用户名: 密码: 验证码:
反电晕等离子体发生方法及协同催化处理挥发性有机物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性有机物(VOCs)是一种重要的空气污染物。我国人为源VOCs排放总量很大,典型行业的VOCs污染非常严重。针对大风量、低浓度的VOCs,传统治理技术的应用受到投资、运行费用及效率等因素的制约。低温等离子体催化技术被认为是VOCs处理中很有发展前途的技术之一。低温等离子体的产生方法很多,如电晕放电、脉冲放电、介质阻挡放电、电子束、微波等。目前的等离子体发生方法,仍难于同时满足高能量效率和经济可靠的供电电源这两个条件。采用等离子体处理VOCs会产生如CO、O3、NOx和气溶胶等副产物,结合催化剂能够控制气相副产物,但前段产生的气溶胶会引起催化剂的失活。
     针对等离子体发生技术和处理VOCs中存在的问题,本文主要研究一种采用直流电源供电的等离子体发生方法,通过反电晕放电在蜂窝催化剂上产生等离子体;基于反电晕等离子体发生方法,提出由催化剂反电晕结合前置介质阻挡放电模块及后置催化剂模块组成的VOCs处理工艺系统。主要研究内容和结论如下:
     (1)研究了蜂窝催化剂反电晕放电的特性和放电机制。催化剂反电晕放电,不仅在催化剂沿面产生等离子体,同时还在蜂窝孔道内产生等离子体;中间辅助网电极能够限制电流的发展,使反电晕放电更均匀,其电压值在放电过程不断变化和调整,有利于反电晕等离子体的发生。
     负电晕放电可实现稳定的反电晕放电;不同的蜂窝孔径、催化剂种类、蜂窝厚度以及湿度等因素都对反电晕等离子体产生影响。在施加电压为30kV、放电电流为12.7μA/cm2的条件下,反电晕放电的离子风流速可达1.99m/s,气流通过蜂窝催化剂后,流速仍达0.5m/s。
     催化剂反电晕放电的臭氧产量与电流密度正相关;采用AgMnOx/Al2O3催化剂反电晕去除甲苯,在能量密度为285.6J/L时,去除效率为94.8%。催化剂反电晕能够捕集和降解气溶胶;在电压为30kV,电流358μA条件下,颗粒物的收集效率为94.0%。
     (2)研究了两段式反应器去除正已烷时,催化剂种类、能量密度、湿度、温度等因素的影响。AgMnOx催化剂对正已烷的去除效率、等离子体催化协同作用、相同臭氧消耗量时的正已烷去除量、臭氧需求因子均具有明显的优势。
     (3)采用列管DBD、BCD和催化剂组成等离子体催化复合体系去除VOCs.该工艺能够克服等离子体催化处理VOCs产生的气溶胶引起的不利影响;催化剂反电晕放电能够有效利用放电离子风,有利于克服催化剂床层阻力引起的压降。
     列管DBD的臭氧产率和甲苯去除效率分别为4.08和0.40molecules/heV.等离子体处理VOCs产生的气溶胶主要成分为C-C和C-H。结合催化剂反电晕放电后,臭氧和甲苯去除效率均提高。
     (4)等离子体中,VOCs的去除主要是自由基反应过程,其去除效率和等离子体能量密度成线性关系。
Volatile organic compounds (VOCs) is an important air pollutant. The total anthropogenic source VOCs emission in China is very large, and the VOCs pollution in typical industry is very serious. For the large flow and low concentration of VOCs, the application of traditional control technology is restricted by the factors such as investment, operation cost and removal efficiency. The non-plasma catalysis technology is considered to be one of the promising technologies for VOCs treatment. There are several techniques to generate non-thermal plasmas, such as corona discharge, pulsed corona, dielectric barrier discharge (DBD), electron beam and microwave, etc.. Nowadays, the plasma generation techniques are still difficult to satisfy both the conditions of high energy efficiency and the economic and reliable power supply. By-products such as CO, ozone, NOx and aerosol can be produced in the plasma VOCs treatment process. By combined with the catalyst, plasma catalysis can control the gas phase by-products, but the aerosol produced in the plasma process can induce the deactivation of catalyst.
     On the problems of plasma generation technology and VOCs treatment, plasma generation method powered by DC power source is studied in this work. For this method, the plasma is generated on honeycomb catalyst in the process of back corona discharge. Based on the back corona plasma generation method, a hybrid VOCs treatment system consists of back corona discharge reactor combined with a tubular DBD reactor up-stream and catalyst bed down-stream is proposed.
     The main research contents and results are as follows:
     (1) The characteristics of the back corona discharge on honeycomb catalyst and the discharge mechanism are investigated in this section. Based on back corona discharge on honeycomb catalyst, the plasmas are generated both of along the surface and in the channel of honeycomb catalyst. Middle auxiliary electrode can limit the development of current and produce uniform back corona plasma. The changing and adjusting of voltage value in middle auxiliary electrode is benefit the generation of back corona plasma.
     By using the negative corona discharge, stable back corona discharge can be realized. The factors of honeycomb pore size, catalyst type, thickness of honeycomb, and humidity can affect the back corona plasma generation. A flow velocity of1.99m/s of ionic wind can be realized in BCD at an applied voltage of30kV and a discharge current density of12.7μA/cm2. And at the downstream of honeycomb catalyst, flow velocity of0.5m/s still can be achieved.
