用户名: 密码: 验证码:
转炉托圈和扭力杆的设计理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大吨位转炉设备属于重型设备,体积大,重量大,空间结构形式复杂。转炉设备运行于高温和冲击重载环境,运行工况十分恶劣。现有的结构力学设计理论不能胜任转炉设备设计的应力分析和变形分析,需要进行全尺寸、三维、复杂荷载下的热-机耦合非线性有限元分析和计算,计算建模工作量大,计算周期长,专业性强,设计院的普通设计工程师难以胜任,严重制约了我国大型转炉的自主创新设计。本文针对转炉设备中最为关键的两个部件,也是设计理论最为缺乏的变截面扭力杆和单箱双室水冷托圈进行研究,发展适合于普通工程设计师使用的新的设计理论和方法。
     本文采用初等弹性理论和梁杆振动理论,建立了变截面扭力杆的应力、变形和振动理论分析模型,推导了应力、变形和振动理论公式。与三维全尺寸扭力杆有限元模型数值解的比较表明,理论解精度较高,适合于扭力杆的强度、刚度和振动特性的设计分析。
     基于闭口薄壁杆件的约束扭转理论,建立了单箱双室闭口薄壁的托圈机械应力和机械变形分析的理论模型,推导了托圈内力、空间应力和空间变形理论公式。与三维全尺寸托圈结构有限元模型数值解的比较表明,理论解正确反映了托圈应力的复杂变化规律,精度较高,适用于基于机械荷载的托圈结构设计与分析。
     根据大体积转炉炉体热辐射的特征,针对水冷托圈外表面温度场的径向、轴向和周向分布,提出了“二向线性(分布)理论”,推导了托圈空间温度场理论公式。与三维全尺寸托圈结构有限元模型温度场数值解的比较表明,理论解正确反映了温度的复杂变化规律,计算精度符合工程设计要求。
     采用热弹性理论和力法,建立了单箱双室水冷托圈热应力和热变形分析的理论模型,推导了托圈空间热应力和空间热变形的理论公式。与三维全尺寸托圈结构有限元模型热应力和热变形数值解的比较表明,理论解可以正确反映热应力和热变形的变化规律,计算精度符合工程设计要求。
     基于机械应力、机械变形、热应力和热变形的理论分析,采用应力分量和变形分量直接叠加的方法,建立了单箱双室水冷托圈的热-机耦合应力和祸合变形的理论求解方法。与三维全尺寸托圈结构有限元模型热-机耦合应力和热-机耦合变形数值解的比较表明,理论解可以正确反映耦合应力和耦合变形的复杂变化规律,计算精度符合工程设计要求,尤其是热-机耦合变形的理论解,具有相当高的计算精度。
     由于所提出的应力和变形理论分析公式,均可以用解析式表达,计算编程简单,分析方便,大大缩短了扭力杆和托圈的设计周期,适合于普通设计工程师使用,从而为大型转炉的复杂扭力杆和托圈结构在复杂的机械载荷和热载荷联合作用下的结构设计,提供了简便、高效、可靠的新的设计理论方法。
Modern converters are heavy equipments of large volume, large tonnage and complicated spatial structural shapes. They are running under impact heavy loading and in high temperature environment. The existing structural design theory is incapable of analyzing of the spatial stress and deformation of converters. The three-dimensional nonlinear finite element technique with full size and full-shape of converters is required to calculate the thermo-mechanical coupled stress and deformation, in which the computational modeling is heavy workload and long computing cycles by professional computing staff. It is too hard to an ordinary design engineer. Such a situation has severely restricted the independent innovation of large-scale converter design.
     This dissertation presents new design theories for two key equipments of converter, the torque bar with variable cross-sections and the water-cooled trunnion ring with single box and dual-chamber cross-sections. They are suitable for ordinary design engineers.
