用户名: 密码: 验证码:
笋用竹林地有机农药污染土壤微生物修复机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生态与食品安全备受全社会普遍关注的大背景下,本研究以浙江省主要产竹(县)市的竹林地土壤和竹笋为研究对象,对土壤和竹笋有机农药污染状况作了深入研究,并对残留状况作出了科学评价。鉴于竹林地土壤、竹笋存在有机农药残留的现状,针对性地开展了竹林地土壤有机农药污染微生物修复、修复效果影响因子及降解微生物分离鉴定等研究工作。研究结果如下:
     1.竹林地土壤和竹笋有机农药残留现状
     竹林地土壤中共检测到17种有机农药,其中,有机氯农药及其异构体11种,拟除虫菊酯类农药2种,有机磷农药4种。HCH检出率达100%,显著高于DDT(70.37%)。甲基对硫磷检出率96.30%,拟除虫菊类农药检出率较低(62.96%)。
     土壤中检测出的有机农药中,除顺-氰戊菊酯残留量超过1000μg·kg-1外,其它种类农药的残留量均低于150μg·kg-1。HCH、DDT残留量均低于50μg·kg-1,有机磷农药最大残留量低于40μg·kg-1。这说明浙江省主要竹产区商品竹林土壤有机农药残留具有普遍性,有机氯、有机磷农药残留量较低,拟除虫菊酯类农药残留较高。
     竹笋中检测到9种有机氯农药,有机磷农药和氨基甲酸酯类农药均低于检测限。HCH和DDT检测率均达100%,在竹笋中DDT更加稳定。五氯硝基苯检出率达75%。
     竹笋检测出的有机氯农药残留量均低于100μg.kg-1,符合浙江省优质竹笋标准,但部分竹笋样品农药残留超过国家蔬菜水果标准(50μg.kg-1),其中,DDT超标率17.9%,HCH超标率3.6%。综合污染指数和系统聚类分析表明,试验笋样可以分为两类,即安全类(P<1),占82.14%,基本安全类(P=1~1.2),占17.86%。
     商品竹林经营类型、经营水平和土地利用方式对竹林地土壤及竹笋有机农药残留有一定的影响,集约经营竹林显著高于粗放经营竹林,笋用竹林较毛竹笋材两用林高,山地竹林较原农业耕作地改种为竹林的低。
     2.竹林地有机农药残留微生物原位修复技术
     有机农药的原位微生物修复效果明显。使用菌剂15d内甲基对硫磷、丁硫呋喃丹、六六六三种有机农药降解率超过62%,分别达到83.08%、82.66%、62.21%,显著高于对照。雷竹林不同林分密度对甲基对硫磷微生物修复效果影响显著,在中密度下,既能获取较高的竹笋产量和经济产出,15d内甲基对硫磷降解率达84%以上。因此,应结合雷竹林丰产林分结构的建立,使竹林达到中密度水平,即立竹度12000-15000株·hm-1,再进行微生物修复。
     在退化雷竹林土壤中共检测到3种有机磷农药,即乐果、甲基对硫磷、乙酰甲胺磷,且随着竹林退化程度的加剧残留量升高。采用有机磷农药降解菌剂进行田间微生物修复,15d内残留降解率超过50%,最高达100%。退化程度对降解率有显著影响,随着退化程度的加剧,降解率显著下降。
     3.环境因子对微生物修复效果的影响
     环境因子温度、光照、土壤pH值、土壤含水量对有机磷农药甲基对硫磷的微生物降解有着显著的影响。虽然随着时间的推移,甲基对硫磷的降解率逐渐增加,但降解速率逐渐降低。正交试验表明温度、土壤水分、土壤pH三因子在有机磷农药甲基对硫磷微生物降解过程中起到关键作用。获得最佳修复效果的环境因子组合为:温度25℃、光照60%、土壤含水率15%、土壤pH值6.03。
     4.土壤养分元素含量对生物修复效果的影响
     通过二次正交回归设计,确立了土壤主要养分元素含量与有机磷降解菌剂对甲基对硫磷农药降解效果的关系,推导出了二次方程,5d、10d、15d的回归方程均达显著水平,其中,5d时回归方程极显著。根据回归方程,推导出5d、10d、15d最佳降解率的土壤养分元素含量分别为:氮素(N)0.112 g·kg-1、0.113 g·kg-1、0.122 g·kg-1,磷素(P2O5)0.083 g·kg-1、0.096 g·kg-1、0.093 g·kg-1,钾素(K2O)0.077 g·kg-1、0.078 g·kg-1、0.088 g·kg-1。降解率分别为62.09%、84.79%和96.13%。
     5.有机磷农药降解微生物分离
     从取自化工厂排水口附近的土壤中分离出了2株有机磷农药降解菌,定名为OPDM-1、OPDM-2,二者均属于假单胞菌属(Pseudomonas sp.)。对目标菌株OPDM-2特性研究表明,菌株对有机磷农药具有较好的降解作用,液体培养条件下,72h菌株对100mg·L-1有机磷农药乙酰甲胺磷降解率达59.72%。
Now the environmental and food safety were concerned by all people, the pollution status of soil planted bamboo and its shoots ware investigated in Zhejiang province, and then the scientific evaluation were provided. Based the pesticide residue status, further research including bioremediation of organ-pesticides pollution, the role of environmental factor and isolation of degradation microorganism of organophosphorus pesticides were carried out. The main results were listed below:
     1 The status of pesticide residue in soil and shoots
     Seventeen organ-pesticides were detected in soil of bamboo forest, including eleven organochlorine pesticides and its isomers, four organophosphorus pesticides and two pyrethroids. The detection rate of HCH was up to 100%, which was higher than that of DDT. The detection of parathion–methyl was also up to 96.30%, and the detection rate of pyrethroid is low. The residual concentration of all was lower than 150μg·kg-1 excerpt esfenvalerate with the concentration of 1227.14μg·kg-1. The concentration of HCH and DDT was lower greatly than 50μg·kg-1, and that of organophosphorus pesticides was lower than 40μg·kg-1. So all that showed although the organ-pesticide residue in soil was ubiquitous, its concentration is low excerpt one pryethroid.
     Nine organochlorine pesticides were detected in shoots, and none of organophosphorus pesticides, pyrethroids and others were detected. The detection rate of both HCH and DDT was up to 100%, and the stability of DDT was higher than that of HCH in shoos. The detection rate of pentachlornitrobenzene was 75%. The average of all organ-pesticide residue is lower than 50μg·kg-1. The Nemerow index and cluster showed that tested shoot samples can be divided into two types: safety shoot, accounting for 82.14%; and fundamental safety shoot, accounting for 17.86%. All indicated that organochlorine pesticides residue of bamboo shoots form Zhejiang province was universal, but not severe.
     In addition, management level, management types and topographty influenced organ-pesticide residue in soil and shoots to some extent. The residual concentration of pesticides was higher in soil and shoots under intensive management bamboo forests, shoot-used bamboo forest, and bamboo forest converted from cropland than in those under extensive management bamboo forest, phyllostachys pubescens shoot-timber-used forests, and bamboo forest established on mountains, respectively.
     2 Bioremediation of organ-pesticides residue in soil of bamboo forest
     The result showed that pesticide concentration in soil can be decreased after bioremediation markedly. The degradation rate of parathion–methyl, carbofuran and HCH was higher than 60%, which was 83.08%, 82.66% and 62.21% respectively after 15-days bioremediation. The pesticide degradation rate of bioremediation was significantly higher than that of control. Stand density of bamboo plantation influenced bioremediation of parathion–methyl remarkably. Significantly difference at bioremediation was found among different density. The optimal density of bamboo plantation is 15000-18000 culms·hm-2.