     The ozone generation of back corona discharge on catalyst is directly proportional to the discharge current. For AgMnOx/Al203catalyst,94.8%toluene removal efficiency is observed at the specific input energy of286J/L. The total particle weight removal efficiency is about94%at the applied voltage of30kV and discharge current of358μA.
     (2) For removal of n-hexane in two-stage plasma catalysis reactor, the influences of catalyst type, energy density, humidity, and temperature are investigated in this section. The AgMnOx catalyst has a higher performance of n-hexane removal efficiency, plasma catalysis synergy effect, the removed amount of the n-hexane at the same ozone consumption, the ozone demand factor.
     (3) The hybrid plasma catalysis reactor mainly consists of3stages that are the tubular DBD reactor, back corona discharge reactor and catalyst bed. This hybrid process can overcome the adverse effect of aerosols produced in the process of plasma catalysis for VOCs removal. The ionic wind due to the back corona discharge can be actively used to reduce the pressure drop of the reactor.
     The G-value of ozone generation and toluene removal in tubular DBD reactor is about4.08molecules/heV and0.40molecules/heV, respectively. The C-C and C-H are the main components of aerosols produced in plasma process for VOCs removal. Both of ozone decomposition and toluene removal efficiency are improved by combined with back corona discharge on catalyst.
     (4) The main reaction of VOCs removal is radical reaction process in plasma. The amount of the pollutant removed is directly proportional to the plasma energy density.
引文
[1]WHO. Air quality guidelines. Denmark:WHO Regional office for Europe,2005,
    [2]谢绍东,于淼,姜明.有机气溶胶的来源与形成研究现状.环境科学学报.2006.(12).1933-1939.
    [3]P. Saxena, L. M. Hildemann. Water-soluble organics in atmospheric particles:A critical review of the literature and application of thermodynamics to identify candidate compounds. JOURNAL OF ATMOSPHERIC CHEMISTRY.1996.24. (1).57-109.
    [4]C. Liousse, J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, H. Cachier. A global three-dimensional model study of carbonaceous aerosols. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES.1996.101. (D14).19411-19432.
    [5]H. A. GRAY, G. R. CASS, J. J. HUNTZICKER, E. K. HEYERDAHL, J. A. RAU. CHARACTERISTICS OF ATMOSPHERIC ORGANIC AND ELEMENTAL CARBON PARTICLE CONCENTRATIONS IN LOS-ANGELES. ENVIRONMENTAL SCIENCE & TECHNOLOGY.1986.20. (6).580-589.
    [6]H. B. Singh, P. Brimblecombe, H. Verhagen. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. ATMOSPHERIC ENVIRONMENT.2006.40. (13).2245-2247.
    [7]J. F. PANKOW. AN ABSORPTION-MODEL OF THE GAS AEROSOL PARTITIONING INVOLVED IN THE FORMATION OF SECONDARY ORGANIC AEROSOL. ATMOSPHERIC ENVIRONMENT.1994.28. (2).189-193.
    [8]章旭明.低温等离子体净化处理挥发性有机气体技术研究[博士学位论文].杭州.浙江大学.2011.
    [9]陶有胜.三苯”废气治理技术.环境保护.1999.(08).20-21+24.
    [10]梁红,叶代启,肖美兰.恶臭及挥发性有机溶剂废气治理技术.广州环境科学.1999.(4).11-15.
    [11]C. Jia, S. Batterman, C. Godwin. VOCs in industrial, urban and suburban neighborhoods, Part 1:Indoor and outdoor concentrations, variation, and risk drivers. ATMOSPHERIC ENVIRONMENT.2008.42. (9).2083-2100.
    [12]岳伟,潘小川.室内空气污染物及其健康效应研究.环境与健康杂志.2005.(02).150-153.
    [13]R. Atkinson. Atmospheric chemistry of VOCs and NOx. ATMOSPHERIC ENVIRONMENT.2000.34. (12-14).2063-2101.
    [14]G. Klema. Special explosion-proof lifting equipment must be used where VOCs are present. Metal Finishing.2006.104. (10).38-40.
    [15]Y. Bo, H. Cai, S. D. Xie. Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. ATMOSPHERIC CHEMISTRY AND PHYSICS.2008.8. (23).7297-7316.
    [16]沈旻嘉,郝吉明,王丽涛.中国加油站VOC排放污染现状及控制.环境科学.2006.(08).1473-1478.
    [17]王宇楠,叶代启,林俊敏,叶炽德,付名利.漆包线行业挥发性有机物(VOCs)排放特征研究.中国环境科学.2012.(6).980-987.
    [18]王浙明,徐志荣,叶红玉,许明珠,王晓星.废旧有机玻璃再生利用行业挥发性有机物(VOCs)排放特征研究.环境科学.2013.(12).4571-4576.
    [19]席劲瑛,武俊良,胡洪营,王灿.工业VOCs排放源废气排放特征调查与分析.中国环境科学.2010.(11).1558-1562.
    [20]J. H. Kim, B. K. Kwak, H. S. Park, N. G. Kim, K. Choi, J. Yi. A GIS-based national emission inventory of major VOCs and risk assessment modeling:Part I-methodology and spatial pattern of emissions. KOREAN JOURNAL OF CHEMICAL ENGINEERING.2010.27. (1).129-138.
    [21]Z. Klimont, D. G. Streets, S. Gupta, J. Cofala, L. X. Fu, Y. Ichikawa. Anthropogenic emissions of non-methane volatile organic compounds in China. ATMOSPHERIC ENVIRONMENT.2002.36. (8).1309-1322.