     A theoretical modeling of the torque bar with variable cross-sections is established on the basis of the elementary elasticity theory and the torsional vibration theory. The analytical expressions of stress, strain and vibration are derived. The comparisons with the numerical solutions obtained by the full-size three-dimensional finite element method illustrates that the theoretical solutions have relatively high accuracy and can be applied to the design calculation of bar strength, stiffness and vibration property.
     A bending and twisting mechanical modeling of the water-cooled trunnion ring with a single box and dual-chamber cross-section is established based on the closed thin-walled bar constraint torsion theory. The analytical expressions of internal force, mechanical stress, axis deflection, rotation angle as well as torsion angle in any section of the trunnion ring are derived under different mechanical loads, such as concentrated force, distributed force, bending moment and torque. The comparisons with the numerical solutions obtained by the full-size three-dimensional finite element modeling illustrate that the theoretical solutions are the correct expression of the complex variation of the stress and deformation and have relatively high accuracy. It can be applied to structural design of the water-cooled trunnion ring based on the mechanical loading.
     The double-linear theory is presented to obtain the theoretical three-dimensional temperature field of the water-cooled trunnion ring in radial, axial and circumferential directions according the heat radiation characteristics of the large volume converter on the relatively small trunnion ring. The analytical expressions of spatial temperature distribution are derived. The comparisons with the numerical solutions obtained by the full-size three-dimensional finite element modeling illustrate that the theoretical solutions have relatively high accuracy and are the correct expressions of the complex variation of spatial temperature.
     A thermo-stress and thermo-deformation modeling of the water-cooled trunnion ring with a single box and dual-chamber cross-section is established based on thermoelsticity and the force method of structural analysis. The analytical expressions of spatial thermo-stress and thermo-deformation distribution are derived. The comparisons with the numerical solutions obtained by the full-size three-dimensional finite element modeling illustrate that the theoretical solutions have relatively high accuracy to meet engineering requirements and are the correct expressions of the complex variations of spatial thermo-stress and thermo-deformation.
     By the applications of the bending and twisting mechanical modeling, the double-linear theory, and the thermo-stress and thermo-deformation modeling of the water-cooled trunnion ring with a single box and dual-chamber cross-section, the theoretical solution method of the thermo-mechanical coupled stress and deformation is established by the sum of the corresponding stress and deformation components of mechanical loadings and thermo-loadings. The comparisons of the theoretical solutions with the numerical solutions obtained by the full-size three-dimensional finite element modeling show that the theoretical solutions have relatively high accuracy to meet engineering requirements and are the correct expressions of the complex variations of spatial thermo-mechanical coupled stress and deformation. Kspecially, the theoretical distributions of spatial thermo-mechanical coupled deformation are in high calculation accuracy.
     The stress and deformation expressions presented in the dissertation are all the analytical expressions. They are simply to calculate hy the designed computer programming, and easy to be applied by ordinary design engineers. Hence, the calculation and design cycles should been shorten greatly.
引文
[1]吴溪淳.抓住新机遇应对新挑战促进钢铁工业全面协调可持续发展[J].冶金财会,2004,(3):4-6.
    [2]刘铁男.钢铁产业发展政策指南[M].北京,经济科学出版社,2005.
    [3]陈姗姗.国际钢协:中国2011年粗钢产量6.955亿吨全球总产量占比升至45.5%[EB/OL]. [2012-01-29].http://www.yicai.com/news/2012/01/1388022.html
    [4]刘浏.中国转炉炼钢技术的进步[J].钢铁,2005,(2):1-5.
    [5]宁新建,王仙彩K-OBM顶底复吹转炉托圈的设计改进[J].山西机械,2000,(S1):43-45.
    [6]刘茂军.攀钢120吨提钒转炉托圈炉体支撑结构改造[J].攀钢技术,2000,(5):31-34
    [7]马忠仁.武钢第三炼钢厂250 t转炉生产能力与操作方式的探讨[J].武钢技术,1996,34(7):3-10.
