpower systems[J]. Electrical Power and Energy Systems,2000,22(5):343-348.
    [30] Miao Z,Yasuda K,Yokoyama R. Flexible generator maintenance scheduling based on subjectiverelaxation of constraints[J]. Electrical Engineering in Japan,1996,116(1):55-69.
    [31]王淳,程浩忠,谭永香等.发电机组检修计划的模拟植物生长算法[J].电工技术学报,2008,23(9):105-110.
    [32]江帆,阎超.按最大累积容量裕度制定发电机组检修计划[J].重庆大学学报,1986,2:106-112.
    [33]赵道致,邹斯勤.多地区互联系统的机组的计划检修[J].华北电力技术,1987,3:1-5.
    [34] Chen LN and Toyoda J. Optimal generating unit maintenance scheduling for multi-area system withnetwork constraints[J]. IEEE Transactions on Power Systems,1991,6(3):1168-1174.
    [35]吴龙,黄民翔.电力系统机组计划检修新模型[J].电力系统自动化,1998,22(2):26-28.
    [36]陈竟成,于尔铿,刘广一等.检修计划新模型与算法的研究[J].电网技术,1997,21(11):66-69.
    [37] Yamayee Z and Sidenblad K. A computationally efficient optimal maintenance schedulingmethod[J]. IEEE Transations on Power Apparatus and Systems,1983,102(2):330-338.
    [38] Kim H,Hayashi Y,Nara K. An algorithm for thermal unit maintenance scheduling through combineduse of GA SA and TS[J]. IEEE Transactions on Power Systems,1997,12(1):329-335.
    [39] Huang KY and Yang HT. Effective algorithm for handling constraints in generator maintenancescheduling[J]. IEE Generation, Transmission and Distribution,2002,149(3):274-282.
    [40] Satoh T and Nara K. Maintenance scheduling by using simulated annealing method[J]. IEEETransactions on Power Systems,1991,6(2):850-857.
    [41] Yellen J,Khamis TMA,Vemurl S,et al. A decomposition approach to unit maintenancescheduling[J]. IEEE Transactions on Power Systems,1992,7(2):726-733.
    [42] Burke EK and Smith AJ. Hybrid evolutionary techniques for the maintenance schedulingproblem[J]. IEEE Transactions on Power Systems,2000,15(1):122-128.
    [43] Leou RC. A flexible unit maintenance scheduling considering uncertainties[J]. IEEE Transactionson Power Systems,2001,16(3):552-559.
    [44]陈少华,杨澎,周永旺等.遗传和模拟退火算法在发电机组检修计划中的应用[J].电力系统自动化,1998,22(7):44-46.
    [45]院晓涛,姚建刚,陈亮.基于改进蚁群算法的发电机组检修计划优化[J].电网技术,2008,32(21):42-46.
    [46]冯永青,吴文传,张伯明等.基于可信性理论的水火电机组检修计划[J].中国电机工程学报,2006,26(13):14-19.
    [47] Silva EL,Morozowski M,Fonseca LGS,et al. Transmission constrained maintenance scheduling ofgenerating units: a stochastic programming approach[J]. IEEE Transactions on Power Systems,1995,10(2):695-701.
    [48] Chattopahyay D,Bhattacharya K,Parikh J. A systems approach to least-cost maintenance schedulingfor an interconnected power system[J]. IEEE Transactions on Power Systems,1995,10(4):2002-2006.
    [49] Chattopadhyay D. A practical maintenance scheduling program: mathematical model and casestudy[J]. IEEE Transactions on Power Systems,1998,13(4):1475-1480.
    [50] Silva EL,Schilling MT,Rafael MC. Generation maintenance scheduling considering transmissionconstraints[J]. IEEE Transactions on Power Systems,2000,15(2):838-843.
    [51] Sharkh MYE and Keib AAE. Maintenance scheduling of generation and transmission systems usingfuzzy evolutionary programming[J]. IEEE Transactions on Power Systems,2003,18(2):862-866.
    [52] Marwali MKC and Shahidehpour SM. A probabilistic approach to generation maintenancescheduler with network constraints[J]. International Journal of Electrical Power and EnergySystems,1999,21(8):533-545.