    [22]刘金凤,赵静,李湉湉,白郁华,刘兆荣.我国人为源挥发性有机物排放清单的建立.中国环境科学.2008.(06).496-500.
    [23]魏巍.中国人为源挥发性有机化合物的排放现状及未来趋势[博士学位论文].清华大学.2009.167.
    [24]W. Wei, S. X. Wang, S. Chatani, Z. Klimont, J. Cofala, J. M. Hao. Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. ATMOSPHERIC ENVIRONMENT.2008.42. (20).4976-4988.
    [25]陈颖.我国工业源VOCs行业排放特征及未来趋势研究[硕士学位论文].华南理工大学.2011.73.
    [26]陈颖,叶代启,刘秀珍,吴军良,黄碧纯,郑雅楠.我国工业源VOCs排放的源头追踪和行业特征研究.中国环境科学.2012.(01).48-55.
    [27]杨利娴.我国工业源VOCs排放时空分布特征与控制策略研究[硕士学位论文].华南理工大学.2012.102.
    [28]何秋生,王新明,赵利容,盛国英,傅家谟.炼焦过程中挥发性有机物成分谱特征初步研究.中国环境监测.2005.(01).61-65.
    [29]徐捷,魏海萍,修光利.上海市半导体行业挥发性有机物(VOCs)排放特征研究.上海环境科学.2007.26.(5).198-202.
    [30]崔如,马永亮.电子产品加工制造企业挥发性有机物(VOCs)排放特征.环境科学.2013.(12).4585-4591.
    [31]王海林,聂磊,李靖,王宇飞,王刚,王俊慧,郝郑平.重点行业挥发性有机物排放特征与评估分析.科学通报.2012.(19).1739-1746.
    [32]栾志强,郝郑平,王喜芹.工业固定源VOCs台理技术分析评估.环境科学.2011.(12).3476-3486.
    [33]樊奇,羌宁.挥发性有机废气净化技术研究进展.四川环境.2005.(04).40-44+49.
    [34]王宝庆,马广大,陈剑宁.挥发性有机废气净化技术研究进展.环境污染治理技术与设备.2003.(05).47-51.
    [35]李俊,余倩,李永峰,余林,姚煌,沈丽斯,王运佳.影响铜-锰复合氧化物催化燃烧挥发性有机物的因素.中国粉体技术.2012.(01).78-81.
    [36]符嫦娥.吸附-催化燃烧含氯挥发性有机物催化剂的研究进展.云南化工.2009.(05).32-34.
    [37]张广宏,赵福真,季生福,银凤翔,李成岳.挥发性有机物催化燃烧消除的研究进展.化工进展.2007.(05).624-631.
    [38]王娟,黄碧纯,赵建国,吴军良,付名利,叶代启.基于Fluent的甲苯蓄热燃烧过程的数值模拟.环境工程学报.2011.(06).1341-1346.
    [39]张建军,邹得球,肖睿,黄冲,冯自平.蓄热燃烧蓄热体的应用现状与发展趋势.冶金能源.2009.(04).36-39.
    [40]饶文涛.蓄热燃烧中NO_X生成规律研究.宝钢技术.2004.(03).61-64.
    [41]饶文涛,杜军.蓄热燃烧技术研究现状分析.宝钢技术.2001.(04).12-15.
    [42]牛学坤,陈标华,周集义,李成岳.清除废气中VOCs的流向变换催化燃烧技术进展.环境污染治理技术与设备.2000.(02).87-95.
    [43]M. Amelio, G. Florio, P. Morrone, S. Senatore. The influence of rotary valve distribution systems on the energetic efficiency of regenerative thermal oxidizers (RTO). INTERNATIONAL JOURNAL OF ENERGY RESEARCH.2008.32. (1).24-34.
    [44]王静,徐丽,付名利,黄碧纯,叶代启.载体酸处理对蓄热-催化双功能催化剂性能的影响.化工进展.2009.(12).2164-2168.
    [45]牛学坤,陈标华,李成岳,周集义.流向变换催化燃烧反应器的可操作性.化工学报.2003.(09).1235-1239.
    [46]李霄宇,朱吉钦,贺振富,田辉平,李成岳.丙烯腈尾气段间取热式流向变换催化燃烧.化学反应工程与工艺.2008.(04).305-311.
    [47]王盈,朱吉钦,李攀,韦军,李成岳.低浓度甲烷流向变换催化燃烧的研究.燃料化学学报.2005.(06).760-762.
    [48]王文福,武作宇,李坚,梁文俊,敖磊,郑玉成.空间站甲烷流向变换蓄热催化燃烧反应器试验研究.航天医学与医学工程.2013.(03).177-180.
    [49]仉春华,王文君.生物脱臭技术的现状与展望.环境污染治理技术与设备.2003.(01).63-65.
    [50]苑宏英.生物净化挥发性有机化合物(VOCs)的研究进展.安全与环境学报.2004.(S1).1-4.
    [51]A. H. Wani, RMR Branion, A. K. Lau. Biofiltration: A promising and cost-effective control technology for odors, VOCs and air toxics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING.1997.32. (7).2027-2055.
    [52]陈建孟,王家德,唐翔宇.生物技术在有机废气处理中的研究进展.环境科学进展.1998.(03).31-37.
    [53]蔡伟民,龙明策.环境光催化材料与光催化净化技术.上海:上海交通大学出版社,2011,
    [54]Irving Langmuir. Oscillations in Ionized Gases. Proceedings of the National Academy of Sciences of the United States of America.1928.14. (8).627-637.