     Three organophosphorus pesticides including dimethoate, parathion–methyl, acephate were detected in soil of degenerative Phyllostachys praecox stand, and their residual concentration was positive correlation with degeneration. Bioremediation used by degradation microorganism can eliminate organophosphorus pesticides markedly. The degradation rate was higher than 69%, and up to 100% after 15-days bioremediation. Degeneration can influence bioremediation greatly. With the graveness of degeneration, the degradation rate decreased remarkably.
     3 The influence of environmental factor on bioremediation
     Environmental factors such as soil temperature, light, soil pH and water content of soil, influenced bioremediation of organophosphorus pesticides evidently. Although during the bioremediation, the degradation rate and content increased gradually, the degradation velocity decreased gradually. The result showed that soil temperature, soil pH and water content of soil were the key factors influencing on bioremediation of organophosphorus pesticides. The optimum factor combination of bioremediation was soil temperature 25℃, light 60%, soil pH 6.03 and water content of soil 15%.
     4 The influence of fertilization on bioremediation.
     The influence of fertilization on bioremediation was tested by quadratic orthogonal and regression method. The regression equation was established, and all reached significant level. Based on regression equation, the optimum fertilization combination was N-0.112g·kg-1, 0.113g·kg-1, 0.122g·kg-1; P2O5-0.083g·kg-1, 0.096g·kg-1, 0.093g·kg-1; K2O-0.077g·kg-1, 0.078g·kg-1, 0.088g·kg-1. At this condition, the degradation rate was up to 62.09%、84.79%and 96.13% at 5, 10 ,15 day after bioremediation respectively.
     5 Isolation for microorganism degradation of organophosphorus pesticides
     Two degraded microorganism were isolated from soil fetching from drainage outlet of Longyou insecticide factory and named OPDM-1、OPDM-2. They all were strains of Pseudomonas sp. Under laboratorial, OPDM-2 can degrade organophosphorus pesticides markedly.
引文
[1]唐森本,王欢畅,葛碧洲,等.环境有机污染化学.北京:冶金工业出版社, 1995
    [2]赵玲,马永军.有机氯农药残留对土壤环境的影响.土壤, 200l, 33(6):309-313
    [3]国家环境保护总局.我国农药污染现状、存在问题及建议.环境保护, 2001, 6:23-24
    [4]单正军,朱忠林,华小梅.我国农药环境污染及管理现状.环境保护, 1997, 7:40-44
    [5] Sridhar Susarla, Victor F. Medina, McCutcheon, SC. Phytoremediation: An Ecological Solution to Organic Chemical Contamination. Ecological Engineering, 2002, 18(5):647-658
    [6] Schnoor, JL, Licht, LA, McCutcheon, SC. Phytoremediation of Organic and Nutrient Contaminants. Environ Sci Technol, 1995, 29(7):318-323
    [7] AS, A, Williams L, Q, LM. Field Demonstration on the Removal and Disposal of Heptachlor and Heptachlor Epoxide from Soils of Abandoned Pineapple Fields on Molokai, Hawaii. Correspondence from J. Nakatan I, S 1999
    [8]王连生.环境健康化学.北京:科学出版社, 1994
    [9] A.R-Ta. Bioremediation of Persistent Organic Pollutants Technologie a Biotech- nologie. Applied and Environmental microbiology, 2002, 75(13):5907–5911
    [10] J. Aislabie, A. D. Davison, Boul, HL. Isolation of Terrabacter sp. Strain DDE-1, Which Metabolizes 1,1-Dichloro-2,2-Bis(4-Chlorophenyl)Ethylene when Induced with Biphenyl. Applied and Environmental microbiology, 1999, 65(12):5607–5611
    [11] Fatigoni C, M arcarelli M, Monarca, S. Efects of Synthetic Pyrethroids on Mammalian Chromosomes. I SumicidinMutatRes, 1982, 105(12):101-106
    [12] Guillette, L, Pickford, D, Crain, D. Reduction in Penis Size and Plasma Testosterone Concentrations in Juvenile Alligators Living in a Contaminated Environment Gen Comp. Endocrinol, 1996, 101(1):32-42
    [13] Kelce, W, C.Stone, S. Laws, et al. Persistent DDT Metabolite p,p-DDE is a Potent Androgen Receptor Antagonist. Nature, 1995, 375(6532):581–585
    [14]杨永岗,彭钰欣.农药与未来农业的发展.环境导报, 1997, 6:35-38
    [15] Lcisa, J., MI. Pesticide Contamination of Ground Water in Westem Eumve. Agriculture, Ecosystem and Environment, 1989, 26(4):369-389
    [16] Hotden, PW. Pesticides and Ground Water Quality-Issue and Problems in Four States. Washington DC:National Academy, 1986
    [17]张辉,刘广民,姜桂兰,等.农药在土壤环境中迁移转化规律研究的现状与展望.世界地质, 2000, 19(2):199-204,208
    [18] Hattberg, G. Pesticide Pollution of Groundwater in the Humid United states. Agriculture, Ecosystems and Environment, 1989, 26(4):299-367
    [19]朱南文,胡茂林,高廷耀.甲胺磷对土壤微生物活性的影响.厦门大学学报, 1999, 18(1):4-7
    [20] Said EL Fantroussi, Verschuere, L. Effect of Phenylurea Communities Estimated by Analysis of 16S rRNA Gene Fingerprints and Profiles. Appl Environ Microbial, 1999, 65 (3):982-988
    [21]蔡道基,蔡玉琪.化学农药对生态环境安全评价研究.农村生态环境, 1986, 2:9-13
    [22]蔡玉琪,蔡道基.甲基异柳磷等四种农药对土壤呼吸的影响.农村生态环境, 1992, 3:36-40
    [23]陈祖义,米春云.农药杀虫单对土壤微生物功能的影响.环境科学, 1987, 8(1):36-39
    [24]王静,乔雄梧,朱九生.四种农药对土壤微生物的影响I:土壤呼吸的变化.应用与环境生物学报, 1999, 5(2):155-157.