    [8]林恒.大型转炉炉体汽雾冷却机理及功效的研究[D].北京科技大学,2002.
    [9]秦勤.大型转炉炉壳空气喷吹冷却机理研究[D].北京科技大学,2001.
    [10]齐坚,陶海银.国内容量最大的全国产化下悬挂转炉投产成功应用多项中冶赛迪自主技术[J].中国钢铁业,2009,(5):31.
    [11]王德宽,邱明罡,宁欢.转炉设备大型化,国产化,自主开发-转炉炼钢的必然趋势[C]//2006年全国炼钢、连铸生产技术会议.中国金属学会,2006.
    [12]任学平,秦勤,林恒,等.大型转炉装备发展及所遇到问题对策[C]//2001 中国钢铁年会论文集(下卷),2001.
    [13]于文妍.炼钢厂转炉托圈裂纹产生原因分析及改造措施[J].重型机械,2006,(2):56-58.
    [14]姜晓东.小议我国转炉炼钢的现状和发展[J].冶金经济与管理.2008,(4):19-22.
    [15]刘宏昭.全悬挂多柔传动机构动特性解析分析[J].重型机械,1998,(2):29-32.
    [16]《中国钢铁工业年鉴》编辑编委会.中国钢铁工业年鉴2009[M].北京,钢铁工业协会,2010.
    [17]翁宇庆.我国冶金工业在新纪最初几年的科技进步[C]//2003年中国钢铁年会论文集(第一卷).北京,冶金工业出版社,2003.
    [18]谭牧田.氧气转炉炼钢设备[M].北京,机械工业出版社,1983.
    [19]冯捷,张红文,转炉炼钢生产[M].北京,冶金工业出版社,2006.
    [20]罗振才.炼钢机械[M].北京,冶金工业出版社,1985.
    [21]成大先.机械设计手册[M].第四版(第1卷).北京.化学工业出版社,2007.
    [122]柳成,转炉托圈的焊接修复[J].焊接技术,2009,(5):69-70.
    [23]王建明.唐钢120t转炉托圈焊接修复[J].河南冶金,2009,17(3):44-46.
    [24]乔翠侠,包家汉,王良林.基于流固耦合的转炉托圈热应力仿真[J].重型机械,2010,(1):47-50+54.
    [25]张开林,赵利华,张红军.热-结构耦合的高炉炉壳静强度及疲劳强度分析[J].重庆大学学报,2008,31(6):627-631.
    [26]高峰,夏双林,任学平.转炉炉壳托圈弹簧板式联接装置的有限元强度分析[J].内蒙古科技大学学报,2009,28(4):318-321.
    [27]任学平,章博,邹家祥.大型转炉炉体温度场有限元仿真试验[J].上海金属,2001,23(5):38-41.
    [28]任学平,邹家祥.转炉炉壳的蠕变变形模型[J].特殊钢,2002,23(6):21-23.
    [29]任学平,邹家祥.转炉炉壳热应力分析[J].炼钢,2001,17(6):47-49.
    [30]任学平,章博.转炉炉壳采用汽雾冷却时的瞬态温度场及应力场研究[J].冶金设备,2001,(4):1-4.
    [31]任学平,郭志强,邹家祥,等.转炉炉衬不同膨胀间隙的炉壳热应力有限元分析[J].冶金设备,2001,(6):8-11.
    [32]李晓燕,林恒.转炉汽雾冷却喷嘴限制射流强化换热特性[J].上海交通大学学报,2009,(5):795-798.
    [33]林桓,王隆寿.一种新型喷嘴的特性实验研究[J].上海交通大学学报.
    [34]林桓,章搏.转炉炉体汽雾冷却技术[J].冶金设备,2001,(5):38-40.
    [35]宋锦春,王磊,曲轴连杆轴颈静压轴承的设计与数值模拟[J].东北大学学报(自然科学版),2011,32(3):407-410.