    [55]I. Langmuir. The interaction of electron and positive ion space charges in cathode sheaths. Physical Review.1929.33. (6).954-989.
    [56]L. Tonks, I. Langmuir. Oscillations in ionized gases. Physical Review.1929.33. (2). 195-210.
    [57]J. Van Durme, J. Dewulf, C. Leys, H. Van Langenhove. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. APPLIED CATALYSIS B-ENVIRONMENTAL.2008.78. (3-4).324-333.
    [58]A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen. Gas discharge plasmas and their applications. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY.2002. 57. (4).609-658.
    [59]S. A. Vitale, K. Hadidi, D. R. Cohn, L. Bromberg, P. Falkos. Decomposing VOCs with an electron-beam plasma reactor. CHEMTECH.1996.26. (4).58-63.
    [60]侯健,刘先年,侯惠奇.低温等离子体技术及其治理工业废气的应用.上海环境科学.1999.(04).151-153.
    [61]H. H. Kim. Nonthermal plasma processing for air-pollution control:A historical review, current issues, and future prospects. Plasma Processes and POlymers.2004.1. (2). 91-110.
    [62]H. B. Huang, D. Q. Ye, X. J. Guan. The simultaneous catalytic removal of VOCs and O(3) in a post-plasma. CATALYSIS TODAY.2008.139. (1-2).43-48.
    [63]Akira Mizuno, Yoshifumi Yamazaki, Sadami Obama, Eiki Suzuki, Ken Okazaki. Effect of voltage waveform on partial discharge in ferroelectric pellet layer for gas cleaning. IEEE Transactions on Industry Applications.1993.29. (2).262-267.
    [64]晏乃强,吴祖成,施耀,谭天恩.催化剂强化脉冲放电治理有机废气.中国环境科学. 2000.(02).136-140.
    [65]R. A. Zerbonia, J. J. Spivey, S. K. Agarwal, A. S. Damle, C. W. Sanford. Survey of Control Technologies for Low Concentration Organic Vapor Gas Streams.1995.
    [66]G. R. Parmar, N. N. Rao. Emerging Control Technologies for Volatile Organic Compounds. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY.2009.39. (1).41-78.
    [67]E. J. M. Van Heesch, K. Yan, A. J. M. Pemen, G. J. J. Winands, P. P. M. Blom, H. W. M. Smulders, Z. Liu, F. J. C. M. Beckers, W. F. L. M. Hoeben, T. Huiskamp, J. Zhang, S. J. Voeten, P. C. T. Van Laan. Matching pulsed power to processing.2013.509-538.
    [68]谢美富.吸附浓缩—催化燃烧法 治理“三苯”废气.福建环境.1997.(04).5.
    [69]曹艳凤,王金果,乔洁琼,万惠新,李和兴,朱建.ZSM-5-TiO_2协同吸附-光催化去除空气中甲苯污染物的研究.化学学报.2013.(04).567-572.
    [70]Toshiaki Yamamoto, Masaaki Okubo. Nonthermal Plasma Technology.2007.
    [71]K. P. Yan, T. Yamamoto, S. Kanazawa, T. Ohkubo, Y. Nomoto, J. S. Chang. NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS.2001.37. (5). 1499-1504.
    [72]K. Hensel, S. Sato, A. Mizuno. Sliding discharge inside glass capillaries. IEEE TRANSACTIONS ON PLASMA SCIENCE.2008.36. (4).1282-1283.
    [73]B. M. Penetrante, M. C. Hsiao, J. N. Bardsley, B. T. Merritt, G. E. Vogtlin, P. H. Wallman, A. Kuthi, C. P. Burkhart, J. R. Bayless. Electron beam and pulsed corona processing of volatile organic compounds in gas streams. PURE AND APPLIED CHEMISTRY.1996.68. (5).1083-1087.
    [74]R. Foest, M. Schmidt, K. Becker. Microplasmas, an emerging field of low-temperature plasma science and technology. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY.2006.248. (3).87-102.
    [75]U. Kogelschatz. Advanced Ozone Generation.1988.87-118.
    [76]U. Kogelschatz, B. Eliasson, W. Egli. Dielectric-barrier discharges. Principle and applications. JOURNAL DE PHYSIQUE IV.1997.7. (C4).47-66.
    [77]A. Fridman, A. Chirokov, A. Gutsol. Non-thermal atmospheric pressure discharges. JOURNAL OF PHYSICS D-APPLIED PHYSICS.2005.38. (2). R1-R24.
    [78]贾建平,刘克富,胡琼,邱剑.大气压下介质阻挡放电产生低温等离子体.广西轻工业.2009.(04).46-47,49.
    [79]A. MIZUNO, H. ITO. BASIC PERFORMANCE OF AN ELECTROSTATICALLY AUGMENTED FILTER CONSISTING OF A PACKED FERROELECTRIC PELLET LAYER. JOURNAL OF ELECTROSTATICS.1990.25. (1).97-107.
    [80]Akira Mizuno, Yoshifumi Yamazaki, Hiroshi Ito, Hiroshi Yoshida. AC energized ferroelectric pellet bed precipitator for sterilization and gas clean up.1989.2148-2153.
    [81]A. Ogata, N. Shintani, K. Mizuno, S. Kushiyama, T. Yamamoto. Decomposition of benzene using a nonthermal plasma reactor packed with ferroelectric pellets. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS.1999.35. (4).753-759.