    [25]郭明,张小萍,曹玉. 3种杀虫剂对土壤磷酸酶活性的影响.西北农林科技大学学报, 2001, 29 (2):69-72
    [26]郭明,尹亚梅,何良荣,等.农用化学物质对土壤服酶活性的影响.农业环境保, 2000, 19 (2):68-71
    [27]郭明,陈红军,干春蕾. 4种农药对土壤脱氢酶活性的影响.环境化学, 2000, 19(6):523- 527
    [28]杨玲,孔星云,郭明.化学农药对土壤服酶的影响.塔里木农垦大学学报, 2001. 13(3): 523-527
    [29]李时银,张晓昆,冯建防,等.氰戊菊酷及代谢物对土壤过氧化氢酶活性的影响.中国环境科学, 2002, 22(2):154-157
    [30]李时银,黄智,倪利晓,等.毒死蝉及代谢产物对土壤过氧化氢酶活性的影响.农业环境保护, 2002, 21 (6): 553-555
    [31]黄智,李时银,刘新会,等.苯噻草胺对土壤中过氧化氢酶活性及呼吸作用的影响.环境化学, 2002, 21(5):481-484
    [32]沈标,李顺鹏.氯苯、对硝基酚对土壤微生物活性的影响.土壤学报, 1997 ,34(3 ):309-314
    [33] Tu.C.M. Effect of Three Newer Pesticides on Microbial and Enzymetic Activities in soil. Bull Environ Contam Toxico, 1992, 49(1):120-128
    [34] M, A. Biodegradation of Chemical of Environmental Concern. Science, 1981, 21l(4478):l32-138
    [35] Sarokin, D. The Toxics Release Inventory. EnvironSciTechno1, 1988, 22(23):616-618
    [36] Zwillich, D. A Tentative Comeback for Bioremediation. Science, 2000,89(29):266-2267
    [37] W. Chen, Mulchandani, A. The use of live Biocatalysts for Pesticide Detoxification. Trends in Biotechnology, 1998, l6(2):71-76
    [38]尤民生,刘新.农药污染的生物降解与生物修复.生态学杂志, 2004,23(1):73-77
    [39]杨小红,李俊,葛诚,等.微生物降解农药的研究新进展.微生物学通报, 2003, 30(6):93-96
    [40]张瑞福,朱卫,崔中利,等.辛硫磷降解菌X-l的分离鉴定及降解性状的初步研究.环境科学学报, 2003, 23(3):41l-44l43
    [41]丁海涛,李顺鹏,沈标,等.拟除虫菊酯类农药残留降解菌的筛选及其生理特性研究.土壤学报, 2003, 40(1):123-129
    [42]崔中利,李顺鹏,孙志兵.两株联合降解甲基1605的分离及其特性研究.应用与环境生物学报, 1999, 5(增刊):117-119
    [43]Brajesh K. Singh, Walker, A. Biodegradation of Chlorpyrifos by Enterobacter Strain B-14 and Its Use in Bioremediation of Contaminated Soils. Appl Envir Microbiol, 2004,70(8):4855-4863
    [44]Zeyer J, PC, K. Degradation of Trifluralin in Pure Culture. Pestic Biochem Physio1, 1984, 20(1):10-l18
    [45] Walln, SP, Safe S, HO. Microbial Demethylation and Debutylation of Four Phenylurea herbicides.Pestic BiochemPhysio1, 1973, 3:253-258
    [46]Singh SB, G, K. Microbial Degradation of Pendimethalin. J EnvironSciHealth, 1991, 26(3):309-342l
    [47] Sethunathan N, Y, Y. Microbial Degradation of Insecticides in Flooded Soil and in Anaerobic Culture. ResidueRev, 1973, 47(1):143-165
    [48] Kams JS, Mulbry Nelson JO, PC., K. Metabolism of Carbofuran by a Pure Bacterial Culture. PesticBiochemPhysio1, 1986, 25(2):211-217
    [49] Hammil TB, RL, C. Degradation of 2-sec-butyl-4,6-dinitiophenol(dinoseb) by Clostridium Bifermentas KM R-1. Appl Environ Microbio1, 1996, 62(5):1842-1846
    [50] Cui Zhongli, Fu Guoping, Shunpeng, L. Isolation of Methyl Parathion Degrader strain M6 and Cloning of the Methyl parathion Hydrolase Gene. App1 Envkon Microbio1, 2001, 66(10):4922-4925
    [51] Behki RM, Topp E, Germon, E. Metabolism of the Berbicide Atrazine by Rhodococcusstrains. App1 Envion Microbiol, 1993, 59:1955-1959
    [52] Behki RM, Kahn. Degradation of Atrazine by Pseudomonas sp. N-dealkylation and Dehalogenation of Atrazine and its Metabolism. J Agric Food Chem, 1986, 34:746-749
    [53] Barker PS, M orrison F, hitaker, W. Conversion of DDT to DDD by Proteus vulgarisa Bacterium Isolated from the Intestinal Flora of a Mouse. Nature(London), 1965, 205:62l-622
    [54] Fulthorpe RR, Rhodes AN, JM, T. Pristine Soils Mineralize 3-chlorbenzoate and 2,4-dichloro-phenoxyace-tate via Different Microbial Populations. App1Environ Microbio1, 1996, 62(4):1159-1166
    [55] Frank Fischer, Stefan Künne, Fetzner, S. Bacterial 2,4-Dioxygenases: New Members of theα/βHydrolase-Fold Superfamily of Enzymes Functionally Related to Serine Hydrolases. J Bacteriol, 1999, 181(13):5725-5733
    [56] Brajesh K. Singh, Walker, A. Effects of Soil pH on the Biodegradation of Chlorpyrifos and Isolation of a Chlorpyrifos-Degrading Bacterium. Appl Envir Microbiol, 2003. 69(13):5198-5206
    [57]刘智,洪青,徐剑宏,等.甲基对硫磷水解酶基因的克隆与融合表达.遗传学报, 2003, 30 (10):40-46
    [58]NL, R. Degradation of Methyl parathion by P. putida. J Microbio1, 1994, 40:1000 -1006
    [59] Mulbry, WW, Eaton, RW. Purification and Characterization of the N-methylcarbamate hydrolase from Pseudomonas strain CRL-OK. Appl Envir Microbiol, 1991, 57(12):3679-3682
    [60] Masahito H, Motoko, N, T. Involvement of two Plasmids in the Degradation of Carbaryl by Arthrobacter sp. Strain RC100. App1 EnvironMicrobio1, 1999, 65(3):1015-1019
    [61] Manzoor AB, Masataka. Identification and Characterization of a New Plasmid Carrying Genes for Degradation of 2,4-Dichlorophenoxyacetate from Pseudomonas cepacia CSV90. App1 Environ Mcrobio1, 1994, 60(1):307-312
    [62] Boundy-Mills KL, De Souza ML, RT., M. The atzB Gene of Pseudomonas sp.strain ADP Encodes the Second Enzyme of a Novel Atrazine Degradation Pathway. App1 Environ Microbio1, 1997, 63(3):916 -923
    [63] Jacob B?lum, Trine Henriksen, Hansen, HCB. Degradation of 4-Chloro-2-Methyl phenoxyacetic Acid in Top- and Subsoil Is Quantitatively Linked to the Class III tfdA Gene. Appl Envir Microbiol, 2006, 72(5):1476-1486
    [64] Seong-Jae Kim, Ohgew Kweon, Freeman, JP. Molecular Cloning and Expression of Genes Encoding a Novel Dioxygenase Involved in Low-and High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation in Mycobacterium vanbaalenii PYR-1. Appl Envir Microbiol, 2006, 72(4):1045-1054
    [65] Dehmel U, Engesser KH, Timmis KN, et al. Cloning Nucleotide Sequence and Expression of the Gene Encoding a Novel Dioxygenase Involved in Metabolism of Carboxydiphenyl Ethers in Pseudomonas pseudoalcali Genes POB310. ArchMicrobio1,1995, 163(1):35-41
    [66] Cuneyt MS, TG, D. Enzymatic Hydrolysis of Organophosphates: Cloning and Expression of a Parathion Hydrolase Gene from Pseudomonas diminuta. Bio/Technology, 1985, 3:567-571
    [67] Ch.-L. Qiao, J. Huang, Li, X. Bioremediation of Organophosphate Pollutants by a Genetically-Engineered Enzyme. Bull Environ Contam Toxicol 2003, 70(3):455-461 [68 ]崔中利,张瑞福,何健,等.对硝基苯酚降解菌P3的分离、降解特性及基因工程菌的建.微生物学报, 2002, 42(1):l9-26
    [69] Hadzi-Panzov, J, S.Petrovski, Alazarevski, A. Overview on the Waste Material from the Former Lindane Plant in Skopji Plant. protection institute, 2001,1:129-134.
