用户名: 密码: 验证码:
磁性潜热型功能流体的制备与能量传递特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜热型功能流体是由相变微胶囊颗粒与传统单相流体构成的一种多相流体,由于相变微胶囊颗粒中的相变材料在发生固-液或液-固相变过程中吸收或释放潜热,它具有-定的储热能力。磁流体是一种具有磁体磁性和液体流动性的功能流体,它的一些热物性参数(如密度、粘度、导热系数等)会随着外磁场的变化而发生改变,因此磁流体是一种“可控”的传热流体,可以用外磁场实现对其流动和热量传递过程的控制。为实现潜热型功能流体的储热与磁流体的可控的有机结合,本文提出了一种全新的功能流体——磁性潜热型功能流体,它由磁性相变微胶囊颗粒与传统的单相流体构成。磁性相变微胶囊颗粒具有与磁性细微颗粒类似的磁性和相变微胶囊的储热能力,因而磁性潜热型功能流体是一种集可控、储热、强化换热功能于一身的新颖的功能流体。本学位论文将从以下几个方面研究磁性潜热型功能流体。
     (1)磁性相变微胶囊制备
     以石蜡为芯材,脲醛树脂和三聚氰胺改性脲醛树脂为壳材,纳米铁粒子为磁性材料,用原位聚合法制备了磁性相变微胶囊。采用差示扫描量热仪(DSC)、扫描电子显微镜(SEM)、振动样品磁强计(VSM)和电感耦合等离子直读光谱仪(ICP)对样品的热性能、表面形态、磁性能以及微胶囊中纳米铁粒子含量进行了表征和测量。研究了纳米铁粒子的加入对微胶囊的表面形态比饱和磁化强度的影响,对比了两种壳磁性相变微胶囊的表面形貌和强度。磁性相变微胶囊比饱和磁化强度随着纳米铁粒子含量的增加和石蜡用量的减少而增大。与脲醛树脂壳磁性相变微胶囊相比,三聚氰胺改性脲醛树脂壳磁性相变微胶囊具有更好的球形度和更好的强度。
     (2)磁性潜热型功能流体表观比热容与导热系数测量
     分别采用差示扫描量热仪和瞬态热线装置对磁性潜热型功能流体的表观比热容和导热系数进行了测量。研究了不同配方的磁性相变微胶囊及微胶囊体积分数下流体的表观比热容和导热系数,探索了外磁场对流体导热系数的影响。不同体积分数磁性潜热型功能流体的导热系数比皆随磁场强度的增大而升高,体积分数愈高导热系数比的增幅愈大。
     (3)磁性潜热型功能流体对流换热实验研究
     搭建了以磁性潜热型功能流体为工质的对流回路实验系统,利用永磁体提供外磁场,研究了磁场作用下磁性潜热型功能流体的运行状况。通过对回路中流体和铜管壁面的温度测量,实验探索了永磁体位置、磁性相变微胶囊体积分数、流体质量流量、加热热流密度等因素对磁性潜热型功能流体对流换热特性的影响。在外加非均匀磁场作用范围内,磁场强度越大,磁性潜热型功能流体的对流换热系数也越大。
     (4)磁性潜热型功能流体对流换热数值模拟
     在流体动力学、传热学和电磁学的一些重要理论基础上,建立了磁场作用下水平圆管内磁性潜热型功能流体对流换热的宏观数学模型,分析了磁场强度、磁性相变微胶囊体积分数、流体质量流量、加热热流密度等因素对流体对流换热的影响,并揭示了外磁场对磁性潜热型功能流体对流换热的影响机制。磁场对磁性潜热型功能流体的对流换热具有显著的强化作用,强化的原因是磁性相变微胶囊受到磁力作用产生扰动。通过对比壁面温度实验值与计算值,对数学模型和实验系统的合理性进行了相互验证,理论模型可正确地对外加非均匀磁场作用下磁性潜热型功能流体的对流换热特性进行模拟,而实验系统也能较准确地对其对流换热特性进行实验测量。
Latent functional fluid (LFF) is a novel multiphase fluid which consists of microencapsulated phase change material (MEPCM) particles and conventional single phase fluid. In the phase change temperature range, the phase change materials (PCM) absorb or release latent heat during their melting or crystallization process which results in LFF having an ability of heat storage. Magnetic fluid is another type of functional fluid which has both the dynamic characteristic of liquid and the magnetic properties of the bulk magnetic material and has an ability to respond to an external magnetic field. Some of its thermal parameters (such as density, viscosity, thermal conductivity, etc.) will change with the external magnetic field changes. Thus magnetic fluid is a controllable heat transfer fluid and its flow and energy transport process could be controlled by the external magnetic field. To combine the heat storage of LFF and the controllable energy transport process of magnetic fluid, magnetic latent functional fluid (MLFF), an innovative multiphase fluid, which consists of magnetic phase change microcapsule (MPCMC) particles and carrier fluid, has been proposed. Due to the magnetism and heat storage of the MPCMC particles, MLFF is a controllable, heat storange and enhanced heat transport fluid. The following aspects of MLFF will be studied in this thesis.