    [82]K. Yan, S. Kanazawa, T. Ohkubo, Y. Nomoto. Evaluation of NOx removal by corona induced non-thermal plasmas. Trans IEE Japan.1999.119-A.731-737.
    [83]A. M. Vandenbroucke, R. Morent, N. De Geyter, C. Leys. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. JOURNAL OF HAZARDOUS MATERIALS.2011.195.30-54.
    [84]EHWM Smulders, BEJM van Heesch, SSVB van Paasen. Pulsed power corona discharges for air pollution control. IEEE TRANSACTIONS ON PLASMA SCIENCE. 1998.26.(5).1476-1484.
    [85]刘振,J. M. PEMEN A., J. M. Van HEESCH E., J. J. WINANDS G.,闫克平.新型多开 关脉冲功率技术.科技导报.2008.(12).76-83.
    [86]S. Sato, K. Hensel, H. Hayashi, K. Takashima, A. Mizuno. Honeycomb discharge for diesel exhaust cleaning. JOURNAL OF ELECTROSTATICS.2009.67. (2-3).77-83.
    [87]K. Hensel, Y. Matsui, S. Katsura, A. Mizuno. Generation of microdischarges in porous materials. CZECHOSLOVAK JOURNAL OF PHYSICS.2004.54. (Part 4). C683-C689.
    [88]K. Hensel. Microdischarges in ceramic foams and honeycombs. EUROPEAN PHYSICAL JOURNAL D.2009.54. (2).141-148.
    [89]K. Hensel, S. Katsura, A. Mizuno. Dc microdischarges inside porous ceramics. IEEE TRANSACTIONS ON PLASMA SCIENCE.2005.33. (2Part 1).574-575.
    [90]A. Mizuno. Electrostatic precipitation. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION.2000.7. (5).615-624.
    [91]S. MASUDA, A. MIZUNO, M. AKIMOTO. Effects of gas composition on sparking characteristics of back discharge — preliminary study. JOURNAL OF ELECTROSTATICS.1979.6. (4).333-347.
    [92]S. MASUDA, A. MIZUNO. Flashover measurements of back discharge. JOURNAL OF ELECTROSTATICS.1978.4. (3).215-231.
    [93]T. Czapka. Back-Corona Discharge Phenomenon in the Nonthermal Plasma System. IEEE TRANSACTIONS ON PLASMA SCIENCE.2011.39. (11SIPart 1).2242-2243.
    [94]胡小吐,姜学东,朱天乐,王毅,邱瑞昌,张鸿迪,李瑞年,阎克平.流光放电等离子体氨法烟气脱硫工艺.化工学报.2007.(04).1001-1006.
    [95]Y. F. Guo, D. Q. Ye, K. F. Chen, J. C. He. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam. CATALYSIS TODAY. 2007.126. (3-4).328-337.
    [96]Hyun-Ha Kim, Atsushi Ogata, Shigeru Futamura. Applications of plasma-catalyst hybrid processes for the control of NOx and volatile organic compounds.2006.1-50.
    [97]A. M. Harling, D. J. Glover, J. C. Whitehead, K. Zhang. Novel method for enhancing the destruction of environmental pollutants by the combination of multiple plasma discharges E-5712-2011. ENVIRONMENTAL SCIENCE & TECHNOLOGY.2008.42. (12). 4546-4550.
    [98]Nan Jiang, Na Lu, Kefeng Shang, Jie Li, Yan Wu. Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas. Environmental science & technology.2013.47. (17).9898-9903.
    [99]H. Y. Fan, C. Shi, X. S. Li, D. Z. Zhao, Y. Xu, A. M. Zhu. High-efficiency plasma catalytic removal of dilute benzene from air. JOURNAL OF PHYSICS D-APPLIED PHYSICS.2009.42. (22).225105.
    [100]A. Mizuno. Industrial applications of atmospheric non-thermal plasma in environmental remediation. PLASMA PHYSICS AND CONTROLLED FUSION.2007.49. (5ASI). A1-A15.
    [101]J. J. SPIVEY. Complete catalytic oxidation of volatile organics. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH.1987.26. (11).2165-2180.
    [102]V. Demidyuk, J. C. Whitehead. Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system. PLASMA CHEMISTRY AND PLASMA PROCESSING.2007.27. (1).85-94.
    [103]H. H. Kim, A. Ogata. Nonthermal plasma activates catalyst:from current understanding and future prospects. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS.2011. 55.(138061).
    [104]J. C. Whitehead. Plasma catalysis:A solution for environmental problems. PURE AND APPLIED CHEMISTRY.2010.82. (6).1329-1336.
    [105]H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, S. N. Li. Removal of Volatile Organic Compounds by Single-Stage and Two-Stage Plasma Catalysis Systems:A Review of the Performance Enhancement Mechanisms, Current Status, and Suitable Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY.2009.43. (7). 2216-2227.
    [106]T. Oda. Non-thermal plasma processing for environmental protection:decomposition of dilute VOCs in air. JOURNAL OF ELECTROSTATICS.2003.57. (3-4).293-311.
    [107]Y. F. Guo, D. Q. Ye, K. F. Chen, J. C. He, W. L. Chen. Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL.2006.245. (1-2).93-100.
    [108]A. E. Wallis, J. C. Whitehead, K. Zhang. Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2. CATALYSIS LETTERS.2007. 113.(1-2).29-33.