    [53] Marwali MKC and Shahidehpour SM. Integrated generation and transmission maintenancescheduling with network constraints[J]. IEEE Transactions on Power Systems,1998,13(3):1063-1068.
    [54] Anders G,Hamoud G,Silva AML,et al. Optimal outage scheduling—example of application to alarge power system[J]. International Journal of Electrical Power and Energy Systems,2003,25(8):607-614.
    [55]丁明,冯永青.发输电设备联合检修安排模型及算法研究[J].中国电机工程学报,2004,24(5):18-23.
    [56]张燕平,胡杨,黄树红等.区域性发电机组检修计划优化与信息管理[J].华中理工大学学报,2000,28(12):76-78.
    [57] Lin CE,Huang CJ,Huang CL, et al. An expert system for generator maintenance scheduling usingoperation index[J]. IEEE Transactions on Power Systems,1992,7(3):1141-1148.
    [58] Contaxis GC,Kavatza SD,Vournas CD. An interactive package for risk evaluation and maintenancescheduling[J]. IEEE Transactions on Power Systems,1989,4(2):389-395.
    [59] Egan GT,Dillon TS,Morsztyn K. An experimental method of determination of optimal maintenanceschedules in power systems using the branch-and-bound technique[J]. IEEE Transactions onSystems, Man and Cybernetics,1976,8(6):538-549.
    [60] Dopazo JF and Merrill HM. Optimal generator maintenance scheduling using integerprogramming[J]. IEEE Transactions on Power Apparatus and Systems,1975,94(5):1537-1545.
    [61] Mukerji R,Merrill HM,Erickson BW, et al. Power plant maintenance scheduling: optimizingeconomics and reliability[J]. IEEE Transactions on Power Systems,1991,6(2):476-483.
    [62] Ibrahim E,Salih D,Mohammed A. A tabu search algorithm for maintenance scheduling ofgenerating units[J]. Electric Power Systems Research,2000,54(2):91-99.
    [63] Baskar S,Subbaraj P,Rao M, et al. Genetic algorithms solution to generator maintenance schedulingwith modified genetic operators[J]. IEE Generation, Transmission and Distribution,2002,150(1):56-60.
    [64] Kralj B and Petrovic R. A multiobjective optimization approach to thermal generating unitsmaintenance scheduling[J]. European Journal of Operational Research,1995,84(2):481-493.
    [65] Moro LM and Ramos A. Goal programming approach to maintenance scheduling of generatingunits in large scale power systems[J]. IEEE Transactions on Power Systems,1999,14(3):1021-1028.
    [66] Billinton R and Li WY. Reliability assessment of electric power systems using monte carlomethods[M]. New York: Plenum Press,1994.
    [67] Fourcade F,Eve T,Socroun T. Improving lagrangian of pressurized water reactor outages [J]. IEEETransactions on Power Systems,1997,12(2):329-335.
    [68]国家电力监管委员会.电力市场运营基本规则[EB/OL].[2005-11-07].http://www.gov.cn/flfg/2005-11/07/content_92947.htm.
    [69] Wang Y and Handschin E. Unit maintenance scheduling in open systems using geneticalgorithm[C]. IEEE Transmission and Distribution Conference, New Orlean, USA, April11-16,1999,1:334-339.
    [70] Cai L and Wu B. A regulation for congestion of generator maintenance in a deregulated system[C].IEEE Power System Technology Conference, Bologna, Italy, June23-26,2003.
    [71] Billinton R and Abdulwhab A. Short-term generating unit maintenance scheduling in a deregulatedpower system using a probabilistic approach[J]. IEE Generation, Transmission and Distribution,2003,150(4):463-468.
    [72] Marwali MKC and Shahidehpour SM. Long-term transmission and generation maintenancescheduling with network, fuel and emission constraints[J]. IEEE Transactions on Power Systems,1999,14(3):1160-1165.
    [73]冯永青,丁明.电力市场环境下的发电机组检修计划[J].电力系统自动化,2001,25(18):20-23.
    [74]冯永青,张伯明,吴文传等.电力市场发电机组检修计划的快速算法[J].电力系统自动化,2004,28(16):41-45.
    [75]王鹏,张粒子,鲍海等.初级电力市场环境下机组检修计划的实用模型[J].中国电力,2000,33(11):79-81.
