用户名: 密码: 验证码:
县域农田N_2O排放量估算及其减排碳贸易案例研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田N_2O是重要的温室气体排放源,农田N_2O减排是农业减排的重要组成部分,农业碳贸易是推进农田减排的有效途径。本文在分析华北旱地农田氮肥施用与减排潜力的基础上,建立了基于县域尺度的农田N_2O排放量估算及测土配方施肥减排N_2O碳贸易方法学,以山东省淄博市桓台县为例,运用DNDC和IPCC两种方法估算该县农田N_2O排放量,并进行农田测土配方施肥减排N_2O碳贸易量测算案例研究,最后选择Logist模型研究农户降低施肥量的意愿。主要研究结论分述如下:
     (1)以黄淮海为例,研究了减量施氮、施用缓释肥料、硝化抑制剂的减排潜力及实施可行性。氮肥施用是农田N_2O的重要排放源,N_2O排放量一般为肥料用量的0.1%~2%。我国的氮肥施用量大,以黄淮海区域为例,1990~2008年间,氮肥施用量年均增长3.12%,单位播种面积施氮量达到了217.4 kg/hm2,是世界平均水平的3.3倍,而氮肥利用率很低,只有30%~35%。减量施氮、施用缓释肥料、施用硝化抑制剂可以有效地减少农田N_2O的排放量,减排潜力分别达到了6%~30%、10%~40%、20%~83%之间。实施测土配方施肥工程,可有效减少农田N_2O排放,同时增加农民收入,从经济和技术上都是可行的;而缓释肥料和硝化抑制剂受技术、成本、产品特性等方面的限制,需要更充足的试验和技术改进。
     (2)按照CDM方法学基本组成框架构建了农田N_2O减排的碳贸易方法学。IPCC方法和DNDC过程模型法是估算区域农田N_2O排放的两种重要方法,IPCC是基于氮素投入与排放系数为基础进行计算,DNDC模型通过模拟硝化反硝化过程来计量N_2O的排放量。相比而言,DNDC模型法科学表征了农田N_2O排放的时空差异性。目前,农田N_2O减排还没有相应的CDM项目方法学,本研究依托DNDC模型、测土配方施肥技术,建立了农田N_2O减排碳贸易方法学,项目边界为农田及化肥生产企业生产过程,基准线为常规施肥农田N_2O排放及化肥生产耗能,项目线为实施测土配方施肥条件下农田N_2O排放量及化肥生产耗能。此外,还规定了泄漏,并制订了相应的监测计划。
     (3)以乡镇为基本单元,运用IPCC和DNDC方法估算了2008年桓台县农田N_2O排放。IPCC方法估算的排放总量和单位耕地面积排放量分别为76.02t和3.01kg/hm2,DNDC模拟结果分别为59.6t和2.36kg/hm2,前者比后者高27.6%;DNDC模型模拟结果表明,玉米-小麦轮作系统是桓台县农田N_2O的主要排放源,占排放总量的85%,蔬菜占9.28%,棉花占4.7%,大豆、花生、土豆合计只占0.5%。比较而言,DNDC是基于氮循环过程而建立的N_2O估算模型,考虑了土壤、气候管理措施等对农田N_2O排放量的影响,估计结果更加符合农田N_2O的实际排放量。
     (4)基于已建立的县域农田N_2O减排CDM方法学,撰写了桓台县农田N_2O减排的项目设计文件(PDD)。结果表明,通过实施测土配方施肥项目共实现温室气体减排2.65万t CO2,其中农田减量施肥共减排0.935万t,占25.3%;减少氮、磷肥所引起的化肥生产企业节约能耗1.54万tCO2和0.18万t,分别占58.3%和6.8%;而钾肥生产则增加排放0.011万t。分乡镇看,索镇镇、起风镇的减排量最大,达到0.48万t和0.62万t;田庄镇、荆家镇、陈庄镇、新城镇、周家镇、果里镇得减排量在0.17~0.23t之间;而邢家镇、马桥镇、唐山镇的减排量较低,在0.2万t以下,各乡镇排放量的大小是由施肥量的大小和耕地面积所决定的。
     (5)采用分层抽样对桓台县7个乡镇、190个农户的施肥量及降低施肥的意愿进行研究。结果表明,在被调查的施肥过量农户中,只有20.8%的农户愿意降低施肥量,76.6%的农户根据习惯或化肥经销商的推荐确定施肥量,70.9%的农户不知道过量施肥对大气、水体和农产品会产生污染。说明农户施肥是比较盲目的,缺乏相应的技术指导。运用Logist模型对农户降低施肥量的意愿进行研究,结果表明,农民文化程度、耕地面积、对化肥是否过量的认识、总收入、种植业收入比重对农户降低施肥意愿影响显著,除种植业收入比重外,其他均为正向影响。降低施肥量的情景研究表明,技术推广、试验示范、补贴及法规或政府部门规定等是促使农户降低化肥施用量的有效方式。
N_2O was an important greenhouse gas(GHG)and its mitigation was the main part of agricultural GHG mitigation. Agricultural carbon trade was an effective way for promoting agriculture GHG mitigation. Based on analyzing the nitrogen fertilizer application rate in upland and the potential for reducing emissions in North of China, this paper, taking Huantai county, Zibo city, Shandong Province as an example, applied IPCC method and DNDC model to estimate N_2O emissions from cropland at county scale, and then established a methodology of N_2O mitigation carbon trade from soil testing and fertilizer recommendation project. At last, the farmer’s willingness of fertilizer reduction was investigated based on the Logist model. The main conclusions were as follows:
     (1) Nitrogen fertilizer was the main source of N_2O from cropland,and the N_2O emission factor of the fertilizer application rate was between 0.1 and 2 percent. Taking the huang-huai-hai region for example, from 1990 to 2008, the rate of nitrogen fertilizer application annually increased 3.12%. The nitrogen fertilizer application rate of unit sown area reached 217.4kg N/ha, 3.3 times of the world average. But the use efficiency of nitrogen fertilizer was very low with only 30%-35%. Reduction of nitrogen fertilizer, application of slow-released fertilizer and nitrification inhibitor could effectively reduce the N_2O emissions, the mitigation potential reached 6%~30%,10%~40% and 50%~80%, respectively. It could reduce N_2O emission and increase the farmers' income by carrying out the soil testing and fertilizer recommendation project which was economically and technologically feasible nowadays. But there were still some technological and cost obstacles in application of slow-released fertilizer and nitrification inhibitor and need more experimental and technological improvements.
     (2) IPCC methodology and DNDC process model were two important methods to estimate the N_2O emission from cropland. The former calculated the N_2O emissions by nitrogen input and emission factor, and the latter simulated nitrification and denitrification process in soil. Comparison with the two methods, the DNDC model reflected the spatial differences more accurately. Until now, there was no CDM methodology for N_2O emission mitigation, and hence this paper established the CDM methodology for N_2O mitigation based on the basic framework of CDM methodology. The boundary of the project included the scope of cropland applied the soil testing and formulated fertilization, and the production process of fertilizer from facility. The baseline of the project included N_2O emissions from cropland under the conventional fertilizer conditions and the CO2 emissions from production of applied fertilizers. The emission of project included the N_2O emission from the cropland under soil testing and formulated fertilization and CO2 emissions from production of applied fertilizer. In addition, the paper also defined the leak and formulated the monitoring plan.
     (3) Take 11 rural towns of Huantai courty as the basic unit, the N_2O emissions from cropland were estimated by using both IPCC method and DNDC model. The gross and per unit sown area emissions from cropland in Huantai County were 76.02t and 3.01kg/hm2, respectively, with 27.5% higher than the results estimated by DNDC model. Simulation results by DNDC showed that corn-wheat system was the main N_2O emissions source which accounted for 85% of total emissions, and 9.28% for vegetables, 5% for other crops. The results from DNDC model were more reasonable because it comprehensively considered the soil and climate factors.
     (4) Based on CDM methodologies of N_2O mitigation from cropland at county scale, project document design (PDD) on N_2O mitigation from cropland of Huantai County was carried out. The results showed that by implementing soil testing and fertilizer formulas, the greenhouse gas mitigation reached 26.5 thousand ton CO2 equivalent, amount of which the mitigation from cropland accounted for 25.3% with 9.35 thousand ton, and the mitigation from the nitrogen and phosphate fertilizer saving accounted for 58.3% and 6.8 %, respectively, with 1.54 t and 0.18t CO2 equivalent. The mitigations for each town were different due to the differences of fertilizer rates and cropland area.