    [109]D. G. Cheng. Plasma decomposition and reduction in supported metal catalyst preparation. CATALYSIS SURVEYS FROM ASIA.2008.12. (2).145-151.
    [110]C. J. Liu, G. P. Vissokov, BWL Jang. Catalyst preparation using plasma technologies. CATALYSIS TODAY.2002.72. (3-4).173-184.
    [111]H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang. Review of packed-bed plasma reactor for ozone generation and air pollution control. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH.2008.47. (7).2122-2130.
    [112]K. Takaki, K. Urashima, Chang Jen-Shih. Ferro-electric pellet shape effect on C2F6 removal by a packed-bed-type nonthermal plasma reactor. Plasma Science, IEEE Transactions on.2004.32. (6).2175-2183.
    [113]C. Subrahmanyam, A. Magureanu, A. Renken, L. Kiwi-Minsker. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma-Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. APPLIED CATALYSIS B-ENVIRONMENTAL.2006.65. (1-2).150-156.
    [114]魏长宽,朱天乐,樊星,李凤岐.非热等离子体与催化相结合去除气相低浓度苯系物.环境科学学报.2008.(04).676-680.
    [115]H. H. Kim, S. M. Oh, A. Ogata, S. Futamura. Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst A-6925-2011. APPLIED CATALYSIS B-ENVIRONMENTAL.2005.56. (3).213-220.
    [116]Ashraf Yehia, Akira Mizuno. Suppression of the ozone generation in the positive and negative dc corona discharges. International Jounal of Plasma Environmental Science. 2008.2.44-49.
    [117]H. H. Kim, H. Kobara, A. Ogata, S. Futamura. Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS.2005.41.(1).206-214.
    [118]C. Subrahmanyam, A. Renken, L. Kiwi-Minsker. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma-Part Ⅱ. Optimized catalytic electrode and operating conditions. APPLIED CATALYSIS B-ENVIRONMENTAL.2006.65. (1-2). 157-162.
    [119]B. ELIASSON, U. KOGELSCHATZ. NONEQU1LIBRIUM VOLUME PLASMA CHEMICAL-PROCESSING. IEEE TRANSACTIONS ON PLASMA SCIENCE.1991. 19.(6).1063-1077.
    [120]S. Futamura, M. Sugasawa. Additive Effect on Energy Efficiency and Byproduct Distribution in VOC Decomposition with Nonthermal Plasma. Industry Applications, IEEE Transactions on.2008.44. (1).40-45.
    [121]吴祖良,高翔,李济吾,孙培德,骆仲泱,岑可法.非热平衡等离子体过程苯的降解.化工学报.2007.(08).2075-2080.
    [122]H. H. Kim, A. Ogata, S. Futamura. Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. APPLIED CATALYSIS B-ENVIRONMENTAL.2008.79. (4). 356-367.
    [123]H. H. Kim, A. Ogata, S. Futamura. Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds A-6925-2011. JOURNAL OF PHYSICS D-APPLIED PHYSICS.2005.38. (8).1292-1300.
    [124]J. S. Chang. Physics and chemistry of plasma pollution control technology. PLASMA SOURCES SCIENCE & TECHNOLOGY.2008.17. (0450044).
    [125]H. H. Kim, G. Prieto, K. Takashima, S. Katsura, A. Mizuno. Performance evaluation of discharge plasma process for gaseous pollutant removal. JOURNAL OF ELECTROSTATICS.2002.55. (1).25-41.
    [126]中国环境保护产业协会电除尘委员会.燃煤电厂电除尘器选型设计指导书.2010,
    [127]S. MASUDA, A. MIZUNO. Initiation condition and mode of back discharge. JOURNAL OF ELECTROSTATICS.1977.4. (1).35-52.
    [128]赵会良,吴维韩,罗承沐,郭小明,王幽林.反电晕及其抑制措施.高电压技术.1995.(02).20-23.
    [129]胡满银,高香林,胡志光,田贺忠,段北江.电除尘器反电晕的模拟试验研究.华北电力技术.1993.(07).10-12,35.
    [130]尹克,郭俊.电除尘器的间歇供电.电力环境保护.1992.(02).48-54.
    [131]唐士杰.电除尘器的反电晕现象及其防治.电力建设.1991.(02).27-30,13.
    [132]胡满银,高香林,胡志光,俞喜荣.减弱电除尘器反电晕的板线匹配.河北电力技术.1991.(04).22-25.
    [133]孙大伟,吴彦.抑制反电晕收尘电极的试验研究.东北师大学报(自然科学版).1991.(03).29-33.
    [134]高香林,胡满银,胡志光,俞喜荣,张凯东,苏文举.电除尘器反电晕的实验研究.工业安全与防尘.1991.(10).16-18.
    [135]T. Czech, A. T. Sobczyk, A. Jaworek. Optical emission spectroscopy of point-plane corona and back-corona discharges in air. EUROPEAN PHYSICAL JOURNAL D.2011.65.(3).459-474.
    [136]邹霖.静电除尘器反电晕机理与反凝聚研究[硕士学位论文].武汉科技大学.2005.
    [137]T. Czech, A. T. Sobczyk, A. Jaworek, A. Krupa. Corona and back discharges in flue-gas simulating mixture. JOURNAL OF ELECTROSTATICS.2012.70. (3).269-284.
