用户名: 密码: 验证码:
长期不同施肥处理及地膜覆盖对棕壤有机碳组分及微生物多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机碳是土壤养分循环及肥力供应的核心,在维持土壤团聚体的稳定性,保持土壤耕作,提高土壤保水能力和缓冲能力等方面具有重要作用。土壤微生物本身是土壤养分的“源”和“汇”,对所生存的土壤坏境十分敏感,能对土壤生态机制变化和环境胁迫做出反应,被认为是土壤生态系统变化的预警及敏感指标。近年来,国内外的研究主要集中在土壤有机碳组分和土壤微生物学特性及多样性的单独研究上,缺乏系统的、全面的长期动态监测信息,特别是把土壤有机碳组分与土壤微生物多样性相结合的研究相对较少。本试验以沈阳农业大学20年棕壤长期定位试验站为研究平台,利用土壤有机碳组分分析法及微生物多样性PLFA法和PCR-DGGE图谱分析法,研究长期不同施肥处理及地膜覆盖措施下土壤有机碳及其组分与土壤微生物群落结构多样性的关系,为提高土壤肥力及微生物多样性,建立合理的农田管理措施,使土壤质量向健康方向发展提供科学依据。
     得出的主要结论如下:
     (1)20年不同施肥处理对土壤有机碳及其组分的影响大致表现为:M4处理、M4N2P1处理>CK处理>N4处理。其中,M4处理及M4N2P1处理土壤总有机碳分别较对照处理提高25.1%及35.4%,N4处理则降低1.7%;M4处理土壤易氧化有机碳占总有机碳中的比例较对照提高62.5%,而M4N2P1处理及N4处理则降低了12.5%及59.1%;N4处理、M4处理及M4N2P1处理土壤水溶性有机碳占总有机碳的比例比对照分别降低28.4%、27.6%及37.9%;M4处理及M4N2P1处理土壤微生物量碳占总有机碳的比例较对照分别升高了118.1%及5.6%,N4处理则降低45%;M4处理及M4N2P1处理土壤颗粒有机碳占总有机碳的比例较对照分别升高了65.3%及4.8%,N4处理则降低了21.8%。
     (2)20年地膜覆盖使土壤有机碳及其组分的影响大致表现为降低趋势。其中,覆膜使N4处理土壤总有机碳含量显著高于裸地处理,使CK处理土壤易氧化有机碳含量显著降低,使CK处理土壤水溶性有机碳含量显著升高,而使M4处理土壤水溶性有机碳含量显著降低,使CK、N4及M4处理土壤微生物量碳含量显著降低,对颗粒有机碳无显著影响。
     (3)不同施肥处理20年后土壤微生物PLFA总量表现为:M4N2P1>M4>N4>CK处理:不同施肥处理使土壤微生物的群落结构发生明显变化,不同施肥处理改变了土壤细菌的群落结构,M4处理与M4N2P1处理及裸地与覆膜CK处理之间土壤细菌群落结构比较相似;有机肥能提高土壤细菌多样性,单施氮肥处理会降低土壤细菌的多样性。长期地膜覆盖对土壤微生物PLFA总量及图谱的影响都不显著;尽管土壤的施肥处理不同,但覆膜后土壤微生物群落结构有一致化的发展趋势;覆膜降低N4处理及M4处理土壤细菌多样性,而提高CK处理土壤细菌多样性。
     (4)土壤多样性指数及总有机碳都与易氧化有机碳、微生物量碳及颗粒有机碳之间关系密切,土壤有机碳组分可作为土壤肥力的指示指标,土壤微生物多样性既可指示土壤有机碳活性组分变化,又是土壤肥力及质量变化的预警信号。
     (5)单施高量氮肥不利于土壤有机质的积累及土壤肥力的良性发展,而施有机肥或有机肥与化肥配合施用是较为科学的管理措施。但在有机肥或者有机肥与化肥配施处理的同时进行地膜覆盖对土壤肥力的良性发展有削减作用,而在单施高量氮肥的同时进行地膜覆盖则会延缓土壤肥力向不良方向发展的速度。
Soil organic carbon play a crucial role in the cycling of almost all the major plant nutrients, which keeps stability of aggregate and improves abilities on keeping water and cushion to sustain cultivation. Soil microorganism is the critical resource and pool of soil nutrients and soil microbial community is an important measure of sustainable land use and is sensitive to changes in the soil as the alarm signal and sensitive index. Recently, studies in home and abroad almost focus on organic fractions and microbiological characters and diversity respectively. The systemic and comprehensive studies about union between organic fractions and microbial diversity combining with dynamic monitor have been lack . Based on 20-years-old located brown earth experiment site at Shengyang Agricultural University, this paper adopt the methods of organic fractions and PLFA and PCR-DGGE to determine the change of organic fractions and microbial diversity in the long-time fertilization and plastic mulching soil in order to explore the effect on their inter-relation between soil organic fractions and microbial diversity. In order to develop soil health and microbial diversity it will provide scientific basis for setting up farm management measures for persistent resources.
     The main results were as follows:
     (1)The effect of 20-years-old fertilizations on organic fractions of soil: M4, M4N2P1>CK>N4. Thecontents of total organic carbon in treatments of M4 and M4N2P1 were 25.1% and 35.4% higher thantreatment of CK, respectively, while thoes of treatment of N4 was 1.7% lower than treatment of CK. Theproportion of labile organic carbon in the total organic carbon in treatment of M4 was 62.5% higher thantreatment of CK, while that in treatments of M4N2P1 and N4 were 12.5 % and 59.1 % lower than treatmentof CK, respectively. The proportion of dissolved organic carbon in the total organic carbon in treatments ofN4, M4 and M4N2P1 were 28.4%> 27.6% and 37.9% lower than treatment of CK, respectively. Theproportions of microbial biomass carbon in the total organic carbon in treatments of M4 and M4N2P1 were118.1 % and 5.6 % higher than treatment of CK, respectively. The proportion of particulated organiccarbon in the total organic carbon in treatments of M4 and M4N2P1 were 65.3%and 4.8% higher thantreatment of CK, while that of treatment ofN4 was 21.8%lower than treatment of CK.