     (5) The fertilizer application rate and the farmers’willingness of decreasing fertilizer were investigated in 7 towns, 190 households from Huantai county by using the stratified sampling method. The results showed that among the surveyed households, only 20.8% of the farmers were willing to reduce the fertilizer application rate, 76.6% of the farmers determined the fertilizer application rate by convention or seller’s recommendation, and 70.9% were ignorant about environmental pollution caused by excessive fertilization, which showed that farmers were lack of appropriate technical guidance. The influencing factors were analyzed using Logist model. The results showed that education degree,total area of cropland, cognition of excessive fertilizer, gross income and the proportion of income from cropland all greatly impacted the willingness of decreasing fertilizer rate. Scenario analysis showed that technology promotion, experimental demonstration, government subsidies and regulations, and so on, were all effective ways to promote farmers reducing fertilizer application rate.
引文
1. 85-913-04-05攻关课题组.我国农用氮肥氧化亚氮排放量变化趋势预测(1990~2020)[J].农业环境保护,1994,13(6):259~261.
    2.白东升,杨治平,王永亮,张建杰.不同施肥管理方式下潮褐土区夏玉米N_2O排放量研究[J], 2008, 5(11): 47~49.
    3.白由路.新型肥料-缓控施肥的发展现状—访中国农科院植物与肥料研究室主任白由路[J].农家参谋,2010,(7):4~10.
    4.毕于运.中国秸秆资源评价与利用研究.中国农业科学院[D],2010.
    5.曹宁,曲东,陈新平,张福锁,范明生.东北地区农田土壤氮、磷平衡及其对面源污染的贡献分析[J].西北农林科技大学学报,2006,34(7):127~133.
    6.陈冠雄,黄斌,黄国宏.我国一些典型陆地生态系统N_2O和CH4的排放[M]//丁一汇,石广玉.中国的气候变化与气候影响研究.北京:气象出版社,1997: 71~77.
    7.陈利军,史奕,李荣华,胡连生,周礼恺.脲酶抑制剂和硝化抑制剂的协同作用对尿素氮转化和N_2O排放的影响[J].应用生态学报,1995,6(4):368~372.
    8.陈书涛,黄耀,郑循华,陈玉泉.轮作制度对农田N_2O排放的影响及驱动因子[J].中国农业科学,2005,38(10):2053~2060.
    9.陈卫卫.三江平原稻田生态系统N_2O排放研究[D].长春:吉林农业大学,2007.
    10.达巴卓玛,阿琼.农牧区农户施肥行为及影响因素分析.西藏科技,2010,(2):31~34.
    11.丁洪,蔡贵信,王跃思,陈德立.华北平原不同作物-潮土系统中N_2O排放量的测定[J].农业环境保护,2001(1):7~9,30.
    12.丁洪,王跃思,项虹艳,李卫华.菜田氮素反硝化损失与N_2O排放的定量评价[J].园艺学报,2004,(6):762~766
    13.杜连凤,吴琼,赵同科,刘继培,安志装,刘宝存,张东兴.北京市郊典型农田施肥研究与分析[J].中国土壤与肥料,2009,(3):75~78.
    14.封克,殷士学.影响氧化亚氮形成与排放的土壤因素[J].土壤学进展,1995,23(6):35~41.
    15.高春雨,邱建军,王立刚.农田N_2O排放影响因素及减排措施研究[J],安徽农业科学,2011,(4): 2132~2134.
    16.高春雨,王立刚,李虎,邱建军.区域农田氧化亚氮排放估算研究进展中国农业科学, 2011,44(2): 316-324
    17.高广生等.中国清洁发展机制项目开发指南[M],中国环境科学出版社, 2006. http://cdm. unfccc.int/ Projects/index.html.
    18.高海波,张勇.缓控施肥,十二五时期的朝阳产业.大众日报专版,2011-4-9.
    19.高秀文.华北高产粮区土壤温室气体排放及碳氮平衡研究[D].中国农业大学,2003.
    20.高志岭,陈新平,张福锁.农田N_2O排放研究进展[J].生态环境,2004,13(4): 661~665.