    [36]陈燕生.液体静压支承原理和设计[M].北京,国防工业出版社,1980.
    [37]张展,实用齿轮设计计算手册[M].北京,机械工业出版社,2010.
    [38]Chang E E, Chen C H, Chen Y H, et al. Perlbrmance evaluation for carbonation of steel-making slags in a slurry reactor[J]. Journal of hazardous materials, 2011, 186(1): 558-564.
    [39]Wu X R, Wang P, Li L S. el al. Distribution and enrichment of phosphorus in solidified BOF steelmaking slag[J]. Ironmaking & Steelmaking, 2011, 38(3): 185-188.
    [40]Li G. Wang B, Liu Q. el al. A process model for BOF process based on bath mixing degree[J|. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(6): 715-722.
    [41]Biga O, Capote Lopes S, Montaldo A. et al. Repair of a BOF trunnion ring and lamella units at ternium siderar[J]. Iron & steel technology, 2007, 4(11): 90-95.
    [42]Coulomb CA. Histoirc do lAcademie[M]. Paris, 1787.
    [43]Navier C L. Resume des legons sur l'application de la mecanique[M].3rd edition, Paris, 1864.
    [44]Theocaris P S. The Warping Functions of Regular Prismatic Bars Under Torsion Evaluated by Caustics[J]. Expermental Mechanics,1989,29:285-290.
    [45]Theocaris P S. Elastic stress intensity factors evaluated by caustics[J]. Mechanics of fracture,1981,7(3):189-252.
    [46]Theocaris P S. Multicusp caustics formed from reflections of warped surfaces[J]. Applied Optics,1988,27 (3):780-789.
    [47]Theocaris P S, Petrou L. The reflected caustics formed from cross sections of twisted prismatic bars[J]. Acta Mechanica,1989,76:133-159.
    [48]Petrov E, Geradin M. Finite Element Theory for Curved and Twisted Beams Based on Exact Solutions for Three-dimensional Solids. Part 1:Beam concept and geometrically exact nonlinear formulation[J]. Comput. Methods Appi. Mech. Engrg.,1998,165:43-92.
    [49]Ibrahim R A, Hijawi M. Deterministic and stochastic response of nonlinear coupled bending-torsion modes in a cantilever beam[J]. Nonlinear Dynamics,1998,16(3): 259-292.
    [50]Nadai a. Plasticity[M]. McGraw-Hill,1931.
    [51]Christopherson D G. A theoretical investigation of plastic torsion in an Ⅰ-beam[J]. Amer. Journ of Applied Mechanics,1940,7:1-4.
    [521 Sachs H K. Criteria of design for progressive torsion-bar springs[J]. Experimental Mechanics,1967.7(3):105-109.
    153] Cartmell M. The equations of motion of a parametrically excited cantilever beam[J]. Journal of Sound and Vibration.1990,143(3):395-406.
    [54]Crespo da Silva M R M, Zaretzky C L. Nonlinear flexural-flexural-torsional interactions in beams including the effect of torsional dynamics. Ⅰ:Primary resonance[J]. Nonlinear Dynamics,1994,5(1):3-23.
    [55]Zaretzky C L, Crespo da Silva M R M. Nonlinear flexural-flexural-torsional interactions in beams including the effect of torsional dynamics. Ⅱ:Combination resonance[J]. Nonlinear Dynamics.1994,5(2):161-180.
    [56]Bolotin V V. The dynamic stability of elastic systems[M]. stormingmedia,1962.
    [57]Dugundji J, Mukhopadhyay V. Lateral bending-torsion vibrations of a thin beam under parametric excitation[J]. Journal of applied Mechanics,1973,40:693-699.
    [58]程时田.多柔传动设计方法的探讨[J].湖南师范大学自然科学学报,1995,18(2):93-96
    [59]郑银环.汽车钢板弹簧计算模型研究[D].武汉理工大学,2005.