     (1) Preparation of MPCMC
     Magnetic microcapsules containing paraffin cores within urea-formaldehyde and melamine-urea-formaldehyde shells were fabricated utilizing in situ polymerization, with iron nano-particles as magnetic particles. The thermal properties, surface morphologies, magnetic properties and iron nano-particles content of the magnetic phase-change microcapsules were investigated by scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), vibrating sample magnetometry (VSM) and inductively coupled plasma quantometry (ICP). The influence of iron nano-particles on morphologies and specific saturation magnetization was also considered. The morphologies and intensity of MPCMC with two kind shells were compared.
     (2) Measurement of apparent specific heat capacity and thermal conductivity of MLFF
     The apparent specific heat capacity and thermal conductivity of MLFF were experimentally investigated by DSC technique and transient short-hot-wire method, respectively. The effects of the MPCMC volume fractions and components in the MPCMC on the apparent specific heat capacity and thermal conductivity of MLFF were discussed. A dramatic variation of the thermal conductivity was observed in the presence of an applied magnetic field.
     (3) Experimental investigation on convective heat transfer of MLFF
     To investigation on convective heat transfer of MLFF in the presence of magnetic field, a convection loop using MLFF as work fluid was made, and the magnetic field was produce by a cylindrical Nd-Fe-B permanent magnet in the loop. Through the measurement on bulk mean temperature and wall temperature, the influence of magnet location, volume fraction of MPCMC, mass flow rate, and heat flux on convective heat transfer of MLFF was experimentally analyzed.
     (4) Numerical simulation on convective heat transfer of MLFF
     Based on fluid dynamics and electromagnetics, a mathematical model for describing convective heat transfer characteristic of MLFF flow in circular tube under an external magnetic field was established. The influence of magnetic field strength, volume fraction of MPCMC, mass flow rate, and heat flux on convective heat transfer of MLFF was analyzed. The mechanism of magnetic field influence on MLFF convective heat transfer was revealed. The convective heat transfer of MLFF was enchanced by magnetic field, and the enhancement reason was that the distributions of MPCMC volume fraction and slurries temperature were changed due to magnetic force on MPCMC. For verify the reasonableness of mathematical model and experiment system, the experimental and simulated values of wall temperature were compared.
引文
1 郝英立,A Khan, Yong-X Tao.圆管内潜热型功能流体对流换热的实验研究.工程热物理学报,2005;26(2):283~285
    2 胡先旭,张寅平.等壁温条件下潜热型功能热流体换热强化机理的理论研究.太阳能学报.2002,23(5):626~633
    3 Chen B J, Wang X, Zhang Y P, et al. Experiment research on laminar flow performance of phase change emulsion. Applied Thermal Engineering.2005,23:1238-1245
    4饶宇,Dammel F, Stephan P,林贵平.相变材料微胶囊悬浮液在矩形小通道内层流流动传热的实验.航空动力学报.2006;21(6):1012~1020
    5 Zhang Y P, Hu X X, Hao Q, et al. Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux:internal heat source model and its application. Science China in China Series E.2003,46(2):132-140
    6 Rao Y, Dammel F, Stephan P, Lin G. P. Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat and Mass Transfer.2007,44:175-186
    7 Sari A, Alkan C, Karaipekli A, Uzun O. Microencapsulated n-octacosane as phase change material for thermal energy storage. Solar Energy.2009,83:1757-1763
    8 Inaba H, Zhang Y L, Horibe A, Haruki N. Numerical simulation of natural convection of latent heat phase-change-material microcapsulate slurry packed on a horizontal rectangular enclosure heated from below ond cooled from above. Heat and Mass Transfer. 2007,43:459-470
    9 Roy S K, Avanic B L. Turbulent heat transfer with phase change material suspensions. International Journal of Heat and Mass Transfer.2001,44:2277-2285
    10 Cassidy D, Gould R D. Temperature range and conjugate effects in microencapsulated phase-change suspensions. Journal of Thermophysics and Heat Transfer.2008, 22(2):240-246.