    [70] Iwata, H, Tanabe, S, Sakai, N, et al. Distrbution of Persistent Organochlorines in the Oceanic Air and Surfurce Seawater and Therole of Ocean on Their Global Transpoorand Fate. Environ Sci Technol, 1993, 27(4):1080-1098
    [71] voldner, EC, Y.F.Li. Global Usage of Selected Persistent Organochlorrines. Sci Total Environ, 1995, 161(1):201-210
    [72] Anup Srivastava, Shivanandappa, T. Hexachlorocyclohexane Differentially Alters the Antioxidant Status of the Brain Regions in Rat. Toxicology, 2005, 214(12): 123-130
    [73] Fryas, M, Frenich, A, Vidal, JM. Analyses of Lindane,Vinclozolin,Aldrin,P,P -DDE,o,P -DDT and P,P -DDT in Human Serum Using Gas Chromatography With Electron Capture Detection and Tandem mass Spectrometry. Journal Chromatography B, 2001, 760(1):1-l5
    [74] A, B, M, W, A, R. Organochlorine Coin Pounds(DDE and PCB)in Plasma and Breast Cyst Fluid of Women with Benign Breast Disease Cancern. Epidemiol Bioma rkers, 1998, 7(7):579-583
    [75] SR, S, JW, B, N, P. Serum Concentrations of Organochlorine Compounds and Endometrial Cancer Risk(United States).Cancer Causes Control 9, 1998, 4:417-424
    [76] Fatigoni, C, Marcarelli, M, S, M. Efects of Synthetic Pyrethroids on Mammalian Chromosomes. Sumicidin MutatRes, 1982, 105(12):101-106
    [77] Dutahak, S, V.Shatalov, M.Mantseva, et al. Persistent Organ Pollutants in the Environment. Status report 3. 2004
    [78] Adrian Covaci, Adriana Gheorghe, Orieta Hulea, et al. Levels and Distribution of Organochlorine Pesticides, Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in Sediments and Biota from the Danube Delta, Romania. Environmental Pollution, 2006, 140(1):136-149
    [79] B.G. Li, J. Cao, W.X. Liu, et al. Geostatistical Analysis and Kriging of Hexachlorocyclohexane Residues in Topsoil from Tianjin, China. EnvironmentalPollution, 2006, 142(3): 567-575
    [80] Birgit M. Braune, Malone, BJ. Organochlorines and Trace Elements in Upland Game Birds Harvested in Canada. Science of The Total Environment, 2006, 363(13):60-69
    [81] Jonathan Verreault, Derek C.G. Muir, Ross J. Norstrom, et al. Chlorinated Hydrocarbon Contaminants and Metabolites in Polar Bears (Ursus maritimus) from Alaska, Canada, East Greenland, and Svalbard: 1996-2002. Science of The Total Environment, 2005, 352(1):369-390
    [82] Agus Sudaryanto, Tatsuya Kunisue, Natsuko Kajiwara, et al. Specific Accumulation of Organochlorines in Human Breast Milk from Indonesia. Environmental Pollution, 2006, 139(1):107-117
    [83] Alin Constantin Dirtu, Roberta Cernat, Doina Dragan, et al. Organohalogenated Pollutants in Human Serum from Iassy, Romania and their Relation with Age and Gender. Environment International, 2006, 32(6): 797-803
    [84] Ahmed, MT, Ismail, SMM, Mabrouk, SS. Residues of some Chlorinated Hydrocarbon Pesticides in Rain Water,Soil and Ground Water,and Their Influence on Some Soil Microogranisms. EnvorinInt, 1998, 24:665-670
    [85] Franciskovic-Bilinski, S, Bilinski, H, S.Sirac. Organic Pollutants in the Streams of Kupa river Drainage Basin Fresenius. Environ Bull, 2005, 14:282-290
    [86] Miglioranza, KSB, Sagrario, M, Moreno, JEAd, et al. Agricultural Siol as a Potential Source of Input of Organochlorine Pesticides into Nearby Pond. Environ Sci Pollut RES Int, 2002, 9:250-256
    [87] Tao, S, Xu, FL, Wang, XJ, et al. Organochlorine Pesticides in Agricultural Soil and Vegetables form Tianjin,China. Environ Sci Technol, 2005,39(29):2494-2499
    [88] Tauler, J, D.DAzevedo, S.Lacorte, et al. Organic Pollutants in Surface Waters from Potugal Using Chemometric Interpretation. Environ Technol, 2001, 22(8):1043-1054
    [89] Waliszewski, SM, Carvajal, O, Infanzon, RM, et al. Levels of Organochlorine Pesticides in Soil and Rye Plant Tissues in a Field Study. J Aric Food Chem, 2004, 52(15):7045-7050
    [90] Imai, R, Nagata, Y, Fukuda, M, et al. Molecular Cloning of a P. paucimobilis Gene Encoding a 17-kd Polypeptide that Eliminates Molecules fromγ-Hexachlorocyclohexane. J Bacteriol, 1991, 173(14):6811-6819
    [91] Kumari, R, S. Subudhi, M. Suar, et al. Cloning and Characterization of Lin Genes Responsible for the Degradation of Hexachlorocyclohexane Isomers in Sphingomonaspaucimobilis B90. Appl Environ Microbiol, 2002, 68(14):6021-6028
    [92] Sahu, SK, K. K. Patnaik, M. Sharmila, et al. Degradation of alpha-, beta-, gamma-Hexachlorocyclohexane by a Soil Bacterium under Aerobic Conditions. Appl Environ Microbiol, 1990, 56(8):3620-3622
    [93]Thomas, JC, Berger, F, Jacquier, M, et al. Isolation and Characterization of a Novelγ-Hexachlorocyclohexane-Degrading Bacterium. J Bacteriol, 1996, 178(14):6049-6055
    [94]Johri, AK, M. Dua, D. Tuteja, et al. Genetic Manipulation of Microorganism for the Degradation of Hexachlorocyclohexane. FEMS Microbiol Rev, 1996, 19(1):69-84
    [95] Miyauchi, K, Adachi, Y, Nagata, Y, et al. Cloning and Sequencing of a Novel meta-Cleavage Dioxygenase Gene Whose Product Is Involved in Degradation of g-Hexachlorocyclohexane in S. paucimobilis. J BACTERIOLOGY, 1999, 181 (21):6712-6719
    [96] Miyauchi, K, Lee, H-S, Fukuda, M, et al. Cloning and Characterization of linR, Involved in Regulation of the Downstream Pathway for Hexachlorocyclohexane Degradation in S. paucimobilis UT26. Applied and Environmental Microbiology, 2002, 68( 4):1803-1807
    [97] DDT Degradation. Science, 1998, 280(5364)):649-649
    [98] Focht, DD, Alexander, M. Bacterial Degradation of Diphenylmethane, a DDT Model Substrate. Appl Envir Microbiol, 1970, 20(4):608-611
    [99] Charu Dogra, Vishakha Raina, Rinku Pal, et al. Organization of lin Genes and IS6100 among Different Strains of Hexachlorocyclohexane-Degrading S. paucimobilis. J BACTERIOLOGY, 2004, 186(8):2225-2235