     (2) After 20 year plastic mulching, the contents of total organic carbon and organic fractions weredecreased. The content of total organic carbon in covered treatment of N4 was higher than that ofuncovered soil signifigantly. The content of labile organic carbon in covered treatment of CK was higherthan that of uncovered soil signifigantly. While the content of dissolved organic carbon in coveredtreatment of CK was lower than that of uncovered soil signifigantly. The content of microbial biomasscarbon in covered treatments of CK、N4 and M4 was lower than that of uncovered soil signifigantly, whilethere was no significant difference in particulated organic carbon between covered and uncovered.
     (3) After 20 year long term cultivation, changing trend of total content of PLFA was M4N2P1 >M4>N4>CK. Soil microbial community changed obviously because of different fertilization. The bacteriacommunity structures were changed by different fertilizarions. Soil community structures were similar between M4 and M4N2P1 and between covered treatment of CK and uncovered treatment of CK. Application of manure could increase bactieral diversity, while single application of nitrogen could decrease it. There was no signifigant effect of long -term plastic mulching on the total content of PLFA. The microbial community structure in soil of different fertilization trend identical development despite of different fertilization treatments. The bacteria diversity in teatments of N4 and M4 was decrease by pastic mulching, while that of treatment of CK was opposite.
     (4) There are some intimate relations between shannon-wiener, total organic carbon and labile organic carbon, microbial biomass carbon and particulated organic carbon. The organic fractions could be indicative index to soil health. The microbial diversity of soil was also the indication of change on active organic fractions of soil and soil fertility.
     (5) It is tested that application of manure or co-application of manure and chemical fertilizers take advantage of enhance on soil fertility as scientific management and single application of nitrogen reverse the treatment of plastic mulching can hold back bad-behaved development of soil fertility by application of single application of nitrogen. In virtue of sensitive response to farm management treatments, particulated organic carbon and microbial biomass carbon in soil can be of indication and character used to evaluate the effects of farm management treatments.
引文
[1]蔡晓布.2002.不同培肥方式对西藏中部退化土壤的影响.水土保持学报,16(2):12-15.
    [2]曹建华,潘根兴,袁道先.2005.岩溶地区土壤溶解有机碳的季节动态及环境效应.生态环境,14(2):224-229.
    [3]曹正梅,董树亭.1999.覆膜栽培玉米的土壤生态效应研究进展.山东农业大学学报,30(4):489-492.
    [4]陈丽芳,王莹,汪景宽.2006.长期地膜覆盖与施肥对土壤磷素和玉米吸磷量的影响.土壤通报,37(1):76-79.
    [5]陈锡时,郭树凡,汪景宽,张健.1998.地膜覆盖栽培对土壤微生物种群和生物活性的影响.应用生态学报,9(4):435-439.
    [6]郭树凡,陈锡时,汪景宽.1995.地膜覆盖对土壤微生物区系的影响.土壤通报,26(1):36-39.
    [7]何振立.1997.土壤微生物量及其在养分循环和环境质量评价中的意义.土壤,21(2):61-69.
    [8]侯晓杰,汪景宽,李世朋.2007.不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响.生态学报,27(2):655-661.
    [9]侯晓杰,杨苑,汪景宽.2005.长期地膜覆盖与施肥对土壤钾素的影响.辽宁农业科学,5:9-11.
    [10]黄耀等.2002.环境因子对农业土壤有机碳分解的影响.应用生态学报,13(6):709-714.
    [11]姜培坤,徐秋芳,杨芳.2003.雷竹土壤水溶性有机碳及其与重金属的关系.浙江林学院学报,20(1):8-11.
    [12]焦坤,李忠佩.2005.红壤稻田土壤溶解有机碳含量动态及其生物降解特征.土壤,37(3):272-276.
    [13]冷延慧,汪景宽,薛菁芳.2008.连续施肥20年后棕壤团聚体分布和碳储量变化.土壤通报,39(4):743-747.
    [14]李长生,肖向明,Frolkings等.2003.中国农田的温室气体排放.第四纪研究,23:493-503.
    [15]李丛,汪景宽.2005.长期地膜覆盖及不同施肥处理对棕壤有机碳和全氮的影响.辽宁农业科学,6:8-10.
    [16]李辉信,袁颖红,黄欠如.2006.不同施肥处理对红壤水稻土团聚体有机碳分布的影响.土壤学报,43(3):422-429.
    [17]李恋卿,潘根兴,张旭辉.2000.退化红壤植被恢复中表层土壤为团聚体及其有机碳的分布.土壤通报,31(5):193-195.
    [18]李世清,李东方.2003.半干旱农田生态系统地膜覆盖的土壤生态效应.西北农林科技大学学报,31(5):21-29.
    [19]李淑芬,俞元春,何晟.2002.土壤溶解有机碳的研究进展.土壤与环境,1(4):422-429.
    [20]李淑芬,俞元春,何晟.2003.南方森林土壤溶解有机碳与土壤因子的关系.浙江林学院学报,20(2):119-123.
    [21]李阳冰,杨霞,宋晓利.2006.岩溶生态系统土壤非保护有机碳含量研究.农业环境科学学报,25(2):402-406.
    [22]李忠佩,张桃林,陈碧云.2004.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报,41(4):544-552.
    [23]林葆,林继雄,李家康.1996.长期施肥作物产量和土壤肥力变化.北京:农业科技出版社,1-179.
    [24]刘京,常庆瑞,李岗.2000.连续不同施肥对土壤团聚性影响的研究.水土保持通报,20(4):24-26.
    [25]刘顺国,付时丰,汪景宽,王洪禄,于树.2006.长期地膜覆盖对棕壤水分含量和储量动态变化的影响.沈阳农业大学学报,37(5):725-728.
    [26]罗彩云,沈禹颖,南志标.2005.水土保持耕作下陇东玉米-小麦-大豆轮作系统产量、土壤易氧化有机碳动态.水土保持学报,19(4):84-88.
    [27]马成泽,周勤,何方.1994.不同肥料配合施用土壤有机质盈亏分布.土壤学报,31:35-41.