    11 Jorge L Alvarado, Charles Marsh, Chang Sohn, et al. Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux. International Journal of Heat and Mass Transfer.2007,50:1938-1952
    12 Charunyakorn P, Sengupta P S, Roy S K. Forced convection heat transfer in microencapsulated phase change material slurries:flow in circular ducts. International Journal of Heat and Mass Transfer.1991,34:819-835
    13 Rosensweig R E. Ferrohydrodynamics. Cambridge:Cambridge University Press,1985
    14李德才.磁性液体理论及应用.北京:科学出版社,2003
    15 Berkovsky B M. Magnetic fluids engineering applications. New York: Oxford University press,1993
    16 Odenbach S. Ferrofluids. Berlin:Springer,2002
    17 Muraoka H, Shoji T, Watanabe I, et.al. Recording characteristics of perpendicular media deposited on a ferrite disk substrate. Journal of Magnetism and Magnetic Materials.1999, 193:55-58
    18 Parka S, Kimb J, Kim C. Preparation of photosensitizer-coated magnetic fluid for treatment of tumor. Journal of Magnetism and Magnetic Materials.2004,272-276: 2340-2342
    19 Adam B, Roman S. The possibility of utilizing the high permeability magnetic materials in construction of magnetoelastic stress and force sensors. Sensors and Actuators A.2004, 113:270-276
    20 Liu J H, Gu J M, Lian Z W, et al. Experiments and mechanism analysis of pool boiling heat transfer enhancement with water-based magnetic fluid. Heat and Mass Transfer.2004, 41:170-175
    21李春辉,王补宣,彭晓峰.添加铁磁性微颗粒对沸腾传热的影响.热科学与技术.2003,2(1):30~33
    22 Olkera T V, Blumsb E, Odenbach S. Thermodiffusion in magnetic fluids. Journal of Magnetism and Magnetic Materials.2002,252:218-220
    23 Xuan Y M, Li Q. Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow.2000,21:58-64
    24 Koichi H, Haruhisa F, Masanobu M. Convective heat flux control by soft magnetic particle suspension. Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference,1999
    25 Koichi H, Haruhisa F. Heat flux control in liquid by soft magnetic particles. Proceedings of the 3th KSME/JSME Thermal Engineering Conference,1996
    26 Choi E, Cho Y I, Lorsch H G. Forced convection heat transfer with phase change material slurries:turbulent flow in a circular tube. International Journal of Heat and Mass Transfer. 1994,37(2):207-215
    27尚红波,徐玲玲,沈艳华,陈良.微胶囊相变材料在建筑节能领域的研究与应用.材料导报.2005,19(12):42~45
    28 Goel M, Roy S K, Sengtlpta S. Laminar forced convection heat transfer in microencapsulated phase change material suspensions. International Journal of Heat and Mass Transfer.1994,37(4):593-604
    29 Yamagishi Y, Takeuchi H, Pyakento A, Kayukawa N. Characteristics of microencapsulated PCM slurry as a heat-transfer fluid. AIChE Jouranl.1999,45(4):696-707
    30 Chen B J, Wang X, Zeng R L, et al. An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux. Experimental Thermal and Fluid Science.2008,32:1638-1646
    31 Wang X C, Niu J L, Li Y, et al. Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube. International Joural of Heat and Mass Transfer.2007, 50:2480-2491
    32 Zeng R L, Wang X, Chen B J, Zhang Y P, et al. Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under contast heat flux. Applied Energy.2009,86:2661-2670
    33 Mulligan J C, Colvin D P, Bryant Y G. Microencapsulated phase-change material suspensions for heat transfer in spacecraft thermal systems. Journal of Spacecraft and Rockets.1996,33:278-284
    34 Inaba H, Kim M J, Horibe A. Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microcapsules having different diameters. Journal of Heat Transfer.2004,126(4):558-565