    [60]邓寅虎,杨颖超.双横臂双扭杆悬架中上下扭杆的刚度匹配和等强度设计[J].工程设计学报,2002,9(1):44-48.
    [61]王祖禹,王芳.扭杆弹簧和扭杆弹簧悬架的设计[J].汽车技术,1999,(1):3-8
    [62]孟宪红,白曌宇,张行.扭杆刚度衰减问题研究的损伤力学方法[J].应用力学学报,2005,22(4):650-652.
    [63]刘巧伶,张义民.扭杆的可靠性设计[J].农业机械学报,1997,28(4):174-175.
    [64]张义民,贺向东.扭杆的可靠性优化设计[J].汽车技术,2002,(5):5-7.
    [65]贺向东,张义民,刘巧伶,等.非正态分布参数扭杆的可靠性优化设计[J].中国机械工程,2004,15(10):849-851.
    [66]张宏涛,阮米庆.两级扭杆弹簧的结构设计与计算[J].机械设计与制造,2008,(1):52-54.
    [67]李骏,郭厚.汽车扭杆弹簧及扭杆悬架的优化设计[J].华东交通大学学报,2000,17(3):58-62.
    [68]秦勤,潘毓淳.扭力杆直径的优化设计[J].冶金设备,1995,(4):1-5.
    [69]杨树军,陈俊杰,蔡兴.电动助力转向扭杆刚度及可靠性分析[J].拖拉机与农用运输车,2008,35(3):32-34.
    [70]陈辛波,王伟,万钢双横臂据杆弹簧悬架系统刚度与阻尼特性分析 的新方法[J].机械工程学报,2006,42(9):103-106.
    [71]陈敏文,戴耀,据杆式坦克悬挂系统的强度分析[J].装甲兵工程学院学报,2005,19(1):69-72.
    [72]彭和平,李志明,据力杆弹簧过渡部分应力集中的理论探讨及有限元分析[J].机械制造与自动化,2004,33(4):15-18.
    [73]王刚,汽车悬持扭力杆预据强化的分析与计算[J].冈师范学院学报,2001,21(3):84-86.
    [74]刘春节,王正东,圆截面微型扭杆刚度的解析计算,工程力学,2009,26(7):35-38.
    [75]Baba S, Kajita T. Plastic analysis of torsion of a prismatic beam[J]. International Journal for Numerical Methods in Engineering, 1982, 18(6): 927-944.
    [76]Bathe K J, Chaudhary A. On the displacement formulation of torsion of shafts with rectangular cross sectionsfJ]. International Journal for Numerical Methods in Engineering, 1982, 18(10): 1565-1568.
    [77]Bathe K J. Wiener P M. On elastic-plastic analysis of I-beams in bending and torsion[J]. Computers & Structures. 1983. 17(5-6): 711-718.
    [78](iellin S. Lee Ci C, Chern J H. A finite element model for thin-walled members[J]. InternationalJournal for Numerical Methods in Engineering,1983,19(1):59-71.
    [79]May I M, Al-Shaarbaf I A S. Elasto-plastic analysis of torsion using a three-dimensional finite element model[J]. Computers & Structures,1989,33(3):667-678.
    [80]Pi Y L. Nonlinear Inelastic Analysis of Steel Beam-Columns. Ⅰ:Theory[J]. Journal of Structural Engineering,1994,120(7):2041-2061.
    [81]Wagner W, Gruttmann F. Finite Element Analysis of Saint-Venant Torsion Problem with Exact Integration of the Elastic-Plastic Constitutive Equations[J]. Computer Methods in Applied Mechanics and Engineering,2001,190:3831-3848.
    [82]Sapountzakis E J, Mokos V G. Warping shear stresses in nonuniform torsion by BEM[J]. Computational mechanics,2003,30(2):131-142.
    [83]Roseman J J. The principle of Saint-Venant in linear and non-linear plane elasticity [J]. Archive for Rational Mechanics and Analysis,1967,26(2):142-162.