    [100] Ryo Endo, Mayuko Kamakura, Keisuke Miyauchi, et al. Identification and Characterization of Genes Involved in the Downstream Degradation Pathway of -Hexachlorocyclohexane in S. paucimobilis UT26. J BACTERIOLOGY, 2005, 187(3):847-853
    [101] YuJi Nagta, Akiko Futamura, Keisuke Miyauchi, et al. Two Different Types of Dehalogenases, LinA and LinB, Involved in g-Hexachlorocyclohexane Degradation in S. paucimobilis UT26 Are Localized in the Periplasmic Space without Molecular Processing. J Bacteruology, 1999, 181(17):5409-5413
    [102] Kumari, R, Subudhi, S, Suar, M, et al. Cloning and Characterization of lin Genes Responsible for the Degradation of Hexachlorocyclohexane Isomers by Sphingomonas paucimobilis Strain B90. Applied and Environmental Microbiology, 2002, 68(12):6021-6028
    [103] Nagata, Y, K. Miyauchi, Takagi, M. Complete Analysis of Genes and Enzymes forγ-Hexachlorocyclohexane Degradation in S. paucimobilis UT26. J Microbiol Biotechnol, 1999, 23:380-390
    [104] Miyauchi, K, H. S. Lee, M. Fukuda, et al. Cloning and Characterization of linR, Involved in Regulation of Downstream Pathway forγ-hexachlorocyclohexane Degradation in S. paucimobilis UT26. Appl Environ Microbiol, 2002, 68(5):1803-1807
    [105] Nagata, Y, Futamura, A, Miyauchi, K, et al. Two Different Types of Dehalogenases, LinA and LinB, involved inγ-Hexachlorocyclohexane Degradation in S. paucimobilis UT26 are localized in the periplasmic space without molecular processing. J Bacteriol, 1999, 181(13):5409-5413
    [106] Nagata, Y, Prokop, Z, Sato, Y, et al. Degradation ofβ-Hexachlorocyclohexane by Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26. Applied and Environmental Microbiology, 2005, 71(4):2183-2185
    [107] AISLABIE, JM, RICHARDS, NK, BOUL, HL. Microbial Degradation of DDT and its Residues-a Review New Zealand. Journal of Agricultural Research, 1997, 40:269-282
    [108] Aust, SD. Degradation of Environmental Pollutants by P. chrysosporium. Microbial ecology, 1990, 20(1):197-209
    [109] Lloyd, J, Nadeau, Fu-Min, M, et al. Aerobic Degradation of DDT by Alcaligenes eutrophus A5. Applied and Environmental Microbiology, 1994,51-55
    [110] Hay, AG, Focht, DD. Cometabolism of 1,1-Dichloro-2,2-Bis(4-Chlorophenyl) Ethylene by Pseudomonas acidovorans M3GY Grown on Biphenyl. Appl Envir Microbiol, 1998, 64(6):2141-2146
    [111] Masse, R, Lalanne, D, Messier, F, et al. Characterization of New Bacterial Transformation Products of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT) by Gas Chromatography/Mass Spectrometry. Biomed Environ Mass Spectrom, 1989, 18:741-752
    [112] Imai, R, Y. Nagata, M. Fukuda, et al. Molecular Cloning of a Pseudomonas paucimobilis Gene Encoding a 17-Kilodalton Polypeptide that Eliminates HCl Molecules fromγ-Hexachlorocyclohexane. J Bacteriol, 1991. 173:6811-6819
    [113] Nagata, Y, Hatta, T, Imai, R, et al. Purification and Characterization ofγ- Hexachlorocyclohexane (γ-HCH) Dehydrochlorinase (LinA) from Pseudomonas paucimobilis. BiosciBiotechnol Biochem, 1993. 57:1582-1583
    [114] Nagata, Y, T. Nariya, R. Ohtomo, et al. Cloning and Sequencing of a Dehalogenase Gene Encoding an Enzyme with Hydrolase Activity Involved in the Degradation ofγ-Hexachlorocyclohexane in Pseudomonas Paucimobilis. J Bacteriol, 1993,175(14):6403-6410
    [115] Miyauchi, K, S. Suh, Y. Nagata, et al. Cloning and Sequencing of a 2,5-Dihydroc- hloroquinone Reductive Dehalogenase Gene Whose Product is Involved in the Degradation ofγ-Hexachlorocyclohexane by Sphingomonas paucimobilis. J Bacteriol, 1998, 180(3):1354-1359
    [116] Miyauchi, K, Y. Adachi, Y. Nagata, et al. Cloning and Sequencing of a Novel Meta-Cleavage Dioxygenase Gene Whose Product is Involved in Degradation ofγ-Hexachlo- rocyclohexane in Sphingomonas paucimobilis. J Bacteriol, 1999, 181(14):6712-6719
    [117] Nagata, Y, K. Miyauchi, S. Suh, et al. Isolation and Characterization of Tn5- induced Mutants of Sphingomonas paucimobilis Defective in 2,5-Dichlorohydroquinone Degradation Biosci. Biotechnol Biochem, 1996, 60(4):689-691
    [118] Martin, C, J. Timm, J. Rauzler, et al. Transposition of an Antibiotic Resistance Element in Mycobacteria. Nature, 1990, 345(6277):739-743
    [179]裘娟萍.耕地受多效唑农药污染后的再生修复技术.土壤学报, 2002, 39(1):45-51
    [120]马爱芝,张国顺,李顺鹏.六六六(HCH)降解菌Sphingomonas sp. BHC-A的分离与降解特性的研究.微生物学报, 2005, (5):728-732
    [121]张国顺,张晓舟,李顺鹏.富集液中六六六(γ-Bhc)脱氯基因的克隆、表达及降解试验.微生物学报, 2005, 45(1):44-47
    [122]张明星,李顺鹏. DDT降解菌株Db-1的分离、系统发育及降解特性.中国环境科学, 2005, 25(6):674-677
    [123]张明星,李顺鹏. Bhc-A与Cds-1降解菌对六六六、呋喃丹污染土壤的原位生物修复.土壤学报, 2006, 43(4):693-696
    [124] Alexander, M. Biodegradation and Bioremedation. 2nd. Academic Press, San Diego,1999
    [125] Van Elsas, JD, Heijnen, CE. Mtehods for the Introduction of Bacteria into Soil: a Review. Biol Fertil Soil, 1990, 10(2):127-133
    [126] Struthes, JK, K.jayachandran, T.B.Moorman. Biodegradation of Atrazine by Agrobacterium radiobacter J14a and Use of This Strain in Bioremediation of Contaminated Soil. Applied and Environmental Microbiology, 1998, 64(9):3368-3375
    [127] Bruin, WP, Kotterman, MJ, Posthumus, MA, et al. Complete Biological Reductive Transformation of Tetrachloroethene to Ethane. Appl Envir Microbiol, 1992, 58(6):1996-2000
    [128] Cisar Jl, Snyder Gh. Fate and Management of Turf Grass Chemicals. ACS Symp Series, 2000, 743:106-126
    [129] EPA. Review of Chlorpyrifos Poisoning Data. US EPA, 1995,1-46
    [130] McConnell R, Pacheoco F, Wahlberg K, et al. Subclinical Health Effects of Environmental Pesticide Contamination in a Developing Country Cholinesterase depression in children. Environ Res, 1999, 81:87-91
    [131] Tse H, Comba Alaee. Methods for the Determination of Organophosphate Insecticides in Water, Aediments and Biota. Chemosphere, 2004, 54(1):41-47