    [28]马成泽,周勤,伺方.1994.小同肥料配合施用土壤有机质盈亏分布.土壤学报,31:35-41.
    [29]孟凡乔,吴文良,辛德惠.2000.高产农田土壤有机质、养分的变化规律与作物产量的关系.植物营养与肥料学报,6(4):370-374.
    [30]倪进治,徐建民,谢正苗.2000.土壤轻组有机质.环境污染治理技术与设备,1(2):58-64.
    [31]倪进治,徐建民,谢正苗.2003.有机肥料施用后潮土中活性有机质组分的动态变化.农业环境科学学报,22(4):416-419.
    [32]潘根兴,曹建华,周运超.2000.土壤碳及其在地球表层系统碳循环中的意义.第四纪研究,20(4):325-334.
    [33]潘根兴,李恋卿,张旭辉.2002.土壤有机碳库与全球变化研究的若干前沿问题.南京农业大学学报,25(3):100-109.
    [34]沈宏,曹志洪,胡正义.1999.土壤活性有机碳的表征及其生态效应.生态学杂志,18(3):32-38.
    [35]沈宏,曹志洪,徐志红.2000.施肥对土壤不同碳形态及碳库管理指数的影响.土壤学报,37(5):166-173.
    [36]史文娇,汪景宽,祝凤春,高中超.2007.施肥与覆膜对棕壤Olsen-P剖面分布及动态变化的影响.植物营养与肥料学报,13(2):248-253.
    [37]史奕,陈欣,闻大中.2005.东北黑土团聚体水稳定性研究进展.中国生态农业学报,13(4):95-98.
    [38]史奕,陈欣,杨雪莲等.2003.土壤“慢”有机碳库研究进展.生态学杂志,22(5):108-112.
    [39]宋日,吴春胜.2002.玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响.应用生态学报,13(3):303-306.
    [40]苏静,赵世伟.2005.植被恢复对团聚体分布及有机碳、全氮含量的影响.水土保持研究,12(3):44-46.
    [41]苏永中,赵哈林.2003.农田沙漠化过程中土壤有机碳和氮的衰减及其机理研究.中国农业科学,36(8):928-934.
    [42]孙天聪,李世清,邵明安.2005.长期施肥对褐土有机碳和氮素在团聚体中分布的影响.中国农业科学,38(9):1841-1848.
    [43]汪景宽,冷延慧,于树,李双异,陈丽芳,2009.不同施肥处理下棕壤有机碳库对微团聚体稳定性的影响.土壤通报,40(1):77-80.
    [44]汪景宽,李丛,于树.2008.不同肥力棕壤溶解性有机碳、氮生物降解特性的研究.生态学报,28(12):6165-6171.
    [45]汪景宽,刘顺国,李双异.2006.长期地膜覆盖及不同施肥处理对棕壤无机氮和氮素矿化率的影响.水土保持学报,20(6):107-110.
    [46]汪景宽,田晓婷,李双异.2008.长期地膜覆盖及不同施肥处理对棕壤全硫和有效硫的影响.土壤通报,39(4):804-807.
    [47]汪景宽,须湘成,张继宏.1990.地膜覆盖对土壤六碳糖和五碳糖的影响.辽宁农业科学,3:55-57.
    [48]汪景宽,须湘成,张旭东,张继宏.1994.长期地膜覆盖对土壤磷素状况的影响.沈阳农业大学学报,25(3):311-315.
    [49]汪景宽,于树,李丛,王国风.2007.不同肥力土壤各级微团聚体中主要营养元素含量的变化.水土保持学报,21(6):122-125.
    [50]汪景宽,张继宏,须湘成,张旭东.1992.地膜覆盖对土壤肥力影响的研究.沈阳农业大学学报,23:32-37.
    [51]汪景宽,张继宏,须湘成,张旭东.1996.长期地膜覆盖对土壤氮素状况的影响.植物营养与肥料学报,2(2):125-130.
    [52]汪景宽,张继宏,须湘成.1990.地膜覆盖对土壤有机质转化的影响.土壤通报,21(4):189-193.
    [53]汪景宽,张旭东,张继宏,须湘成.1995.覆膜对有机物料和农肥的腐解及土壤有机质特性的影响.植物营养与肥料学报,1(3-4):22-28.
    [54]汪景宽.1994.长期地膜覆盖对土壤磷组分、吸附和解析的影响.现代土壤科学研究,386-388.
    [55]王晶,解宏图,张旭东.2004.施肥对黑土土壤微生物生物量碳的作用研究.中国生态农业学 报,12(2):118-120.
    [56]王晶,谢宏图,朱平.2003.土壤活性有机质(碳)的内涵和现代分析方法概述.生态学杂志,22(6):109-112.
    [57]王连峰,潘根兴.2002.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布.植物营养与肥料学报,8(1):29-34.
    [58]魏朝富,高明.1995.有机肥对紫色水稻土水稳性团聚体的影响.土壤通报,26(3):114-116.
    [59]温晓霞,韩思明.2003.旱作小麦地膜覆盖生态效应研究.中国生态农业学报,11(2):93-95.
    [60]吴景贵,王明辉,姜亦梅.2005.施用玉米植株残体对土壤富里酸组成、结构及其变化的影响.土壤学报,43(1):133-140.
    [61]武天云,Jeff,Schoenau,李凤民.2004.土壤有机质概念和分组技术研究进展.应用生态学报,15(4):717-722.
    [62]徐明岗,于荣,孙小凤.2006.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响.植物营养与肥料学报,12(4):459-46.
    [63]徐明岗,于荣,王伯仁.2000.土壤活性有机质的研究进展.土壤肥料,(6):3-7.
    [64]徐明岗,于荣,王伯仁.2006.长期不同施肥下红壤活性有机质与碳库管理指数变化.土壤学报,43(5):723-729.
    [65]徐秋芳,姜培坤.2004.不同森林植被下土壤水溶性有机碳研究.水土保持学报,18(6):8-11.
    [66]徐阳春,沈其荣,冉炜.2002.长期免耕与施用化肥对土壤微生物生物量碳氮、磷的影响.土壤学报,39-89-96.