    21.郭文忠,刘声峰,李丁仁,赵顺山.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望[J].土壤,2004,36(1):25~29.
    22.候爱新.不同种类氮肥对土壤释放N_2O的影响[J].应用生态学报,1998,9(2):176~180.
    23.桓台县统计局.桓台县统计年鉴2009,2009
    24.黄德明.十年来我国测土施肥的进展[J].植物营养与肥料学报.2003,9(4):495~499.
    25.黄国宏,陈冠雄,黄斌.温室气体浓度和排放监测及相关过程[M].北京:中国环境科学出版社,1996:351~357.
    26.黄国宏,陈冠雄,张志明,吴杰,黄斌.玉米田N_2O排放及减排措施研究[J],环境科学学报,1998,18(4):344~349.
    27.黄耀.中国的温室气体排放、减排措施与对策[J].第四纪研究,2006,26(5):722~731.
    28.黄益宗,冯宗炜,王效科,张福珠.硝化抑制剂在农业上应用的研究进展[J].土壤通报,2002,33(4):310~315.
    29.霍现军.清洁发展机制(CDM)在中国风力发电场的应用[D].华北电力大学,2006
    30.解开治,徐培智,张仁陟,张发宝,陈建生,唐拴虎,杨少海,黄旭.化肥减量技术的可行性分析[J].广东农业科学,2007,(5):55~58.
    31.荆光军.成都平原旱作土壤N_2O和CO2排放及土壤微生物特性研究[硕士学位论文].四川农业大学,2007.
    32.巨晓棠.氮肥施用过犹不及.科学时报, 2009.2.23.
    33.李方敏,樊小林,刘芳,汪强.控释肥料对稻田氧化亚氮排放的影响[J].应用生态学报,2004,15(11):2170~2174.
    34.李虎,王立刚,邱建军.黄淮海平原河北范围内农田土壤二氧化碳和氧化亚氮排放量的估算[J].应用生态学报,2007,18(9):1994~2000.
    35.李虎,王立刚,邱建军.农田土壤N_2O排放和减排措施的研究进展[J].中国土壤与肥料,2007(5):1~5.
    36.李虎.黄淮海平原农田土壤CO2和N_2O释放及区域模拟评价研究[D].中国农业科学院,2006.
    37.李建国.畜牧学概论[M].北京:中国农业出版社,2002.307~313.
    38.李楠,陈冠雄.植物释放N_2O速率及施肥的影响[J].应用生态学报,1993,4(3):295~298.
    39.李怒云,徐泽鸿,王春峰,陈健,章升东,张爽,侯瑞萍.中国造林再造林碳汇项目的优先发展区域选择与评价.林业科学,2007,43(4):5~9.
    40.李天杰.土壤环境学[M].北京:高等教育出版社,1995:255~260.
    41.李鑫,巨晓棠,张丽娟,万云静,刘树庆.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J].应用生态学报,2008,19(1):99~105.
    42.李迎春.中国农业氧化亚氮排放及减排潜力研究[D].北京:中国农业科学院研究生院,2009:56~57
    43.梁东丽,同延安,Ove Emteryd,方日尧,张树兰.干旱交替对旱地土壤N_2O气态损失的影响[J].干旱地区农业研究, 2002,20(2):28~31.
    44.梁巍,张颖,岳进,吴劼,史奕,黄国宏.长效氮肥施用对黑土水旱田CH4和N_2O排放的影响[J].生态学杂志,2004,23(3):44~48.
    45.刘梅,杜丽丽,张晓.基于logit模型的农户有机肥施用意愿及影响因素分析[J].安徽农业科学,2010,38(9):4827~4829.
    46.刘小兰,李世清.土壤氮与环境.干旱地区农业研究.1998,16(4):36~43.
    47.刘宇,匡耀求,黄宁生.农村沼气开发与温室气体减排[J].中国人口资源与环境,2008,18(3):49~53.
    48.刘真贞.不同施氮措施对菜地N_2O排放的影响[D].华中农业大学.2007.
    49.马骥,蔡晓羽.农户降低氮肥施用量的意愿及其影响因素分析-以华北平原为例[J].中国农村经济,2007,(9):9~16.