    [76]陶文斌,张粒子,黄弦超.发电机组检修市场的初步设计[J].电力系统自动化,2005,29(20):15-19.
    [77]冯长有,王锡凡.电力市场下发电机组计划检修模型[J].电力系统自动化,2007,31(5):97-104.
    [78] Office of Governor of the State of California. Executive Order D-23-01[EB/OL].[2001-01-17].http://gov.ca.gov/executive-order/9105.
    [79] Kim JH, Park JB, Park JK, et al. A new game-theoretic framework for maintenance strategy analysis[J]. IEEE Transactions on Power Systems,2003,18(2):698-706.
    [80] Chattopadhyay D. A game theoretic model for strategic maintenance and dispatch decisions[J].IEEE Transactions on Power Systems,2004,19(4):2014-2021.
    [81] Chattopadhyay D. Life-cycle maintenance management of generating units in a competitiveenvironment[J]. IEEE Transations on Power Systems,2004,19(2):1181-1189.
    [82] Conejo AJ,Bertrand RG,Salazar MD. Generation maintenance scheduling in restructured powersystem[J]. IEEE Transations on Power System,2005,20(2):984-992.
    [83] Barot B and Bhattacharys K. Security coordinated maintenance scheduling in deregulation based onGenco contribution to unserved energy[J]. IEEE Transations on Power Systems,2008,23(4):1871-1882.
    [84] Wu L,Shahidehpour SM,Li T. GENCO’s risk-based maintenance outage scheduling[J]. IEEETransations on Power Systems,2008,23(1):127-136.
    [85] Tabari NM,Mahmoudi SN,Hassanpour SA, et al. Maintenance scheduling aided by a comprehensivemathematical model in competitive environments[C]. IEEE Power Technology Conference,Singapore, November21-24,2004.
    [86] Feng CY,Wang XF,Chen HY. Optimal maintenance scheduling of a power producer under priceuncertainty[C]. IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, March15-18,2009.
    [87] Feng CY,Wang XF,Li FR. Optimal maintenance scheduling of power producers consideringunexpected unit failures[J]. IET Generation, Transmission and Distribution,2009,3(5):448-459.
    [88]卢恩,林少华,柳亦钢.计及电价随机波动的机组检修计划[J].南方电网技术,2007,1(2):63-70.
    [89]王健,文福拴,杨仁刚.基于发电容量充裕度估计的发电公司检修策略[J].电力系统自动化,2005,29(6):45-50.
    [90]王健,文福拴,杨仁刚.基于机会约束规划的发电公司最优检修策略[J].电力系统自动化,2004,28(19):27-31.
    [91]王健,文福拴,杨仁刚等.电力市场环境下发电机组的最优检修策略初探[J].电网技术,2004,28(10):23-27.
    [92]全宏兴,刘俊勇.电力市场下火电厂机组检修计划的研究[J].电力系统自动化,2002,26(14):35-38.
    [93]贾德香,程浩忠,严健勇等.基于博弈论的发电公司检修决策[J].电力系统自动化,2007,31(1):27-32.
    [94] Tabari NM, Mahmoudi SN,Hassanpour SA, et al. Improvement of Gencos’ maintenace schedule ina deregulted power system[C]. IEEE Power Technology Conference, Singapore, November21-242004.
    [95]孟凡强,许克明,王亮等.电力市场下的发电机组状态检修[J].电力系统自动化,2004,28(17):41-44.
    [96]冯长有,王锡凡,王建学等.市场环境下发电商的机组检修新策略[J].中国电机工程学报,2008,28(13):106-113.
    [97]鲁刚,文福拴,钟志勇等.电力市场环境下的发电机组检修问题[J].电力系统及其自动化学报,2008,20(5):1-9.
    [98] Silva A,Manso L,Anders G. Evaluation of generation and transmission maintenance strategies basedon reliability worth[J]. Electric Power Systems Research,2004,71(2):99-107.
    [99]王健,文福拴,杨仁刚.电力市场环境下发电机组检修计划调整机制初探[J].电力系统自动化,2004,28(7):30-34.
    [100]王健,文福拴.发电机组检修计划调整机制中的损失补偿问题[J].电力系统及其自动化学报,2005,17(5):67-70.