    [67]徐阳春,沈其荣.2000.水旱轮作下免耕和施用有机肥对土壤某些肥力性状的影响.应用生态学报,11(4):549-552.
    [68]许月蓉.1995.不同施肥条件下潮土中微生物量及其活性.土壤学报,32(3):349-352.
    [69]薛菁芳,汪景宽,李双异,祝凤春.2006.长期地膜覆盖和施肥条件下玉米生物产量及其构成变化的研究.玉米科学,14(5):66-70.
    [70]杨长明,欧阳竹,董玉红.2005.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响.生态学杂志,24(8):887-892.
    [71]杨玉盛,刘艳丽,陈光水等.2004.格氏栲天然林与人工林土壤非保护性有机碳研究.生态学报,24(1):1-8.
    [72]尹云锋,蔡祖聪.2005.长期施肥条件下潮土不同组分有机质的动态研究.应用生态学报,16(5):96-99.
    [73]于树,汪景宽,高艳梅.2006.地膜覆盖及不同施肥处理对土壤微生物量碳和氮的影响.沈阳农业大学学报,37(4):602-606.
    [74]于树,汪景宽,李双异.2008.应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响.生态学报,28(9):4221-4227.
    [75]于树,汪景宽,王鑫,刘顺国.2007.不同施肥处理的土壤肥力指标及微生物碳、氮在玉米生育期内的动态变化.水土保持学报,21(4):137-140.
    [76]俞慎.1999.土壤微生物作为红壤质量生物指标的探讨.土壤学报,36(3):413-421.
    [77]宇万太,沈善敏,张璐等.2004.黑土开垦后水稳性团聚体与土壤养分的关系.应用生态学报,15(12):2287-2291.
    [78]袁颖红,李辉信,黄欠如.2004.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响.生态学报,24(12):2961-2966.
    [79]张成娥等.2002.地膜覆盖玉米对土壤微生物量的影响[J].生态学报,22(4):508-512.
    [80]张继宏,汪景宽,须湘成,唐耀先.1990.覆膜栽培条件下有机肥对土壤氮和玉米生物量的影响.土壤通报,21(4):162-166.
    [81]张继宏,汪景宽,须湘成,唐耀先.1990.覆膜栽培条件下有机肥对玉米植株吸磷量和土壤磷组分的影响.土壤通报,21(5):211-215.
    [82]张继宏,汪景宽,须湘成,唐耀先.1991.地膜覆盖栽培与土壤肥力.土壤肥力研究进展,中国科技出版社:188-192.
    [83]张甲珅,陶澍,曹军.2000.土壤中水溶性有机碳测定中的样品保存与前处理方法.土壤通报,31(4):174-176.
    [84]张金波,宋长春,杨文燕.2005.土地利用方式对土壤水溶性有机碳的影响.中国环境科学,25(3):343-347.
    [85]张晋京,窦森.2003.施用猪粪对棕壤富里酸结构特征的影响.植物营养与肥料学报,9(1):75-80.
    [86]赵劲松,袁星,张旭东.2003.土壤溶解性有机质的特性与环境意义.应用生态学报,14(1):126-130.
    [87]Alan L.W,Frank M.H..2004.Soil aggregation and carbon and nitrogen storage under soybean cropping sequences.Soil Science Society of America Journal,68:507-513.
    [88]Alan L.W.,Frank M.H..2005.Soil carbon and nitrogen storage in aggregates from different tillage and crop regimes.Soil Science Society of America Journal.,69:141-147.
    [89]Alvey S.,Yang C.H.,Buerkert A.,Crowley D.E..2003.Cereal/legume rotation effects on rhizosphere bacterial community structure in west African Soils.Biology and Fertility of Soils,37:73-82.
    [90]Anderson J.H.and Domsch K.H..1990.Application ofeco2physio logical quotients(qCO_2 and qD) on microbial biomass from soils of different cropping histories.Soil Biology Biochemistry,22:251-255.
    [91]Anderson S..2000.Leaching of dissolved organic carbon(DOC) and dissolved organic nitrogen(DON)in most humus as affected by temperature and Ph.Soil Biol Biocherm,32:1-10.
    [92]Angela Y.K.K.,Six J.,Dennis C.B..2005.The relationship between carbon input aggregation and soil organic carbon stabilization in sustainable cropping systems.Soil Science Society of America Journal,69:1078-1085.
    [93]Angers D.A..1995.Dynamics of soil organic matter and crop residues affected by tillage practices.Soil Sci.Sco.Amer.J.,59:1311-1315.
    [94]Aoyama M.,Angers D.A..2000.Metabolism of ~(13)C-labeled glucose in aggregates from soils with manure application.Soil Biol.Biochem.,32:295-300.
    [95]Aoyama M.D.,Anger D.A.,Dayegamiye A.N..1999.Particulate and mineral associated organic matter in water stable aggregates as affected by mineral fertilizer and manure applications.Can.J.Soil Sci,79:295-302.
    [96]Aoyama M.D.,Anger D.A.,Dayegamiye A.N.1999.Protected organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications.Can.J.Soil Sci,79:419-425.
    [97]Arab H.G.D.E.,Vlich V.,Sikora R.A..2001.The use of phospholipids fatty acids(PLFA) in the determination of rhizosphere specific microbial communities of two wheat cultivars.Plant and Soil,228:291-297.
    [98]Balesdent J.,Chenu C.,Balabane M..2000.Relationship of soil organic matter dynamics to physical protection and tillage.Soil and Tillage Research,53:215-230.
    [99]Balesdent J.,Mariotti B.,Gunlet B..1987.Natural ~(13)C abundance as a tracer for studies of soil organic matter dynamics[J].Soil Boil.Biochem.,19(1):25-30.
    [100]Bayer C.,L..2001.Changes in soil organic matter fractions under subtropical no-tillage cropping system.Soil Science Society of America Journal,65:1473-1478.
    [101]Bhogal A.,Murphy D.V.,Fortune S..2000.Distribution of nitrogen pools in the soil profile of undisturbed and reseeded grasslands.Biol.Fertil.Soils,30:356-362.