    35 Thaicham, Gadi M B, Riffat S B. An investigation of microencapsulated phase change material slurry as a heat-transfer fluid in a closed-loop system. Journal of the Institute of Energy.2004,77 (513):108-115
    36 Datta P, Sengupta Roy S K. Natural convection heat transfer in an enclosure with suspensions of microencapsulated phase change materials. ASME General Papers in Heat Transfer,1992,204:133-144
    37 Roy S K, Avanic B L. Turbulent heat transfer with phase change material suspension. International Joural of Heat and Mass Transfer.2001,44:2277-2285
    38 Hu X X, Zhang Y P. Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries:laminar flow in a circular tube with constant heat flux. International Joural of Heat and Mass Transfer.2002, 45:3163-3172
    39 Zhang Y W, Faghri A. Analysis of forced convection heat transfer in microencapsulated phase change material susepnsions. Journal of Thermophysics and Heat Transfer.1995, 9(4):727-732
    40卢文强,白凤武.潜热型功能热流体层流强化传热分析新模型.科学通报.2004,49(13):1234~1240
    41赵镇南,郝睿.离散固液两相流中的对流换热强化与参数分析.多相流年会论文集,中国工程热物理学会第13届年会,上海,2004:648~651
    42 Rami S, Mohammad M F, Said A H. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material:3D-numerical study. Applied Thermal Engineering.2008,29:445-454
    43 Neuringger J L, Rosensweig R E. Ferrohydrodynamics. Physics of Fluids.1964,7(12): 1927-1937
    44 Ganguly R J, Sen S, Puri I K. Heat transfer augmentation using a magnetic fluid under the influence of line dipole. Journal of Magnetism and Magnetic Materials.2004,271:63-73
    45 Nakatsuka K, Hama Y, Takahashi J. Heat transfer in temperature-sensitive magnetic fluids. Journal of Magnetism and Magnetic Materials.1990,85:207-209
    46 Yamaguchi H, Kobori I, Kobayashi N. Numerical study of flow state for a magnetic fluid heat transport device. Journal of Magnetism and Magnetic Materials.1999,201:260-263
    47 Shimada K, Kamiyama S, Iwabuchi M. Effect of a magnetic field on the performance of an energy conversion system using magnetic fluid. Journal of Magnetism and Magnetic Materials.1999,201:357-360
    48 Love L J, Jansen J F, McKnight T E, et al. Ferrofluid field induced flow for microfluidic applications. Transactions on Mechatronics.2005,10:68-76
    49 Love L J, Jansen J F, McKnight T E, et.al. A magnetocaloric pump for microfluidic applications. Transactions on Nanobioscience.2004,3:101-110
    50 Jafari A, Tynjala T, Mousavi S M, Sarkomaa P. CFD simulation and evaluation of controllable parameters effect on thermomagnetic convection in ferrofluids using Taguchi technique. Computers & Fluids.2008,37:1344-1353
    51李强,宣益民,李锐.非均匀磁场中磁流体热磁对流的实验研究.工程热物理学报.2006,27(4):676~678
    52 Li Q, Xuan Y M. Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Experimental Thermal and Fluid Science.2009,33:591-596
    53李强,宣益民.外磁场作用下磁流体的对流换热特性.工程热物理学报.2008,29(7):1177~1180
    54 Zhou L J, Xuan Y M, Li Q, Zhao K. The multiscale simulation for magnetic fluid based on lattice Boltzmann method, ISMF2009, xi'an,6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion
    55 Zhou L J, Xuan Y M, Li Q, Lian W L. A new miniaturized engine based on thermomagnetic effect of magnetic fluids. Frontiers of Energy and Power Engineering in China.2009,3:160-166
    56 Lian W L, Xuan Y M, Li Q. Particle image velocimetry for an automatic cooling device using temperature-sensitive magnetic fluid. Science in China Series E-Technological Sciences.2008,51(8):1203-1210