    [132] Boucard Tk, Parry J, Jones, et al. Effects of Organophosphates and Synthetic Pyrethroid Sheep Dip Formulations on Protozoan Survival and Bacterial Survival and Growth. FEMS Microb Ecol, 2004, 47(1):121-127
    [133] National Consumer Council. Farm Policies and Our Food.-The Need for Change. PD 11/B2/98 London, 1998
    [134] Pesticide, Trust. Pesticide Trust Review Pesticide. Trust, London, 1996
    [135] Toole Toole. Understanding Biology. 3rd edn Stanley Thornes, Cheltenham, UK, 1995
    [136] Manahan Se. Toxicological Chemistry.2nd edn Lewis, London, 1992
    [137] Galloway, T, Handy, R. Immunotoxicity of Organophosphorus Pesticides. Ecotoxicol, 2003, 12:345-363
    [138] Colborn T, Dumanoski, Myers Jp. Our Stolen Future Abacus. London, 1996
    [139] Ragnarsdottir Kv. Environmental Fate and Toxicology of Organophosphate Pesticides. J Geological Soc, 2000, 157:859-876
    [140] Karalliedde, L, Senanayake, N. Organophosphorus Insecticide Poisoning. J Int Fed Clin Chem, 1999. 11:4-9
    [141] Sogorb Ma, Vilanova, Carrera. Future Application of Phosphotriesterases in the Prophylaxis and Treatment of Organophosphorus Insecticide and Nerve agent Poisoning. Toxicol Lett, 2004, 151:219-233
    [142] Sogorb, MA, Vilanova, E. Enzymes Involved in the Detoxification of Organopho- sphorus, Carbamate and Pyrethroid Insecticides Through Hydrolysis. Toxicol Lett, 2002, 128:215-228
    [143] Cisar, JL, Snyder, GH. Fate and Management of Turfgrass Chemicals. ACS Symp Series, 2000, 743:106-126
    [144] McConnell, R, Pacheoco, F, Wahlberg, K, et al. Subclinical Health Effects of Environmental Pesticide Contamination in a Developing country: Cholinesterase Depression in Children. Environ Res, 1999, 81:87-91
    [145] Tse, H, Comba, M, Alaee, M. Methods for the Determination of Organophosphate Insecticides in Water,Sediments and Biota. Chemosphere, 2004, 54:41-47
    [146] Boucard, TK, Parry, J, Jones, K, et al. Effects of Organophosphates and SyntheticPyrethroid Sheep Dip Formulations on Protozoan Survival and Bacterial Survival and Growth. FEMS Microb Ecol, 2004, 47:121-127
    [147] Sogorb, MA, Vilanova, E, Carrera, V. Future Application of Phosphotriesterases in the Prophylaxis and Treatment of Organophosphorus Insecticide and Nerve Agent Poisoning. Toxicol Lett, 2004, 151: 219-233
    [148] Ragnarsdottir, KV. Environmental Fate and Toxicology of Organophosphate Pesticides. J Geological Soc, 2000, 157:859-876
    [149] Toole, G, Toole, S. Understanding Biology. Cheltenham, UK: Stanley Thornes, 1995
    [150] Manahan, SE. Toxicological Chemistry. London: Lewis, 1992
    [151] Singh, BK, Kuhad, RC, Singh, A, et al. Biochemical and Molecular Basis of Pesticide Degradation by Microorganisms. Crit Rev Biotechnol, 1999, 19:197-225
    [152] Mulbry, WW, Karns, JS. Purification and Characterization of Three Parathion Hydrolase from Gramnegative Bacterial Strains. Appl Environ Microbiol, 1989a, 55:289-293
    [153] Serdar, CM, Gibson, DT, Munnecke, DM, et al. Plasmid Involvement in Parathion Hydrolysis by Pseudomonas diminuta. Appl Envir Microbiol, 1982, 44(1):246-249
    [154] Singh, BK, Kuhad, RC. Biodegradation of Hexachlorocyclohexane by the White-Rot Fungus Trametes hirsutus. Letters in Applied Microbiology, 1999, 28(3):238-241
    [155] Gerlt, JA, Raushel, FM. Evolution of Function in (b/a)8-Barrel Enzymes. Curr Opinion Chem Biol, 2003, 7(1):252-264
    [156] Benning, MM, Sims, H, Raushel, FM, et al. High Resolution X-ray Structures of Different Metal-Substituted Forms of Phosphotriesterase from Pseudomonas diminuta. Biochemistry, 2001, 40:2712-2722
    [157] Horne, I, Sutherland, TD, Harcourt, RL, et al. Identification of an opd (Organophosphate Degradation) Gene in an Agrobacterium isolate. Appl Environ Microbiol, 2002b, 68: 3371-3376
    [158] Yang, H, Carr, PD, McLoughlin, SY, et al. Evolution of an Organophosphate- Degrading Enzyme: a Comparison of Natural and Directed Evolution. Protein Eng, 2003, 16:135-145
    [159] Chen-Goodspeed, M, Sogorb, MA, Wu, F, et al. Structural Determinants of the Substrate and Stereochemical Specificity of Phosphotriesterase. Biochemistry, 2001, 40:1325-1331
    [160] Raushel, FM. Bacterial Detoxification of Organophosphate Nerve Agents Curr Opinion. Microbiol, 2002, 5:288-295
    [161] Efrmenko, EN, Sergeeva, VS. Organophosphate Hydrolase- an Enzyme Catalyzing Degradation of Phosphorus-Containing Toxins and Pesticides. Russ Chem Bull, 2001, 50:1826-1832
    [162] Manavathi, B, Pakala, SB, Gorla, P. Influence of Zinc and Cobalt on Expression and Activity of Parathion Hydrolase from Flavobacterium sp ATCC27551. Pestic Biochem Physiol, 2005, 83:37-45
    [163] Elashvili, I, DeFrank, JJ, Culotta, VC. phnE and glpT Genes Enhance Utilization of Organophosphates in Escherichia coli K-12. Appl Envir Microbiol, 1998, 64(7):2601-2608
    [164] Harvey, SP, Kolakowski, JE, Cheng, T-C, et al. Stereospecificity in the Enzymatic Hydrolysis of Cyclosarin (GF) Enzyme. Microbial Technol, 2005, 37:547-555
    [165] Jao, S-C, Huang, L-F, Tao, YS. Hydrolysis of Organophosphate Triesters by Escherichia coli Aminopeptidase P. J Mol Catab: Enzymatic, 2004, 27(1):7-12
    [166] Kononova, SV, Nesmeyanova, MA. Phosphonates and Their Degradation by Microorganisms. Biochem (Moscow), 2002, 67(1):184-195
    [167] Mira de Orduna, R, Patchett, ML, et al. Growth and Arginine Metabolism of the Wine Lactic Acid Bacteria Lactobacillus buchneri and Oenococcusoeni at Different pH Values and Arginine Concentrations. Appl Envir Microbiol, 2001, 67(4):1657-1662
    [168] Liu, Y-H, Liu, H, Chen, Z-H. Purification and Characterization of a Novel Organoph- osphorus Pesticide Hydrolase from Penicillium lilacinum BP303 Enzyme. Microbial Technol, 2004, 34(1):297-303
    [169] Horne, I, DSutherland, T, RJ. Cloning and Expression of the Phosphotriesterase Gene hocA from Pseudomonas monteilli C11. Microbiology, 2002c, 148:2687-2695