    [102]Biederbeck V.O.,Janzen H.H.,Campbell C.A.and Zentner R.P..1994.Labile soil organic matter as influenced by cropping practices in an arid environment.Soil Bio logy Biochemistry,26:1647-1656.
    [103]Blair G.J.,Lefroy R.D.B.and Lisle L..1995.Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems.Aust.Agric.Res.,46:1459-1466.
    [104]Bolan N.S.,Baskaran S.,Thiagarajan S..1996.An evaluation of the measure method dissolved organic carbon in soils,manures,sludge and stream water.Commun Soil Sci.Plant Anal.,27(13-14):2732-2737.
    [105]Bolan N.S.,Baskaran S.,Thiagarajan S..1996.An evaluation of the measure method dissolved organic carbon in soils,manures,sludge and stream water.Commun Soil Sci.Plant Anal.,27(13-14):2732-2737.
    [106]Bronick C.J.,Lal R..2005.Manuring and rotation efects on soil organic carbon concentration for ditierent aggregate size fractions on two soils in northeastern Ohio USA.Soil and Tillage Research,81:239-252.
    [107]B(u|¨)nemann E.K.,Smithson P.C.,Jama B.,Frossard E.,Oberson A..2004.Maize productivity and nutrient dynamics in maize-fallow rotations in western Kenya.Plant and Soil,264:195-208.
    [108]Cambardella C.A.,Elliott E.T..1993.Carbon and nitrogen distribution in aggregates from cultivated and native grassland soil .Soil Sci.SocAmer.J.,57:1071-1076.
    [109]Cambardella C.A.,Elliott E.T..1992.Particulate soil organic matter across a grassland cultivation sequence.Soil Sci.Soc.Amer.J.,56:776-783.
    [110]Chan K.Y.,Heenan D.P.,Oates A..2002.Soil carbon fractions and relationship to soil quality under different tillage and stubble management.Soil Tillage Res.,63(324):133-139.
    [111]Collier KJ.Jackson R.J.,Winterbourn M.J..1989.Dissolved organic carbon dynamics of developed and undeveloped catchments in Westland,NewZealand.A rch Hydrobiol.,17:21-38.
    [112]Collins H.P.,Paul E.A.,Blevens R.L..1999.Soil organic matter dynamics in corn-based agrecosystems of the central USA:Results from ~(13)C natural abondance.Soil Science Society of America Journal,63:584-599.
    [113]Compton J.E.,Boone R.D..2002.Soil nitrogen transformations and the role of light fraction organic matter in forest soils.Soil Biology and Biochemistry,34:933-943.
    [114]Currie W.S.,Aber J.D..1997.Modeling leaching as a decomposition process in humid montane forests .Ecology,78:1844-1860.
    [115]Curtin D.,Mccallum F.M.,Williams P.H..2003.Phosphorus in light fraction organic matter separated from soils receiving long-term applications of superphosphate.Biology Fertilizer Soils,37:280-287.
    [116]Czarnes S.,Hallett P.D.,Bengough A.G..2000.Root and microbial derived mucilages affect soil structure and water transport.Euro.J.Soil Sci.,51:435-443.
    [117]Da Silva K.R.,Salles J.F.,Seldin L.,Van E..2003.Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp.in the maize rhizosphere.Journal of Microbiological Methods,54:213-231.
    [118]Dalai R.C.and Mayer R.J..1987.Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern queensland.VI.Loss of total N from different particle size and density fraction.Australian Journal of soil Research.,25:83-93.
    [119]Dalsl R.C.Mayer R.J..1986.Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southen Queensland IV.Loss of organic carbon from different density fractions.Aust.J.Soil Res.,24:301-309.
    [120]Dawson H.J.,Ugolini F.C.,Hrutfiord B.F..1978.Role of soluble organics in the soil processes of apodzol,Central Cascades.Soil Sci.,126:290-296.
    [121]Delprat L.,Chassin P.,Lineres M..1997.Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation.Euro.J.A gron.,7:201-210.
    [122]Denef K.,Six J.,Bossuyt H..2001.Influence of dry-wet cycling on interrelationship between aggregate,particulate organic matter,and microbial commutiny dynamics.Soil Biology and Biochemistry,33:1599-1611.
    [123]Denef K.,Six J.,Paustian K..2001.Importance of macroaggregate dynamics in controlling soil carbon stabilization:short-term effects of physical disturbance induced by dry-wet cycles.Soil Biology and Biochemistry,33:2145-2153.
    [124]Di Giovanni G.D.,Wastrud L.S.,Seidler R.J.,Widmer F..1999.Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence PCR(ERIC-PCR).Microbial Ecology,37:129-139.
    [125]Edwards N.T.,Harris W.F.1977.Carbon cycling in a mixed deciduous forest floor.Ecology,58:431-437.
    [126]Fantroussi S.E.,Verschuere L.,Verstraete W.,Top E..1999.Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles.Applied and Environmental Microbiology,65:982-988.
    [127]Feng Y.,Motta A.C.,Reeves D.W.,Burmestera C.H.,Van Santena E.,Osborne J.A..2003.Soil microbial communities under conventional-till and no-till continuous cotton systems.Applied and Environmental Microbiology,35:1693-1703.
    [128]Franzluebbers A.J.,Arshad M.A..1997.Particulate organic carbon content and potental mineralization as affected by tillage and texture.Soil Sci.Soc.Amer.J.,61:1382-1386.
    [129]Franzluebbers A.J..2005.Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA.Soil and Tillage Research,83:120-147.
    [130]Ghani A.,Dexter M.,Perrott K.W..2003.Hot-water extractable carbon in soils:a sensitive measurement for determining impacts of fertilization,grazing and cultivation.Soil Biol.and Biochem.,35:1231-1243.
    [131]Golchin A.,Oades J.M.,Skjemstad J.O..1994.Study of free and occluded particulate organic matter in soils by solid state ' C CP/MAS NMR spectroscopy and scanning electron microscopy.Aust.J.Soil Res.,32:285-309.
    [132]Gregorich E.G.,Ellert B.H.,Monreal C.M..1995.Turnover of soil organic matter and storage of corn residue carbon estimated from natural 13C abundance.Can.J.Soil Sci.,75:161-167.