    [138]Shuran Li, Xiaoying Li, Yifan Huang, Zhen Liu, Keping Yan. FLY ASH RESISTIVITY: INFLUENCING FACTORS, PREDICTING MODELS AND ITS IMPACTS ON ELECTROSTATIC PRECIPITATOR PERFORMANCE .2014.91-144.
    [139]E. Rajch, A. Jaworek, A. T. Sobczyk, A. Krupa. Comparative studies of dc corona and back discharges in different gases. CZECHOSLOVAK JOURNAL OF PHYSICS.2006. 56B. (Part 4). B803-B808.
    [140]K. Hensel, V. Martisovit, Z. Machala, M. Janda, M. Lestinsky, P. Tardiveau, A. Mizuno. Electrical and optical properties of AC microdischarges in porous ceramics. PLASMA PROCESSES AND POLYMERS.2007.4. (7-8).682-693.
    [141]J. U. Rgen Meichsner, Martin Schmidt, Ralf Schneider, Hans-erich Wagner. Nonthermal plasma chemistry and physics. CRC Press,2012,
    [142]K. V. Kozlov, H. E. Wagner, R. Brandenburg, P. Michel. Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure. JOURNAL OF PHYSICS D-APPLIED PHYSICS.2001.34. (21).3164-3176.
    [143]J. Podlinski, J. Dekowski, J. Mizeraczyk. D. Brocilo, J. S. Chang. Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency. JOURNAL OF ELECTROSTATICS.2006.64. (3-4). 259-262.
    [144]J. Mizeraczyk, J. Dekowski, J. Podlinski, A. Dors, M. Kocik, J. Mikielewicz, T. Ohkubo, S. Kanazawa. Images of electrohydrodynamic flow velocity field in a DC positive polarity needle-to-plate nonthermal plasma reactor. IEEE TRANSACTIONS ON PLASMA SCIENCE.2002.30. (11).164-165.
    [145]J. Mizeraczyk, M. Kocik, J. Dekowski, M. Dors, J. Podlinski, T. Ohkubo, S. Kanazawa, T. Kawasaki. Measurements of the velocity field of the flue gas flow in an electrostatic precipitator model using PIV method. JOURNAL OF ELECTROSTATICS.2001.51. 272-277.
    [146]Jaroslaw Dekowski, Jerzy Mizeraczyk, Marek Kocik, Miroslaw Dors, Janusz Podlinski, Seiji Kanazawa, Toshikazu Ohkubo, Jen-Shih Chang. Electrohydrodynamic flow and its effect on ozone transport in corona radical shower reactor. Plasma Science, IEEE Transactions on.2004.32. (2).370-379.
    [147]Seiji Kanazawa, Y. Shuto, N. Sato, T. Ohkubo, Y. Nomoto, J. Mizeraczyk, Jen X. Chang, Shih. Two-dimensional imaging of NO density profiles by LIF technique in a pipe with nozzles electrode during NO treatment. Industry Applications, IEEE Transactions on. 2003.39. (2).333-339.
    [148]A. Niewulis, J. Podlinski, M. Kocik, R. Barbucha, J. Mizeraczyk, A. Mizuno. EHD flow measured by 3D PTV in a narrow electrostatic precipitator with longitudinal-to-flow wire electrode and smooth or flocking grounded plane electrode. JOURNAL OF ELECTROSTATICS.2007.65. (12).728-734.
    [149]J. Podlinski, J. Dekowski, J. Mizeraczyk, D. Brocilo, K. Urashima, J. S. Chang. EHD flow in a wide electrode spacing spike-plate electrostatic precipitator under positive polarity. JOURNAL OF ELECTROSTATICS.2006.64. (7-9).498-505.
    [150]曾宇翾,沈欣军,章旭明,刘振,闫克平.电除尘器中离子风的实验研究.浙江大学学报(工学版).2013.(12).2208-2211.
    [151]M. J. Kushner. Modelling of microdischarge devices:plasma and gas dynamics. JOURNAL OF PHYSICS D-APPLIED PHYSICS.2005.38. (11).1633-1643.
    [152]HGJJ Winands, K. P. Yan, S. A. Nair, GAJM Pemen, BEJM van Heesch. Evaluation of corona plasma techniques for industrial applications:HPPS and DC/AC systems. Plasma Processes and Polymers.2005.2. (3).232-237.
    [153]胡满银,刘松涛,高维英,李立峰.电除尘器阴极结构优化设计及试验研究.华北电力大学学报.2005.(03).99-103.
    [154]李杰,刘林茂.采用V型极板收集高比电阻粉尘的实验研究.环境科学.1995.(06).33-35.
    [155]A. Jaworek, A. Krupa, T. Czech. Back-corona generated plasma for decomposition of hydrocarbon gaseous contaminants. JOURNAL OF PHYSICS D-APPLIED PHYSICS. 1996.29. (9).2439-2446.
    [156]W. Mista, R. Kacprzyk. Decomposition of toluene using non-thermal plasma reactor at room temperature. CATALYSIS TODAY.2008.137. (2-4).345-349.
    [157]U. Kogelschatz. Dielectric-barrier discharges:Their history, discharge physics, and industrial applications. PLASMA CHEMISTRY AND PLASMA PROCESSING.2003. 23.(1).1-46.
    [158]Ashraf Yehia, Akira Mizuno. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors. Journal of Applied Physics.2013. 113.(18).183301-183301-10.
    [159]A. Yehia, A. Mizuno. Silver discharge electrode for suppression of ozone generation in positive dc corona.2005.3.1828-1832.