    [170] Somara, S, Manavathi, B, Tebbe, C, et al. Localization of Identical Organophos phorus Pesticide Degrading (opd) Genes on Genetically Dissimilar Indigenous Plasmids of Soil Bacteria Indian. J Exp Biol, 2002, 40:774-779
    [171] Horne, I, Sutherland, TD, Harcourt, RL, et al. Dentification of an opd Gene in an Agrobacterium isolate. Appl Environ Microbiol, 2002b, 68(789):3371-3376
    [172] Siddavattam, D, Khajamohiddin, S, B Manavathi , et al. Transposon-Like Organization of the Plasmid-borne Organophosphate Degradation (opd) Gene Cluster Found in Flavobacterium sp. Appl Envir Microbio, 2003, 69(457):2533-2539
    [173] Horne, I, Qiu, X, Russell, RJ. The Phosphotriesterase Gene opdA in Agrobacterium radiobacter P230 is Transposable. FEMS Microbiol Lett, 2003, 22(1)2:1-8
    [174] Zhongli Cui, Guoping Fu , Shunpeng, L. Isolation of Methyl Parathion Degrader strain M6 and Cloning of the Methyl parathion Hydrolase Gene. App1 Envkon Microbio1, 2001, 66(10):4922-4925
    [175] Munneck, DM. Enzymatic Hydrolysis of Organophosphate Insecticides, a Possible Pesticide Disposal Method. Appl Environ Microbiol, 1976, 32(1):7-15
    [176] Gill, I, Ballesteros, A. Degradation of Organophosphorus Nerve Agents by Enzyme Polymer Nanocomposites: Efficient Biocatalytic Materials for Personal Protection and Large-Scale Detoxification. Biotech Bioeng, 2000, 70(3):400-410
    [177] Wang, AA, Mulchandani, A, Chen, W. Specific Adhesion to Cellulose and Hydrolysis of Organophosphate Nerve Agents by a Genetically Engineered Escherichia coli strain with a Aurfaceexpressed Eellulose-Binding Domain and Organophosphorus Hydrolase. Appl Environ Microbiol, 2002b, 68(456):1684-1689
    [178] Rieger PG Meier HM, Gerle M, VU, HJ., GLK. Xenobiotics in the Environment: Present and Future Strategies to Obviate the Problem of Biological Persistence. J Biotechno1, 2002, 94(1):101-123
    [179] Fewson. Biodegradation of xenobiotic and Other Persistent Compounds: the Causes of Recalcitrance. Tibtech, 1988, 6(1):148-153
    [180] Wilfred F. M. R?ling, Michael G. Milner. Hydrocarbon Degradation and Dynamics of Bacterial Communities during Nutrient Enhanced Oil Spill Bioremediation. Appl Envir Microbiol, 2002, 68(267):5537-5548
    [181] Sanjeet Mishra, Jeevan. Evaluation of Inoculum Addition To Stimulate In Situ Bioremediation of Oily-Sludge-Contaminated Soil. Appl Envir Microbiol, 2001, 67(33):1675-1681
    [182] Kelly P. Nevin, Kevin T. Finneran. Microorganisms Associated with Uranium Biorem ediation in a High-Salinity Subsurface Sediment. Appl Envir Microbio, 2003, 69(12):3672-3675
    [183] Krockel L, Focht. Constitution of Chlorobenzene Utilizing Recombinants by Progenitive Manifestation of a Rare Event. App1 Environ Microbiol, 1987, 53(1010):2470 -2475
    [184] Luthy RG, Aiken G, Brusseau M. Sequestration of Hydrophobic Organ-contaminants by Geosorbents. Environ Sci Techno, 1997, 3l:334l-3347
    [185]林强.我国的土壤污染现状及其防治对策.福建水土保持, 2004, 16(1):25-28
    [186]李静,莫大伦.我国土壤污染研究德现状与展望.广州环境科学, 2001, 16(3):9-13
    [187]杨国栋.污染土壤微生物修复技术主要研究内容和方法.农业环境保护, 2001, 20(4):286-288.
    [188]戴兴春,徐亚同.污染环境中微生物修复的几种办法.环境保护, 2004,10-12.
    [189] Wackett LP, CD., H. Biocatalysis and Biodegradation:Microbial Transformation of Organic Compounds. Washington,DC: American Society for Microbiology Press, 2001
    [190] T. Komang Ralebitso, Eric Senior, Verseveld, HWv. Microbial Aspects of Atrazine Degradation in Natural Environments. Biodegradation, 2002, 13:11-19
    [191] Walter Reineke, Kaschabek, SR. Chlorinated Hydrocarbon Metabolism. Encyclopeadia of Life Sciences 2002,3(1):1-11
    [192] Liliana Meza, Teresa J. Cutright, El Zahab, B. Aerobic Biodegradation of Trichlor- oethylene Using a Consortium of Five Bacterial Strains. Biotechnology Letters, 2003, 25(12):1925-1932
    [193] Fetzner., S. Enzymes Involved in the Aerobic Bacterial Degradation of N-Hetero- aromatic Compounds:Molybdenum Hydroxylases and Ring-Opening 2,4-Dioxygenases. Naturwissens chaften, 2000, 87(1):59-69
    [194] S.B.Pointing. Feasibility of Bioremediation by White-rot Fungi. Appl Microbiol Biotechnol, 2001, 57(1):20-33
    [195] Irma Susana Morelli, Del Panno. Laboratory Study on the Bioremediation of Petrochemical Sludge-contaminated Soil. International Biodeterioration and Biodegra- dation, 2005, 55(3):271-278
    [196] Hunter., WJ. Injection of Innocuous Oils to Create Reactive Barriers for Bioremediation: Laboratory studies. Journal of Contaminant Hydrology, 2005, 80(1):31–48
    [197] James Mlynch, Moffat., AJ. Bioremediation-Prospects for the Future Application of Innovative Applied Biological Research. Annals of Applied Biology, 2005. 146(2):217-221
    [198]李顺鹏,沈标,魏社林.甲基对硫磷降解菌的生态效应及应用.土壤学报, 1996. 33(4):380-384
    [199] Mulbry W W, Del Valle P, JS, K. Biodegradation of the Organophosphate Insecticide Coumaphos in Highly Contaminated Soils and in Liquid Wastes. Pesticide Science, 1996, 48(2):149-l55
    [200] Dott W Steiof M, B, Z. Biological Degradation of Chlorinated Aromatics in a Pilot-Scale Water Treatment plant Wickramanayake GB, Hinchee RE. eds Columbus, 1998
    [201] Ahrens, MW. Use of a Field-Scale Biofilter for the Degradation of the Organop- hosphate Insecticide Coumaphos in Cattle Dip Wastes. Pesticide Science, 1998, 52(3):268-274
    [202] Gray NCC, Cline PR, GP, M. Full-Scale Bioremediation of Chlorinated Pesticides Leeson. A, Fifthed In Situ and On-Site Bioremediation Symposium, 1999
    [203] Shapir N, Fantroussi S.E., S, L. Long-Term Maintenance of Rapid Atrazine Degradation in Soils Inoculated with Atrazine Degraders. Water, Air and Soil Pollution, 2003, 12(3):131-142
    [204] Spadaro JT, Webb EL, H, S. Bioremediation of Soil Containing 2,4-D, 2,4,5-T, Dichlorprop and Silvex. Wickramanayake GD, Hinchee RE.eds, 1998