    [133]Guggenberger G.,Glaser B.,Zech W..1994.Heavy metal binding By hydrophobic and hydrophilic dissolved organic fractions in a spodosol A and B horizon .Water Air Soil Pollut.,72:111-127.
    [134]Guoib,Gifford R.M..2002.Soil carbon stocks and land use.Global Change Biology,8:345-360.
    [135]Haynes R J.1999.Labile organic matter fractions and aggregate stability under short-term,grass-based leys.Soil Biol .Biochem,31 (13):1821~1830.
    [136]Haynes R.J.,Beare M.H..1996.Aggregation and organic matter storage in meso-thermal humid soils[A].In:Carter M.R.,eds.Advances in Soil Science Structure an d Organic Matter Storagein Agriculture Soils.Boca Raton:CRC Lewis Publishers,213-262.
    [137]Heyes A.,Moore T.R.1992.The influence of dissolved organic carbon and anaerobic conditions on mineral weathering.Soil Sci.,154:226-236.
    [138]Hill G.T.,Mitkowski N.A,Aldrich W.L.,Emele L.R.,Jurkoni D.D.,Ficke A.,Maldonado Ramirez S.,Lynch S.T.,Nelson E.B..2000.Methods for assessing the composition and diversity of soil microbial communities.Applied Soil Ecology,15:25-36.
    [139]Hollingwe S.E.,Bernacchi C.J.,Merers T.R..2005.Carbon budget of mature no-till ecosystem in North Central Region of the United States.Agricultural and Forest Meteorology,130:59-69.
    [140]Janzen H.H.,Campbell C.A.,Brandt S.A..1992.Light fraction organic matter in soils from long-term crop rotations.Soil Science Society of American Journal,56:1799-1806.
    [141]Jenkinson D.S.,Rayner J.H..1977.The turnover of soil organic matter in some of the Rothamsted classical experiments.Soil Science,123:298-305.
    [142]Joann K.W.and Chi C..2002.Macroaggregate characteristics in cultivated soils after 25 annual manure applications.Soil Science Society of America Journal,66:1637-1647.
    [143]Johns M.M.and Skogley E.0..1994.Soil organic matter testing and labile carbon identification by carbonaceous resin capsules.Soil Science Society of American Journal,58:751-758.
    [144]Johnsen K.,Jacobsen C.S.,Torsvik V..2001.Pesticide effects on bacteriai diversity in agricultural soils- areview.Biology and Fertility of Soils,33:443-453.
    [145]Johnson N.C.,Wolf J.,Koch G.W..2003.Interactions among mycorrhizae,atmospheric CO_2 and soil N impact plant community composition.Ecology Letters,6:532-540.
    [146]Kaiser O.,Puhler A.,Selbitschka W..2001 .Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape(Brassica napus cv.Westar) employing cultivation-dependent and cultivation-independent approaches.Microbial Ecology,42:136-149.
    [147]Kalbitz K.,Solinger S.,Park J.H..2000.Controls on the dynamics of dissolved organic matter in soils:A review .Soil Sci.,165:277-304.
    [148]Kalbitz K.,Solinger S..Park J.H..2000.Controls on the dynamics of dissolved organic matter in soils:areview.Soil Sci.165:277-304.
    [149]Kalbitz K.S.,Solinger J.H.,Park B.,Michalzik.2000.Controls on the dynamics of dissolved organic matter in soils:A review.Soil Sci,165(4):277-304.
    [150]Klironomos J.N..2002.Feedback with soil biota contributes to plant rarity and invasiveness in communities.Nature,417:67-70.
    [151]Kosuke Ikeyaa,Shuichi Yamamoto,Akira Watanabe.2004.Semiquantitative GC/Ms analysis of the rmochemolysis products of soil humicacids with various degrees of humification.Organic Geochemistry,35:583-594.
    [152]Kourtev P.S.,Ehrenfeld J.G.,Haggblom M..2002.Exotic plant species alter the microbial community structure and function in the soil.EcoIogy,83:3152-3166.
    [153]Koutika L.S.,Hauser S.,Henrot J..2001 .Soil organic matter assessment in natural regrowth Pueraria phaseoloi des and Mucuna pruriens fallow.Soil Biol.Biochem.,33:1095-1101.
    [154]Kowalchuk G.A.,Buma D.S.,Boer W.D.,Klinkhamer P.G.,Veen J.A.V..2002.Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms.Antonie Van Leeuwenhoek,81:509-520.
    [155]Lai R.1999.Soil management and restoration fur C sequestration to mitigate the accelerated greenhouse effects.Progr Environ Sci.,14:307-326.
    [156]Lavelle P..1988.Earthworm activities and the soil systems.Biol.Fert.Soi.,6:237-251.
    [157]Lefroy R.D.B.,Blair G.J.,Strong W.M..1993.Changes in soil organic mater with cropping as measured by organic carbon fractions and I3C natural isotope abundance.Plant and Soil,155/156:399-402.
    [158]Lefroy R.D.B.,Lisle L..1997.Soil organic carbon changes in cracking clay soils under cotton production as studied by carbon fractionation.Australian Journal of Agricultural Resarch,48:1049-1058.
    [159]Lehmann J.,Cravo M.S.,Zech W..2001.Organic matter stabilization in a Xanthic Ferralsol of the central Amazon as affected bysingle trees:chemical characterization of density,aggregate ,and particle size fractions.Geoderma,99( 122):147-168.
    [160]Lin B.,Lin J.X.,Li J.K..1996.The changes of crop yield and soil fertility under long-term fertilization[M].Bering Agric.Sci.and Tech.Press.1-179.
    [161]Lipson D.A.,Schmidt S.K..2004.Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains.Applied and Environmental Microbiology,70:2867-2879.
    [162]Liu X.Y.,Lindemann W.C.,Whitford W.G.,Steiner R.L..2000.Microbial diversity and activity of disturbed soil in the northern Chihuahuan desert.Biology and Fertility of Soils,32:243-249.
    [163]Logninow W.,Wisniewski W.,Strony W.M..1987.Fractionation of organic carbon based on susceptibility to oxidation.Polish Journal of Soil Science,20:47-52.