    [160]M. B. Awad, G. S. P. Castle. Some parameters affecting the generation of ozone in positive and negative corona.1973.373-380.
    [161]K. NASHIMOTO. The effects of electrode materials on O3 and NOx emissions by corona discharging. Journal of imaging science.1988.32. (5).205-210.
    [162]冯发达.低温等离子体-催化降解有机废气的多相产物及其生成机理研究[硕士学位论文].广州.华南理工大学.2009.
    [163]J. B. Zhu, Q. X. Zhao, Y. P. Yao, S. K. Luo, X. C. Guo, X. M. Zhang, Y. X. Zeng, K. P. Yan. Effects of high-voltage power sources on fine particle collection efficiency with an industrial electrostatic precipitator. JOURNAL OF ELECTROSTATICS.2012.70. (3). 285-291.
    [164]闫克平.气体放电在气体净化领域的应用.科技导报.2007.(18).69-74.
    [165]晏乃强,吴祖成,谭天恩.脉冲电晕放电治理有机废气的研究——放电反应器结构.上海环境科学.2000.(06).278-281.
    [166]A. M. Harling, V. Demidyuk, S. J. Fischer, J. C. Whitehead. Plasma-catalysis destruction of aromatics for environmental clean-up:Effect of temperature and configuration. APPLIED CATALYSIS B-ENVIRONMENTAL.2008.82. (3-4).180-189.
    [167]H. B. Huang, D. Q. Ye, DYC Leung. Plasma-Driven Catalysis Process for Toluene Abatement:Effect of Water Vapor. IEEE TRANSACTIONS ON PLASMA SCIENCE. 2011.39. (1Part 2).576-580.
    [168]K. Yan. Corona plasma generation [Doctoral Dissertation]. Eindhoven. Eindhoven University of Technology.2001.
    [169]T. Blackbeard, V. Demidyuk, S. L. Hill, J. C. Whitehead. The Effect of Temperature on the Plasma-Catalytic Destruction of Propane and Propene:A Comparison with Thermal Catalysis E-5712-2011. PLASMA CHEMISTRY AND PLASMA PROCESSING. 2009.29. (6).411-419.
    [170]Y. F. Guo, D. Q. Ye, K. F. Chen, Y. F. Tian. Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor. PLASMA CHEMISTRY AND PLASMA PROCESSING.2006.26. (3).237-249.
    [171]Yan Wu, Jie Li, Ninghui Wang, Yanbin Zhang, Zhongyang Liu, Liming Yang. Experimental research about the role of activating water-vapor in the DeSO2 technology from flue gas with PPCP.2000.704-708 vol.1.
    [172]P. Drzewicz, M. Trojanowicz, R. Zona, S. Solar, P. Gehringer. Decomposition of 2,4-dichlorophenoxyacetic acid by ozonation, ionizing radiation as well as ozonation combined with ionizing radiation. RADIATION PHYSICS AND CHEMISTRY.2004. 69. (4).281-287.
    [173]T. Yamamoto, BWL Jang. Aerosol generation and decomposition of CFC-113 by the ferroelectric plasma reactor. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. 1999.35.(4).736-742.
    [174]S. Lee, H. F. Chen, J. W. Peng. Investigation of soot deposition and composition in a radio frequency plasma of benzene. PLASMA CHEMISTRY AND PLASMA PROCESSING.2007.27. (3).256-266.
    [175]S. Ognier, S. Cavadias, J. Amouroux. Aromatic VOC removal by formation of microparticles in pure nitrogen discharge barrier discharge. PLASMA PROCESSES AND POLYMERS.2007.4. (5).528-536.
    [176]T. Hakoda, H. Goto, A. Shimada, M. Ochi, T. Kojima. Analysis of particles produced by oxidation of dilute xylene in air under electron beam irradiation. RADIATION PHYSICS AND CHEMISTRY.2006.75. (3).375-383.
    [177]T. Hakoda, H. H. Kim, K. Okuyama, T. Kojima. Charged nanoparticle formation from humidified gases with and without dilute benzene under electron beam irradiation. JOURNAL OF AEROSOL SCIENCE.2003.34. (8).977-991.
    [178]S. Toby, L. J. Van de Burgt, F. S. Toby. Kinetics and chemiluminescence of ozone-aromatic reactions in the gas phase. The Journal of Physical Chemistry.1985.89. (10).1982-1986.
    [179]H. Einaga, S. Futamura. Effect of water vapor on catalytic oxidation of benzene with ozone on alumina-supported manganese oxides. JOURNAL OF CATALYSIS.2006.243. (2).446-450.
    [180]K. Yan, EJM van Heesch, AJM Pemen, PAHJ Huijbrechts. From chemical kinetics to streamer corona reactor and voltage pulse generator. PLASMA CHEMISTRY AND PLASMA PROCESSING.2001.21.(1).107-137.
    [181]叶菱玲.介质阻挡放电结合锰催化剂降解甲苯研究[硕士学位论文].浙江大学.2013.
    [182]杨懿,张玮,吴军良,付名利,陈礼敏,黄碧纯,叶代启.等离子体催化降解甲苯途径的原位红外研究.环境科学学报.2013.(11).3138-3145.
    [183]L. P. Long, J. G. Zhao, L. X. Yang, M. L. Fu, J. L. Wu, B. C. Huang, D. Q. Ye. Room Temperature Catalytic Ozonation of Toluene over MnO2/A12O3. CHINESE JOURNAL OF CATALYSIS.2011.32. (6).904-916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700