    [84]Wu P D, Giessen E. Analysis of elastic-plastic torsion of circular bars at large strains[J]. Archive of Applied Mechanics,1991,61(2):89-103.
    [85]Egner W, yczkowski M. Optimal plastic design of a bar under combined torsion, bending and shear[J]. Structural and Multidisciplinary Optimization,2001,22(5):394-406.
    [86]Heyman J. On the absolute minimum weight design of framed structures [J]. The Quarterly Journal of Mechanics and Applied Mathematics,1959,12(3):314-324.
    [87]Rozvany G I N. Optimum design for bending and shear[J]. ASCE J Eng Mech,1973, 504(99):1107-1109.
    [88]Rozvany G I N. Optimal design of flexural systems:beams, grillages, slabs, plates, and shells[M]. Pergamon Press,1976.
    [89]Zyczkowski, M. Optimal plastic design for combined torsion with bending[M]. Polish Academy of Sciences,1997.
    [90]Zyczkowski M. Optimal plastic design of statically indeterminate beams under bending with torsion[M]. Institut fur Mechanik,1998.
    [91]Berruti T, Gola M M. X-ray residual stress measurement on mechanical components with high curvature[J]. Experimental Mechanics,2003,43(1):105-114.
    [92]宋庆奎,钟建华,转炉托圈设计中减少热应力的途径[J].一重技术,1998,(4):32-33.
    [93]吴迪平,李向东,转炉托圈温度应力模态分析[J].冶金设备,1997,(2):6-9.
    [94]Tre-buna F., Simcak F., Bocko J.. Decreasing of vibration amplitudes of the converter pedestal by design changes and changes in prestress of the bolted joints[J]. Engineering Failure Analysis.2009.16(1):262-272.
    [95]Schmidt R. Static loading of a trunnion-ring-mounted converter suspension system[J]. Stahl und Eisen, 1998, 118(8): 73-76.
    [96]李山青,李存林,冯莲芹,等.大型转炉托圈的可靠性研究[C]//第十二届全国炼钢学术会议,2002.
    [97]杨国华,罗会信.转炉托圈损伤的研究与修复措施[J].武汉科技大学学报(自然科学版),2004,27(4):364-365.
    [98]吴林峰,吴凯,陈德亮,等.转炉托圈温度应力的三维有限元分析[J].煤矿机械,2007,28(2):68-69.
    [99]吴林峰,尹晓春.转炉托圈的三维非线性问题的数值分析[J].华北水利水电学院学报,2006,(3):45-48.
    [100]吴林峰,尹晓春,吴凯,等.复杂多接触面托圈热-机械耦合三维有限元分析[J].机械强度,2008,30(3):405-410.
    [101]罗会信,李绍凯.转炉托圈新增人孔数字仿真研究[J].冶金设备,2010,(4):5-8.
    [102]潘天成,潘紫微,包家汉,等.转炉托圈及联接装置机械应力的三维非线性有限元分析[J].冶金设备,2010,(2):29-31.
    [103]米红林,瞿志豪.AOD转炉托圈结构强度的数值仿真分析[J].机械设汁与制造,2010,(2):37-39.
    [104]段明南,吴迪平,藏勇,等.80t转炉托圈温度场测试及热机耦合应力分析[J].炼钢,2005,21(6):44-47
    [105]范勤,郭勇,罗会信.受损托圈承载能力的有限元计算和分析[J].武汉钢铁学院学报,2004,27(1):38-47.
    [106]高耀东,李新利,转炉托圈热应力的有限元分析[J].重型机械.2008.(5):50-52.
    [107]张忠纯、王会刚,李自芹,基于ANSYS转炉托圈的机械应力及模态分析[J].机械设计与制造,2009,(11):126-127.
    [108]邹家祥,冶金机械设计理论[M].北京、冶金工业出版社,1998.