    [164]Lu Y.H..2000.Dissolved organic carbon and methane emissions from a rice paddy fertilized with ammonium and nitrate.J.Environ.Qual.,29:1733-1740.
    [165]Lupwayi N.Z.,Arshad M.A.,Rice W.A.,Clayton G.W..2001.Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management.Applied Soil Ecology,16:251-261.
    [166]Lutzow M.,Leifeld J.,Kainz M..2002.Indications for soil organic matter quality in soils under different managementGeoderma,105(324):243-258.
    [167]Ma C.Z,Zhou Q.,He F..1994.Surplus-deficit distribution of organic carbon in soil under combined fertilization.ActaPedologica Sinica,31:35-41.
    [168]Malhi S.S.,Harapiak J.T.,Nyborg M..2003.Total and light fraction organic C in a thin Black Chernozemic grassland soil as affected by 27 annual applications of six rates of fertilizer.Fertilizer research,66:33-41.
    [169]Mando A.,Ouattara B.,Somado A.E..2005.Long-term effects of fallow,tillage and nitrogen fractions and on sorghum yield under sudano - sahelian conditions.Soil Use and Management,65:1473-147.
    [170]Manley J.,Kooten G.C.,Moeltner K..2005.Creating carbon ofsets in agriculture through no-till cultivation:Ameta-analysis of costs and carbon benefits.Climatic Change,68:41-65.
    [171]Marschner P.,Yang C.H.,Lieberei R.,Crowley D.E..2001.Soil and plant specific effects on bacterial community composition in the rhizosphere.Soil Biology and Biochemistry,33:1437-1445.
    [172]Maysoon M.M.,Charles W.R..2004.Tillagre and manure effects on soil and aggregate-associated carbon and nitrogen.Soil Science Society of America Journal,68:809-816.
    [173]McDowell W.H.,Likens G.E..1988.0rigin composition and flux of dissolved organic carbon in the Hubbard Brook Valley.Ecology,58:177-195.
    [174]Mcdowell W.H..1998.Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soil.Water Ai r Soil Pollu.,105 (1/2):175-182.
    [175]Merckx R..2001.Decomposition of dissolved organic carbon after soil drying and rewetting as an indicator of metal toxicity in soils.Soil Biol.Biochem.,33 (2):235-240.
    [176]Meyer J.L.,Edwards R.T,Risley R..1987.Bacterial growth on dissolved organic carbon from blackwater river.Microb.Ecol.,13:13-29.
    [177]Meyer J.L.,Edwards R.T.,Risley R..1987.Bacterial growth on dissolved organic carbon from blackwater river.Microb.Ecol.,13:13-29.
    [178]Moore T.R.,Jackson R.J..1989.Dynamics of dissolved organic carbon in forested and disturbed catchment Westland,New Zealand.Water Resour:Res.,25:1331-1339.
    [179]Moore T.R.,Souza W.D.,Koprivnjak J.F..1992.Controls on the sorption of dissolved organic carbon by soils.Soil Sci.,2:120-129.
    [180]Morris D.R.,Gilbelt R.A.,Reicosky D.C..2004.Oxidation potentials of soil organic matter in histosols under diferent tillage methods.Soil Science Society of Am erica Journal,68:817-826.
    [181]Namr K.L.,Mrabet R..2004.Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco.Journal of African Earth Sciences,39:485-489.[182]Needelman B.A.,Wander M.M.,Bollero G.A..1999.Interaction of tillage and soil texture:Biologically active soil organic matter in Illinois.Soil Sci.Am.J.,63:1326-1334.
    [183]Nemergut D.R.,Costello E.K.,Meyer A.F.,Pescador M.Y.,Weintraub M.N.,Schmidt S.K..2005.Structure and function of alpine and arctic soil microbial communities.Research in Microbiology,156:775-784.
    [184]O'Donnell A.G.,Seasman M.,Macrae A.,Waite I.,Davies J.T..2001.Plants and fertilizers as drivers of changes in microbial community structure and function in soils.Plant and Soil,232:135-145.
    [185]Olsson S.,Alstrom S..2000.Characterisation of bacteria in soils under barley monoculture and crop rotation.Soil Biology and Biochemistry,32:1443-1451.
    [186]Orwin K.H.,Wardle D.A.,Greenfield L.G..2006.Context dependent changes in the resistance and resilience of soil microbes to an experimental disturbance for three primary plant chronosequences.Oikos,112:196-208.
    [187]Pan G.X.,Li L.,ZhanG.X..2002.Perspectives on issues of soil carbon pools and global challenge.Journal of Nanjing Agricultural University,14(2):100-109.
    [188]Papatheodorou E.M.,Argyropoulou M.D.,Stamou G.P..2004.The effects of large- and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes.Applied Soil Ecology,25:37-49.
    [189]Parton W.J.,Sandford J.R.L.,Sanchez P.A..1989.Modeling soil organic matter dynamics in tropical soils.Soil Science Society of America Journal,39:153-171.
    [190]Paul E.A..1984.Dynamics of soil organic matter in soils.Plant and Soil,76:275- 285.
    [191]Picard C,De Cello F.,Venture M.,Fani R.,Guckert A..2000.Frequency and biodiversity of 2,4-diacetylphloroglucinol producing bacteria isolated from the maize rhizosphere at different stages of plant growth.Applied and Environmental Microbiology,66:948-955.
    [192]Puget P.,Balesdent J.,Chenu C..2000.Dynamics of soil organic matter associated with primary particle size fractions of water-stable aggregates.Eur.J.Soil Sci,51:595-605.
    [193]Quails R.G.,Haines B.L..1991.Geochemistry of dissolved organic Nutrients in water percolating through a forest ecosystem.Soil Sci.SocAm.J.,55:1112-1123.
    [194]Quideau S.A.,Bockheim J.G.1997.Biogeochemical cycling following planting to red pine on a sandy prairie soil.Environ.Qual.,26:l 167-1175.
    [195]Roscoe R.,Buurman P..2003.Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol.Soil and Tillage Research,70:107-119.