    [101] Lu G, Chung CY, Wong LP, et al.Unit maintenance scheduling coordination mechanism inelectricity market environment[J]. IET Generation, Transmission and Distribution,2008,2(5):646-654.
    [102]朱峰.转型经济情况下发电机组检修审批机制初探[J].电力系统自动化,2007,31(24):25-28.
    [103]高志华,任震,黄雯莹等.发电机组竞争检修机制[J].电力系统自动化,2005,29(7):38-42.
    [104] Feng CY and Wang XF. A competitive mechanism of unit maintenance scheduling in a deregulatedenvironment[J]. IEEE Transactions On Power Systems.2010,25(1):351-359.
    [105] Billinton R and Mo R. Composite system maintenance coordination in a deregulatedenvironment[J]. IEEE Transactions On Power Systems,2005,20(1):485-492.
    [106]王建学,王锡凡,冯长有等.基于市场公平性的发电机组检修规划[J].电力系统自动化,2006,30(20):15-20.
    [107] Li WY,Vaahedi E,Choudhury P. Power system equipment aging[J]. IEEE Power and EnergyMagazine,2006,4(3):52-58.
    [108] Fu C,Liu Y,Yu R, et al. Predictive maintenance in intelligent-control-maintenance-managementsystem for hydroelectric generating unit[J]. IEEE Transactions on Energy Conversion,2004,19(1):179-185.
    [109] Pineda S,Conejo AJ, Carrion M. Impact of unit failure on forward contracting[J]. IEEE Transactionson Power Systems,2008,23(4):1768-1775.
    [110] Gera AE. The modified exponentiated-Weibull distribution for life-time modeling[C]. IEEE AnnalReliability and Maintainability Symposium, Philadelphia, PA, USA, January13-16,1997:149-152.
    [111] Lai CD,Xie M,Murthy DNP. A modified Weibull distribution[J]. IEEE Transactions on Reliability,2003,52(1):33-37.
    [112] Pulcini G. Modeling the failure data of a repairable equipment with bathtub type failure intensity[J].Reliability Engineering and System Safety,2001,71(2):209-218.
    [113] Health MT. Scientific Computing: An Introductory Survey[M]. Second Edition. New York:McGraw-Hill,2002.
    [114] Welte TM.Using state diagrams for modeling maintenance of deteriorating systems[J]. IEEETransactions on Power Systems,2009,24(1):58-66.
    [115] McCalley JD,Vittal V,Samar NA. An overview of risk based security assessment[J]. IEEE PowerEngineering Society Summer Meeting, Alberta, Canada, July18-22,1999.
    [116]陈思杰,周浩.电力市场中电价预测方法综述[J].继电器,2006,34(11):54-60.
    [117]张显,王锡凡.短期电价预测综述[J].电力系统自动化,2006,30(3):92-101.
    [118] Nogales FJ,Contreras J,Coneno AJ, et al. Forecasting next-day electricity prices by time seriesmodels[J]. IEEE Transactions on Power Systems,2002,17(2):342-347.
    [119] Garcia RC,Contreras J,Akkeren MV, et al. A GARCH forecasting model to predict day-aheadelectricity prices[J]. IEEE Transactions on Power Systems,2005,20(2):867-874.
    [120]张显,王锡凡,陈芳华等.分时段短期电价预测[J].中国电机工程学报,2005,25(15):1-6.
    [121]李邦云,袁贵川,丁晓群.基于相似搜索和加权回归技术的短期电价预测[J].电力自动化设备,2004,24(1):42-45.
    [122] Mandanl P,Senjyu T,Urasaki N,et al. A novel approach to forecast electricity price for PJM usingneural network and similar days method[J]. IEEE Transactions on Power Systems,2007,22(4):2058-2065.
    [123]黄日星,康重庆,夏清.电力市场中的边际电价预测[J].电力系统自动化,2000,24(25):9-12.
    [124]杨洪明,段献忠.电价的混沌特性分析及其预测模型研究[J].电网技术,2004,28(3):59-64.
    [125]曾鸣,冯义,刘达等.基于证据理论的多模型组合电价预测[J].中国电机工程学报,2008,28(16):84-89.
    [126]周明,严正,倪以信等.含误差预测校正的ARIMA电价预测新方法[J].中国电机工程学报,2004,24(12):63-68.