    [205] Ding Keqiang, Yongmin, L. Sun Tieheng, Li Peijun.Bioremediation of Soil Contaminatedwith Petroleum Using Forced-Aeration Composting. Pedosphere, 2002, 12(2):145-142
    [206]张卫,虞云龙,吴加伦,等.阿维菌素在土壤中的降解和高效降解菌的筛选.土壤学报, 2004, 41(4):590-596
    [207]虞云龙,潘学冬,陈英旭.降解菌HD接种和非接种根围土壤中丁草胺的降解动力学研究.土壤学报, 2002, 39(4):575-581
    [208]任从尧,童振杰,卢建文.竹笋的营养成分与毛竹生产及竹园的施肥技术.内蒙古农业科技, 2005, F10:81-81,83
    [209]江泽慧,许煌灿.世界竹藤.沈阳:辽宁科学技术出版社, 2002
    [210]徐天森.竹子害虫防治研究.陕西林业科技, 1992, 2:40-43
    [211]国家环保局. GB/T14550-93.中华人民共和国国家标准--土壤六六六和滴滴涕的测定--气相色谱法.北京:中国标准出版社, 1993
    [212]] Tao, S, Xu, F, Wang, X. Organochlorine Pesticides in Agricultural Soil and Vegetables form Tianjin,China. Environ Sci Technol, 2005, 29(12):2494-2499
    [213]蒋新明,蔡道基,华晓梅.高效液相色谱柱后衍生化法用于氨基甲酸酯类农药的测定.色谱, 1994, 12(1):32-34
    [214]史雅娟,郭非凡,孟凡乔,等.果园土壤有机氯农药残留的时间趋势研究.环境科学学报, 2005, 25(3):313-318
    [215] Li, BG, Cao, J, Liu, WX. Geostatistical Analysis and Kriging of Hexachlorocyc- lohexane Residues in Topsoil from Tianjin, China. Environmental Pollution, 2006, 142(3): 567-575
    [216]耿存珍,李明伦:,杨永亮,等.青岛地区土壤中OCPs和PCBs污染现状研究.青岛大学学报:工程技术版, 2006, 21(2):42-48
    [217] HB, Z, YM, L, QG, Z, et al. Residues of Organochlorine Pesticides in Hong Kong soils. Chemosphere, 2006, 63(4):633—641
    [218] Tao, S, FL, X, XJ, W, et al. Organochlorine Pesticides in Agricultural Soil and Vegetables from Tianjin,China. Environ.Sci.Techno1, 2005, 39(6):2494—2499
    [219] Feng, K, Ge, D,. Organo-Chlorine Pesticide(DDT and HCH)Residues in the Taihu Lake Region and its Movement in Soil-Water System. Chemosphere, 2003, 50(8):683-687
    [210] JM, F, BX, M, Zhang, SG, et al. Persistent Organic Pollutants in Environment of the Pearl River Delta,China:an Overview. Chemosphere, 2003, 52(10):1411-1422
    [221] Hai-bo, Z, ming, LY, Ying, T, et al. DDT Residual in the Typical Soil Types of Pearl River Delta Region and Its Potential Risk. Soils, 2006, 38(5):547-551
    [222]国家环保局. GB15618-1995,土壤环境质量标准.北京:中国标准出版社, 1995
    [223]张水铭,马杏法,安琼.六六六在土壤中的持留和降解.土壤学报, 1988, 25(1):88-93
    [224]安琼,董元华,王辉,等.苏南农田土壤有机氯农药残留规律.土壤学报, 2005, 41(3):414-419
    [225]沈燕,封超年,范琦,等.苏中地区小麦籽粒和土壤中有机磷农药残留分析.扬州大学学报, 2004, 25(4):30-34
    [226]申剑,王宣,刘丹,等.河南省典型农业区域土壤中有机磷、有机氯农药污染状况初探.环境研究与监测, 2006, l9(3):35-42
    [227]刘颍.我国农药使用现状、原因及对策研究.国土与自然资源研究, 2005. 4:50-51
    [228] PG, R, HM, M, Gerle M, V. Xenobiotics in the Environment: Present and Future Strategies to Obviate the Problem of Biological Persistence. J Biotechnol, 2002, 94:101-123
    [229]和文祥,蒋新.酶修复土壤农药污染的研究进展.生态学杂志, 2001. 20(3):47-51,68
    [230]李培军,刘宛,孙铁珩.我国污染土壤修复研究现状与展望.生态学杂志, 2006, 25(12):1544-1548
    [231]李法云,臧树良.污染土壤生物修复技术研究.生态学杂志, 2003, 22(1):35-39
    [232]高吉喜,段飞舟,香宝.主成分分析在农田土壤环境评价中的应用.地理研究2006,25(5):836-8426
    [233]中华人们共和国农业部. NY/T761-2004,蔬菜和水果中有机磷、有机氯、除虫菊酯和氨基甲酸酯类农药多残留检测方法.北京:中国标准出版社, 2004
    [234] G, RC, S, C. Biodegradation of Halogenated Organic Compounds. Microbiological reviews, 1991, 55(1):59-79
    [235] Singh, BK, Walker, A. Microbial Degradation of Organophosphorus Compounds. FEMS Microbiology Reviews, 2006, 30(3):428-471
    [236] Feng, K, Ge, D, Wong, M, et al. Organo-chlorine Pesticide(DDT and HCH)Residues inthe Taihu Lake Region and its Movement in Soil-Water System I.Field survey of DDT and HCH residues inecosystem of the region. Chemosphere, 2003, 50:683-687
    [237] Tao, S, Xu, F, Wang, X. Organochlorine Pesticides in Agricultural Soil and Vegetables form Tianjin,China. Environ Sci Technol, 2005, 29:2494-2499
    [238]董根林,姜小娟,方茂盛.雷竹覆盖栽培林地土壤微生物的初步研究.浙江林学院报, 1998, 15(3):236-239
    [239]姜培坤,徐秋芳,钱新标.类竹林地覆盖增温过程中土壤酶活性的动态变化.林业科学研究, 1999, 12(5):548-551
    [240]俞樟福,何绍峰.早园竹覆盖的负面作用及其对策.浙江林业科技, 2001, 21(2):42-46
    [241] Loska, K, Wiechula, D. Application of Principal Component Analysis for the Estimation of Source of Heavy metal Contamination in Surface Sediments from the Rybnik Reservoir. Chemosphere, 2003, 5l:723-733
    [242]卢瑛,龚子同.南京城市土壤重金属含量及其影响因素.应用生态学报, 2004, 15(1):123-126
    [243]何尧启.主成分分析在喀斯特土壤环境退化研究中的初步运用-以贵州麻山地区紫云县宗地乡为例.贵州师范大学学报, 1999, 17(1):12-19
    [244]龚钟明,沈伟然,等.天津市郊污灌区农田土壤中的有机氯农药残留.农业环境保护, 2002, 21(5):459-461
    [245]赵玲,马永军.有机氯农药在农业环境中残留现状分析.农业环境与发展, 2001, 18(1):37-39
    [246]高吉喜,段飞舟,香宝.主成分分析在农田土壤环境评价中的应用.地理研究, 2006, 25(5):839-842
    [247]刘明池.竹笋的营养价值与食用方法.蔬菜, 2002, 2:40-40
    [248]国家环保局. GB/T14553-93.中华人民共和国国家标准--粮食和果蔬质量有机磷农药的测定--气相色谱法.北京:中国标准出版社, 1993
    [249] CHAUDHRY, GR, CHAPALAMADUGU, S. Biodegradation of Halogenated Organic Compounds. Microbiological reviews, 1991, 55(1):59-79
    [250] Boyle, AW, Haggblom, MM, Young, LY. Dehalogenation of Hexachlorocyclohexane by Anaerobic Bacteria from Marine Sediments and by Sulfate-Reducing Bacteria. FEMS Microbiology Ecology, 1999, 29(4):379-387
    [251] Youfeng Zhu, Hui Liu, Zhiqun Xi, et al. Organochlorine Pesticides (DDTs and HCHs) in Soils from the Outskirts of Beijing, China. Chemosphere, 2005,60(12):770–778
    [252]Lloyd, J, Nadeau, Fu-Min, M. Aerobic Degradation of 1,1,1-Trichloro-2,2-Bis (4-Chlorophenyl)Ethane (DDT) by Alcaligenes eutrophus A5. Applied and Environmental Microbiology, 1994,64(1):51-55
    [253] Focht, D. Cometabolism of 1,1-Dichloro-2,2-Bis(4-Chlorophenyl)Ethylene by Pseudomonas acidovorans M3GY Grown on Biphenyl. Applied and Environmental Microbiology, 1998, 64(6):2141-2146
    [254]国家卫生部. GB/2763-2005食品中农药最大残留限量.北京:中国标准出版社, 2005
    [255]宁波市质监局. DB3302/T039.3-2002.安全卫生优质农产品:竹笋第2部分生产技术规范.杭州:浙江出版社, 2002
    [256] Agarwal, HC, Singh, DK, Sharma, VB. Persistence, Metabolism and Binding of p,p-DDT in Soil in Delhi, India. J Environ Sci Health Part B, 1994, 29:73-86
    [257] Kelce, W, C.Stone, Laws, S, et al. Persistent DDT Metabolite p,p-DDE is a Potent Androgen Receptor Antagonist. Science of The Total Environment, 1995, 375 (6532):581-585

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700