    [196]Ross D.S.,Bartlett R.J..1996.Field extracted spodosol Solutions and soils:Aluminum organic carbon and pH Interrelation ships.Soil Sci.Soc.Am.J.,60:589-595.
    [197]Russell A.E.,Laird D.A.Parkin T.B..2005.Impact of nitrogen fertilization and cropping system on carbon sequestration in Midwestern Mollisols.Soil Science Society of America Journal,69:413-422.
    [198]Sarathchandra S.U.,Ghani A.,Yeates G.W.,Burch G.,Cox N.R..2001.Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils.Soil Biology and Biochemistry,33:953-964.
    [199]Schadt C.W.,Martin A.P.,Lipson D.A.,Schmidt S.K..2003.Seasonal dynamics of previously unknown fungal lineages in tundra soils.Science,301:1359-1361.
    [200]Sessitsch A.,Weilharter A.,Gerzabek M.,Kirchmann H.,Kandeler E..2001.Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment.Applied and Environmental Microbiology,67:4215-4224.
    [201]Sigler W.V.,Turco R.F..2002.The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis.Applied and Environmental Microbiology,21:107-118.
    [202]Six J.,Bossuyt H.,Degryze S..2004.A history of research on the link between (micro) aggregates,soil biota,and soil organic matter dynamics,79:7-31.
    [203]Six J.,Callewaert P.,Lenders S..2002.Measuring and understanding carbon storage in afforested soils by physical fraction.Soil Science Society of America Journal,66:1981-1987.
    [204]Six J.,Elliott E.T.,Combrink C..2000.Soil structure and organic matter:distrbution of aggregate-size classes and aggregate-associated carbon .Soil Science Society of American Journal,64:681-689.
    [205]Six J.,Elliott E.T.,Paustian K..2000.Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture.Soil Biology and Biochemistry,32:2099-2103.
    [206]Six J.,Elliott E.T.,Paustian K..2000.Soil structure and organic mattena normalized stability index and effect of mineralogy,64:1042-1049.
    [207]Six J.,Feller C,Denef K..2002.Soil organic matter,biota and aggregation in temperate and tropical soils-effects of no-tillage.Agronomie,22:755-775.
    [208]Smalla K.,Wieland G.,Buchner A.,Zock A.,Parzy J.,Kaiser S.,Roskot N.,Heuer H.,Berg G..2001.Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gelelectrophoresis:plant-dependent enrichment and seasonal shifts revealed.Applied and Environmental Microbiology,67:4742-4751.
    [209]Smith C.K.,Munson A.D.,Coyea M.R..1992.Nitrogen and phosphorous release from humus and mineral soil under black spruce forests in central Quebec.Soil Biol.Biochem.,30:1491-1500.
    [210]Smith Pownlson D.S..2000.Considering manure and carbon sequestration.Science,287:428-429.
    [211]Spaccin R.,Mbagwu J.S.C.,Conte P..2006.Changesofhumic substances characteristics from forested to cultivated soil sin Ethiopia.Geoderma,132(1-2):9-19.
    [212]Ting G.,Novak J.M.,Amarasiriwardena D..2002.Soil organic matter characteristic as affected by tillage management.SoilScience Society of America Journal,66:421-429.
    [213]Torbert H.A.,Prior S.A.,Runion G.B..2004.Impact of the return to cultivation on carbon sequestration.Journal of Soil and Water Conservation,59:1-8.
    [214]Whalen J.K.,Chang C..2002.Macroaggregate characteristics in cultivated soils after 25 annual manure applications.Soil Science Society of America Journal,66:1637-1647.
    [215]Whalen J.K.,Quancai H.,Aiguo L..2003.Compost application increase water-stable aggregates in conventional and no-tillage systems.Soil Science Society of America Journal,67:1842-1847.
    [216]Whitbread A.M.,Lefroy R.D.B.,Blair G.J..1998.A survey of the impact of cropping on soil physical and chemical properties in north western New South Wales.A ust.J.Soil Res.,36(4):669-681.
    [217]Woods L.F..1989.Active organic matter distribution in the surface 15 cm of undisturbed and cultivated soils.Biology and Fertility of Soils,8:271-278.
    [218]Wu T.Y.Schoenau J.J.,Li F.M..2004.Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China.Soil and Tillage Research,77:59-68.
    [219]Xu M.G.,Yu R.,Wang B.R..2000.Progress on the study of soil active organic matter(In Chinese).Soil and Fertilizer,(6):3-7.
    [220]Xu Y.C.,Shen Q.R.,Ran W..2002.Effects of zero-tillage and application of manure on soil microbial biomass C,N and P after sixteen years of cropping.Acta Pedologica Sinica,39:89-96.
    [221]Yang X.M.,Kay B.D..2001 .Impacts of tillages on total,loose and occluded particulate and humified organic carbon fractions in soils within afield in southern Ontario.CanJ.Soil Sci.,81:149-156.
    [222]Yang Y.H.,Yao J.,Hu S.,Qi Y..2000.Effects of agricultural chemicals on DNA sequence diversity of soil microbial community:a study with RAPD marker.Microbial Ecology,39:72-79.
    [223]Zak D.R.,Holmes W.E.,White D.C.,Peacock A.D.,Tilman D..2003.Plant diversity,soil microbial communities,and ecosystem function:are there any links? Ecology,84:2042-2050.
    [224]Zelles L..1999.Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review.Biology and Fertility of Soils,29:111-129.
    [225]Zhong W.H.,Cai Z.C..2004.Effect of soil management practices and environmental factors on soil microbial diversity:a review.Biodiversity Science,12:456-465.
    [226]Zhou C.P.,Ouyang H..2001.Influence of temperature and moisture on soil nitrogen mineralization under two types of forest in Changbai Mountain.Chinese Journal of Applied Ecology,12:505-508.
    [227]Zotarelli L.,Alves S.,Urquiaga S..2005.Impact of tillage and crop rotation on aggregate-associated carbon in two Oxisols.Soil Science Society of America Journal,69:482-491.
    [228]Zsolnay A..1996.Dissolved humus in soil waters.In :Piccolo A .ed.Humus Substances in Terrestrial Ecosystems.Amsterdam:Elsevier.,171 -223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700