    57任晓亮,王立新,任丽,苏峻峰.原位聚合法制备相变储热微胶囊.功能材料.2005,36(11):1722~1727
    58 Hawlader M N A, Uddin M S. Microencapsulated PCM thermal-energy storage systems. Applied energy.2003,74:195-202
    59兰孝征,杨常光,谭志诚,孙立贤,徐芬.界面聚合法制备正二十烷微胶囊化相变储热材料.物理化学学报.2007,23(4):581~584
    60 Yoshinari T, Hiroshi Y, Hideo K, et al. Preparation PCM microcapsules by using oil absorbable polymer particles. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2007,301:41-47
    61 Nihal S, Emel O. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochimica Acta.2007,452:149-160
    62 Ahmet S, Cemil A, Ali K, Orhan U. Microencapsulated n-octacosane as phase change material for thermal energy storage. Solar Energy.2009,83:1757-1763
    63 Cemil A, Ahmet S, Ali K, Orhan U. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Solar Energy Materials & Solar Cells.2009,93:143-147
    64 Sue H J, Gam K T, Bestaout N, et al. Fracture behavior of a-zirconium phosphate-based epoxy nano composites. Acta Materialia.2004,52:2239-2250
    65赵贵哲,刘亚青.纳米Si O2增强增韧聚丙烯(PP)的研究.吉林大学学报(工学版).2005,35:205~209
    66 Song Q W, Li Y, Xing J W, et al. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles. Polymer.2007,48:3317-3323
    67时雨荃,蔡明建.无机纳米粒子填充相变微胶囊壁的研究.高分子材料科学与工程.2006,22(6):201~204
    68时雨荃,蔡明建.纳米复合膜相变微胶囊的制备及性质.化学工业与工程.2006,23(3):224~227
    69 Wang D K, Avashia A. On the thermal conductivity of magnetic fluid. Japanese Journal of Applied Physics.1996,35:3518-3521
    70 Wright B, Thomas D, Hong H P, et al. Mangetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes. Applied Physics Letters.2007,91:173116
    71 Philip J, Shima P D, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike strucres. Applied Physics Letters.2007,91:203108
    72 Philip J, Shima P D, Raj B. Nanofluid with tunable thermal properties. Applied Physics Letters.2008,92:043108
    73 Li Q, Xuan Y M, Wang J. Experimental investigations on transport properties of magnetic fluids. Experimental Thermal and Fluid Science.2005,30:109-116
    74张冬霞.相变材料在调温服装中的应用.针织工业.2007,3:28~31
    75崔海亭,袁修于,侯欣宾.蓄热技术的研究进展与应用.化工进展.2002,121(1):23~25
    76 Mochida N T, Takeda S, Domanski R, et al. Thermal characteristics of Manganese (Ⅱ): Nitratehexahydrate as phase change material for cooling system. Applied Thermal. 2003,23:229-241
    77王剑锋.相变储热研究进展(Ⅰ):相变材料特性与储热系统优化.新能源.2000,22(3):31~35
    78 Telkes M. Thermal storage in salt-hydrate. Solar Materials Science. USA:Academic Press Inc,1980:377-404
    79 Lee H K, Park J H, et al. U.S.Pattent,5709945
    80 Takeshi K. Research on the thermal storage of PCMs wallboard. Japanese Jouranl of Architeccture Planning and Environment Engineering.2001:540-550
    81张寅平,葛新石,苏跃红.(准)二元晶系熔点、溶解热的预测.中国科学技术大学学报.1995,25(4):474~478
    82 Zhang Y P, Liang X G. Numerical analysis of effective thermal conductivity of mixed solid materials. Materials & Design.1995,16(2):91-95
    83林坤平,张寅平,狄洪发,杨睿.定形相变材料蓄热地板电采暖系统热性能.清华大学学报(自然科学版).2004,44(12):1618~1621
    84张寅平,孔祥冬,葛新石.一种速冷后能保温的新颖容器—传热分析.中国科学技术大学学报.1994,23(3):384~389
    85阮德水,黎厚斌,张太平等.磷酸氢二钠及其低共熔物贮热性能研究.太阳能学报. 1991,12(4):368~372
    86阮德水,张太平,张道圣等.水合盐相变热长期贮存的研究.太阳能学报.1993,14(1):16~22
    87梁治齐.微胶囊技术及其应用.北京:中国轻工业出版社,2001
    88饶宇,林贵平,罗燕,陈水林,王亮.应用于强化传热的相变材料微胶囊的制备及特性.航空动力学报.2005,20(4):651-655
    89 Tseng Y H, Fang M H, Tsai P S, Yang Y M. Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation. Journal of Microencapsulation.2005,22(1):37-46