    [109]段明南,吴迪平,王永涛,等,转炉托圈温度场有隐姓埋名了分析及内筋板结构改造[J].炼钢,2006,22(3):54-56.
    [110]Shustorovich M.. Evaluating the crack resistance of welded components of oxygen converters[J]. Strength of Materials, 1989, 21(11.): 1486-1491.
    [111]Robert W I Union. Charles A Schacht, Millet 1, Wei. Estimated safe residual service life of a 29-year old BOF trunnion pin[JJ. Iron and Steel Review, 1999, 76(5): 35-38.
    [112]Porter J P, Morrision J W. BOF trunnion drive shaft testing using ultrasonic multichannel C-scan imaging in real time[J]. Iron and Steel Engineer(USA). 1999. 76(5): 45-47.
    [113]邱福祥、徐克俭,转炉托圈的堆焊修复[J].焊接技术,2000,29(4):44-45.
    [114]黄作斌,闻彪.现场组焊的120 t转炉托圈残余应力检测试验[J].一重技术,1996,(1):94-97.
    [115]邹家祥,吴复原.转炉托圈应力分析[J].重型机械,1982,(10):29-33.
    [116]张小中,周成青.转炉托圈温度应力分析[J].黑龙江冶金,1998,(1):32-33.
    [117]庄表中,陈乃立,王一心.复吹转炉托圈应变动荷系数的确定[J].机械强度,1993,15(3):7-10.
    [118]徐芝纶.弹性力学(上册)[M].第三版.北京,高等教育出版社,1990.
    [119]张行.高等弹性理论[M].北京,北京航空航天大学出版社,1994.
    [120]杨练根.互换性与技术测量[M].北京,华中科技大学出版社,2010.
    [121]刘鸿文.材料力学(上册)[M].北京,高等教育出版社,1985.
    [122]徐铭陶,周荣仁,赵邦义.振动分析基础讲义[M].重庆,重庆大学理学教研室,1982.
    [123]吴福光,蔡成武,徐兆.振动理论[M].北京,高等教育出版社,1987.
    [124]张阿舟,诸德超,姚启航,等.振动理论与分析.北京,航空工业出版社,1996.
    [125]钱培风.结构动力学[M].北京,中国工业出版社,1964.
    [126]Kardestuncer H, Norrie D H, Brezzi F. Finite element handbook[M]. McGraw-Hill new York,1987.
    [127]Zienkiewicz O C, Taylor R L. The finite element method for solid and structural mechanics[M]. Butterworth-Heinemann,2005.
    [128]龚曙光,谢桂兰ANSYS工程应用实例解析[M].北京,机械工业出版社,2003.
    [129]孙正鼐,于海芳,张虹.基于光纤干涉仪的振动测量技术[J].光电工程,2007,34(6):35-39.
    [130]王少清,金卫东,张军,等.用光子相关法测量振动频率[J].光电工程,2009,36(11):9-13.
    [131]黄其明.转炉倾动的计算机分析及动态模拟[J].重型机械,2003,(3):33-36.
    [132]张如一,沈观林,李朝弟.应变电测与传感器[M].北匕京,清华大学出版社,1998.
    [133]Swinson W F, Bowman C E. Application of scattered-light photoelasticity to doubly connected tapered torsion bars[J]. Experimental Mechanics,1966,6(6):297-305.
    [134]冶金部复吹专家组.氧气顶底复吹转炉设计参考[M].北京,冶金工业出版社,1994.
    [135]博雷西,汪一麟,一骏.等.高等材料力学[M].北京,科学出版社,1987.
    [136]Timoshenko S P. Goodier J N. Theory of elasticity[M]. McGraw, New York,1970.
    [137]徐艺伦.弹性力学(下册)[M].北京.高等教育出版社,1992.
    [138]姜文汉,封闭圆环在对称垂直载荷 下的变[J].光电工程1981,(3):20-27.