    [127]沈秀汶,吴耀武,熊信银等.基于最小最大概率回归方法的中长期电价预测模型[J].中国电力,2007,40(3):1-5.
    [128]康重庆,夏清,胡左浩等.电力市场中预测问题的新内涵[J].电力系统自动化,2004,28(18):1-6.
    [129]胡朝阳,孙维真,汪震等.考虑市场的短、中、长期电价预测[J].电力系统自动化,2003,27(22):16-22.
    [130]刘亚安,管晓宏,孙婕等.电力市场中电价飞升的机理研究[J].中国电力,2001,34(8):67-70.
    [131]张显,王锡凡,王建学等.可中断电力合同中新型期权的定价[J].中国电机工程学报,2004,24(12):18-23.
    [132] Zhao JH,Dong ZY,Li X, et al. A framework for electricity price spike analysis with advanced datamining methods[J]. IEEE Transactions on Power Systems,2007,22(1):376-385.
    [133]李正欣,赵林度.电力市场中的价格钉研究[J].继电器,2008,36(1):52-56.
    [134]李正欣,赵林度.基于支撑向量机的电价价格钉预测[J].中国电力,2007,40(11):42-45.
    [135]朱宏伟,陈立东,坂研等.基于神经网络和相似搜索技术的电力价格钉预测方法[J].东北电力大学学报,2006,26(2):24-30.
    [136] Lu X,Dong ZY,Li X. Electricity market price spike forecast with data mining techniques[J]. ElectricPower Systems Research,2005,73(1):19-29.
    [137]王高琴,沈炯,李益国.基于聚类和贝叶斯推断的市场出清电价离散概率分布预测[J].中国电机工程学报,2007,27(35):90-95.
    [138]梁循.数据挖掘算法与应用[M].北京:北京大学出版社,2006.
    [139]张显.电力金融市场研究[D].西安:西安交通大学,2006.
    [140]井志忠.电力市场改革:国际比较与中国的推进[D].吉林:吉林大学,2005.
    [141] Billinton R,Adjei JO,Chajar R. Comparison of two alternate methods to establish an interruptedenergy assessment rate[J]. IEEE Transactions on Power Systems,1987,2(3):751-757.
    [142]王一,程浩忠.电力市场环境下输电网扩展优化规划研究综述[J].电工技术学报,2007,22(9):174-185.
    [143] Reliability Test System Task Force. The IEEE Reliability Test System-1996[J]. IEEE Transactionson Power Systems,1999,14(3):1010-1020.
    [144] Arroyo JM and Conejo AJ. Optimal response of a power generator to energy, AGC, and reservepool-based markets[J]. IEEE Transactions on Power Systems,2002,17(2):404-410.
    [145]杜松怀,文福拴,李扬等.电力系统的市场化运营:预测、计划和风险管理[M].北京:中国电力出版社,2005.
    [146]康重庆,白利超,夏清等.电力市场中发电商的风险决策[J].中国电机工程学报,2004,24(8):1-6.
    [147] Kuska NG,Heitsch H,Romisch W. Scenario reduction and scenario tree construction for powermanagement problems[C]. IEEE Power Technology Conference, Bologna, Italy, June23-26,2003.
    [148] Rardin RL. Optimization in Operations Research[M]. Englewood Cliffs, NY: Prentic-Hall,1998.
    [149]刘宝华,王冬容,赵学顺.电力市场建设的几个本质问题探讨[J].电力系统自动化,2009,33(1):1-5.
    [150] Pham H and Wang HZ. Imperfect maintenance[J]. European Journal of Operational Research,1996,94(3):425-438.
    [151]王锡凡.电力系统优化规划[M].北京:水利电力出版社,1990.
    [152]郑华,谢莉,张粒子.基于支持向量机技术的电价灵敏度分析模型[J].中国电机工程学报,2006,26(11):134-138.
    [153]雷英杰,张善文,李续武等.Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [154] Glasserman P. Monte Carlo simulation methods in financial engineering[M].New York: Springer,2003.
    [155] Owen AB. Monte Carlo extension of quasi-Monte Carlo[C]. Proceedings of the30th conference onWinter Simulation in the21-Century, Washington DC, USA, December13-16,1998:571-578.Equation Chapter (Next) Section1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700