    90 Li W, Zhang X X, Wang X C, et al. Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content. Materials Chemistry and Physics.2007,106:437-442
    91 Liu X, Liu H Y, Wang S J, Zhang L, Cheng H. Preparation and thermal properties of form-stable paraffin phase change material encapsulation. Solar Energy.2006,80: 1561-1567
    92 Zhang H Z, Wang X D, Wu D Z. Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance. Journal of Colloid and Interface Science.2010,343(1):246-255
    93 Cho J S, Kwon A, Cho C G. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid and Polymer Science. 2002,280(3):260-266
    94 Chen L, Xu L L, Shang H B, Zhang Z B. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Conversion and Management.2009,50:723-729
    95 Su J F, Wang L X, Ren L. Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant. Colloids and Surfaces A:Physicochemical and Engineeriong Aspects.2007,299:268-275
    96 Ozonur Y, Mazman M, Paksoy H O, Evliya H. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. International Journal of Energy Research.2006,30:741-749
    97邢琳,方贵银,杨帆.微胶囊相变蓄冷材料的制备及其性能研究.真空与低温.2006,12(3):153~156
    98吕石磊,冯国会,付英会.HVAC领域相变贮能研究的现状与友展.节能.2004,3:36~38
    99 Bo H, Fredrik S. Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation. Energy Conversion and Mangement,2002.43(13):1709-1723
    100刘红娟,顾兆林.空调冷凝热回收系统石蜡基相变材料的初步研究.流体机械.2003,31:173~177
    101 Mckinney R A, Bryant Y G, Colvin D P. US Patent,6373058
    102 Vasiliev L L, Burak V S, Kulakov A G, et al. Latent heat storge modules for preheating internal combustion engines:application to a bus petrol engine. Applied Thermal Engineering.2000,20(10):913-923
    103王瑞金.磁流体技术的应用于发展.新技术新工艺.2001,10:15~18
    104 Papell S S. Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. US Patent,3215572
    105 Reimers G W, Knalafalla S E. Production of magnetic fluids by peptization techniques. US Patent,3843540
    106 Hoon S R, Kilner M, Russel G J, Tanner B K. Preparation and properties of nickel ferrofluids. Journal of Magnetism and Magnetic Materials.1983,39:107-110
    107 Berkowitz A E, Walter J L. Ferrofluids prepared by spark erosion. Journal of Magnetism and Magnetic Materials.1983,39:75-78
    108 Kilner M, Hoon S R, Lambrick D B, Potton J A, Tanner B K. Preparation and properties of metallic iron ferrofluids. IEEE Transactions on Magnetics.1984 20:1735-1737
    109洪若瑜.磁性纳米粒和磁性流体制备与应用.北京:化学工业出版社,2009
    110 Markus Z, Loretta L P. Ferrofluid flows in AC and traneling wave magnetic fields with effective positive, zero or negative dynamic viscosity. Journal of Magnetism and Magnetic Materials.1999,201:144-148
    111 Jangssen J J M, Perenboom J A A J. Magneto-optical phenomena in magnetic fluids:the influence of orientation of anisotropic scatterers. Journal of Magnetism and Magnetic Materials.1989,81(1-2):14-24
    112李土根.磁性材料及器件的应用.南京:南京机电部第14所出版社,1991
    113王强,李德才等.磁性液体粘性减阻技术.机械工程师.2002,3:5-7
    114 Tsyb A F, Amosov I S. Magnetic Fluids at Contrast Media. Journal of Magnetism and Magnetic Materials.1983,39(1-2):183-186
    115 Shinoiizaka J, Nakatsuka K. Treatment of oil sludge using water based magnetic fluid. Ferrites:Proceedings of the International Conference, September-October,1980
    116李国栋.当代磁学.合肥:中国科学技术大学出版社,1999
    117陈湘.电和磁.上海:上海教育出版社,1979
    118 Lu S L, Jacqueline F. Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization. Journal of Polymer Science:Part A:Polymer Chemistry.2006, (44):4187-4203