    [139]强士中,李乔.关于闭口薄壁杆件约束扭转的周边不变形理论[J].桥梁建设,1985,(1):63-75.
    [140]鲍永方.矩形箱梁约束扭转理论的分析与比较[J].工程力学,1997,14(3):132-137.
    [141]周履.单室矩形箱梁畸变计算[J].桥梁建设,1980,(4):):1-47.
    [142]包世华,周坚.薄壁杆件结构力学[M].北京,中国建筑工业出版社,2006.
    [143]包世华.结构力学[M].武汉,武汉工业大学出版社,2001.
    [144]韦芳芳,吴京,冯健,等.薄壁箱梁广义坐标法刚度矩阵的推导及应[J].计算力学学报,2007,(5):693-691.
    [145]李海锋.横隔板对薄壁钢箱梁纵向正应力的影响[J].建筑结构学报,2010,(s1):39-44.
    [146]周竞欧.用正确的连续性条件分析闭口薄壁杆系结构[J].同济大学学报,1987,15(3):325-334.
    [147]贾宪涛.箱梁加纵隔板和加劲肋后的力学性能研究[D].硕士论文.重庆交通大学,2009.
    [148]铁木辛柯S P板壳理论[M].北京,科学出版社,1977.
    [149]钟万勰、力、功、能量与辛数学[M].大连,大连理工大学出版社,2007.
    [150]胡仁喜,王庆五,闫石,ANSYS 8.2机械设计高级应用实例[M].北京,机械工业出版社,2005.
    [151]Alain Daidie, Zouhair Chaib, Antoine Ghosn. 3D simplified finite elements analysis of load and contact angle in a slewing ball bearingf[J]. ASMH J. Mech. Des.. 2008, 130: 1-8.
    [152]Hernot X, Sartor M, Guillot J. Calculation of the Stiffness Matrix of Angular Contact Ball Bearings by Using the Analytical Approach[J]. ASME J. Mech. Des., 2000, 122: 83-90.
    [153]任学平,关丽坤,郭志强.转炉壳热应力和蠕变变形分析[M].北京,冶金工业出版社,2007.
    [154]黄素逸,刘伟.高等工程传热学[M].北京,中国电力出版社,2006.
    [155]贾力,方棨洪,钱兴华.高等传热学[M].北京。国防工业出版社,1957.
    [156]Incropcra, Frank P, DeWitt David P, el al. Fundamentals of heat and mass transfer[M]. Wiley, 1985.
    [157]王振时,热力学及传热原理[M].北京,国防工业出版社,1957.
    [158]施卫忠,陈德亮,黄超,梅钢150t转炉炉身压缩空气射流冷却装置的研制.[M]//2005中国钢铁年会论文集(第4卷).中国金属学会.2005.
    [159]边广生.空间结构温度效应理论分析及试验研究[D].东南大学,2004.
    [160]蔡叶宏.箱体结构壁板温度应力理论分析[J].工业建筑,2011,41(s1):346-348.
    [161]彭友松,强士中.公路混凝土箱梁三维温度应力计算方法[J].交通运输工程学报,2007,7(1):63-67.
    [162]Timoshenko P S. Mechanics of materials[M]. Boston, PWS Pub. Co.,1997.
    [163]竹内洋一郎.热应力[M].郭廷玮(译).北京,科学出版社,1982.
    [164]刘蓉华.结构力学[M].成都,西南交通大学出版社,2007.
    [165]包世华.结构力学(下).武汉,武汉理工大学出版社,2008.
    [166]Saeed Moaveni.有限元分析-ANSYS理论与应用[M].王崧,刘丽娟,董春敏(译).第三版.北京,电子工业出版社,2008
    [167]龚曙光,黄云清.有限元分析与ANSYS APDL编程及高级应用[M].北京,机械工业出版社,2009.
    [168]段明南,冯长宝,杨建华,等.板坯连铸结晶器铜板热机耦合应力分析[M].炼钢,2008,43(5):30-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700