    119王立新,任晓亮,任丽,苏俊峰.原位聚合法制备相变材料微胶囊及其致密性.复合材料学报.2006,23(2):53~58
    120左芳,钟武波,董星龙.纳米铁粉吸波剂的表面改性及其分析表征.功能材料.2004,35:837~840
    121董星龙,左芳,李哲男等.导电纳米镍粉表面改性研究.材料科学与工艺.2007,15(4):553~559
    122邹科,杨东方,马向东.铁镍合金粉包覆性及其吸波性能研究.材料工程.2008,2:54-57
    123 Dean J A. Lang's Handbook of Chemistry,15th Ed. McGraw-Hill:New York,1999
    124 Zalba B, Marin J M, Cabeza L F, Mehling H. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications. Applied Thermal Engineering.2003,23:251-283
    125 Incropera E P, De Witt D P. Fundamentals of Heat and Mass Transfer,5th ed. Wiley: New York,2002
    126 Zhou S Q, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Applied Physics Letters.2008,92:093123
    127 Higano M, Miyagawa A, Saigou K, Masuda H, Miyashita H. Measuring the specific heat capacity of magnetic fluids using a differential scanning calorimeter. International Journal of Thermophysics.1999,20:207-215
    128 Krishnan R V, Manikandan P, Jena H, Nagarajan K. Heat capacity of La6UO12, Sm6UO12 and Eu6UO12 by DSC. Thermochimica Acta.2008,472:95-98
    129 Cedeno F O, Prieto M M, Xiberta J. Measurements and estimate of heat capacity for some pure fatty acids and their binary and ternary mixtures. Journal of Chemical and Engineering Data.2000,45:64-69
    130 Pyda M, Nowak-Pyda E, Wunderlich B. The heat capacity of polyethylene fibers measured by multi-frequency temperature-modulated calorimetry. Thermochimica Acta. 2006,442:35-41
    131 Arkar C, Medved S. Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres. Thermochimica Acta.2005,438:192-201
    132 Karthikeyan N R, Philip J, Raj B. Effect of clustering on the thermal conductivity of nanofluids. Materials Chemistry and Physics.2008,109:50-55
    133 Chen L F, Xie H Q, Li Y, Yu W. Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochimica Acta.2008,47:21-24
    134 Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental Thermal and Fluid Science.2007,31:593-599
    135 Xie H Q, Gu H, Fujii M, Zhang X. Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials. Measurement Science and Technology.2006,17:208-214
    136连文磊.磁性液体热磁对流与传热机理—能量自主传递方法研究.博士学位论文.南京理工大学,2010
    137 Allen R W, Eckert E R G. Friction and heat-transfer measurements to turbulent pipe flow of water (pr=7 and 8) at uniform wall heat flux. Journal of Heat Transfer.1964,86: 301-310
    138 Shah R K, London A L. Laminar flow forced convection in ducts. New York:Academic Press,1978
    139 Rhafiki T E, Kousksou T, Zeraouli Y. Thermal performance of microencapsulated phase-change-material slurry: laminar flow in circular tube. Journal of Thermophysics and Heat Transfer.2010,24(3):480-489
    140 Diaconu B M, Varga S, Oliveira A. Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry. Energy.2010, 35:2688-2693
    141 Xing K Q, Tao Y X, Hao Y L. Performance of evaluation of liquid flow with PCM particles in microchannels. Journal of Heat Transfer.2005,127:931-940
    142南京工学院数学教研组编.数学物理方程与特殊函数.第二版.北京:高等教育出版社,1982
    143 Vand V. Theory of viscosity of concentrated suspensions. Nature.1945,155:364-365
    144 Hao Y L, Tao Y X. A Numerical Model for Phase-Change Suspension Flow in Microchannels. Numerical Heat Transfer, Part A.2004,46:55-77
    145 Maxell J C. A treatise on electricity and magnetism. Third edit. New York:Dover,1954
    146陶文铨.数值传热学.第二版.西安:西安交通大学出版社,2001
    147王瑞金,张凯,王刚Fluent技术基础与应用实例.北京:清华大学出版社,2007
    148江帆,黄鹏Fluent高级应用与实例分析.北京:清华大学出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700