    50.马展.养殖场甲烷回收利用清洁发展机制项目案例研究[D].清华大学,2006.
    51.马宗虎,南国良.规模猪场厌氧-好氧粪污处理系统温室气体减排量估算[j].中国沼气, 2008,26(5): 3~8.
    52.母国宏.不同土地利用状况下土壤N_2O排放及其估算[D].西安:西北农林科技大学,2008.
    53.牛若峰,刘天福.农业技术经济手册[M].北京:农业出版社,1983.
    54.农业部.农业部关于印发《测土配方施肥技术规范》的通知.http://www.scnjagri.gov.cn/ show. aspx?id=1934&cid=20
    55.潘志勇,吴文良,刘光栋,高秀文.不同秸秆还田模式与氮肥施用量对土壤N_2O排放的影响[J].土壤肥料,2004,(5):6~8.
    56.齐玉春,董云社.土壤N_2O产生、排放及其影响因素[J].地理学报,1999,(6):534~536.
    57.《气候变化国家评估报告》编写委员会.气候变化国家评估报告[M].北京:科学出版社,2007.
    58.秦小光,蔡炳贵,吴金水,王国安,刘东生.土壤温室气体昼夜变化及其环境影响因素研究[J].第四纪研究,2005,25(3):376~388.
    59.邱建军,李虎,王立刚.中国农田施氮水平与土壤氮平衡的模拟研究[J].农业工程学报,2008, 24(8):40~44.
    60.邱建军,秦小光.农业生态系统碳氮循环模拟模型研究[J].世界农业,2002(9):39~41.
    61.邱炜红,刘金山,胡承孝,赵长盛,孙学成,谭启玲.不同施氮水平对菜地土壤N_2O排放的影响[J].农业环境科学学报,2010,29(11):2238~2243.
    62.沈善敏.氮肥在中国农业发展中的贡献和农业中氮的损失[J].土壤学报,2002,39(增刊):12~25.
    63.宋文质,王少彬,苏维瀚,曾江海,王智平,张玉铭.我国农田土壤的主要温室气体CO2、CH4和N_2O排放研究[J].境科学, 1996, 17(1):85~92.
    64.宋文质,王少彬.华北地区旱田土壤氧化亚氮的排放[J].环境科学进展,1997,5(4):49~55.
    65.孙志梅,武志杰,陈利军,马星竹.硝化抑制剂的施用效果、影响因素及其评价[J].应用生态学报,2008,19(7):1611~1618.
    66.王彩绒,田霄鸿,李生秀.土壤中氧化亚氮的产生及减少排放量的措施[J].土壤与环境,2001,10(2):143~148.
    67.王东,于振文,于文明,石玉,周忠新.施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响.应用生态学报,2006,17(9):1593~1598
    68.王方浩,马文奇,窦争霞,马林,刘小利,许俊香,张福锁.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,26(5):614~617.
    69.王少彬,宋文质,苏维瀚,曾汇海,张玉铭,王智平.冬小麦田氧化亚氮的排放[J].农业环境保护,1994,13(5):210~212.
    70.王少彬,苏维瀚.中国地区氧化亚氮排放量及其变化的估算[J].环境科学,1993,14(3):42~46.
    71.王霞,崔键,周静.典型红壤区稻田树脂包膜控释氮肥氨挥发研究[J].土壤,2011,43(1):56~59.
    72.王效科,李长生.中国农业土壤N_2O排放量的估算[J].环境科学学报,2000,20(4):483~488.
    73.王星,徐菲,赵由才.清洁发展机制开发与方法学指南[M].化学工业出版社.北京,2008.
    74.王重阳,郑靖,顾江新,王绍斌,史奕,陈欣.下辽河平原几种旱作农田N_2O排放通量及其相关影响因素的研究[J].农业环境科学学报,2006,25(3):657~663.
    75.闻大中.农业生态系统能流的研究方法(二)[J].农村生态环境,1986(1):52~56.
    76.武雪梅.2007年我国磷肥、硫酸行业生产消费情况概述[J].磷肥与复肥,2008,23(4):1~4
    77.谢军飞,李玉娥. DNDC模型对北京旱地农田N_2O排放的模拟对比分析[J].农业环境科学学报, 2004, 23(4): 691~695.
    78.邢光熹,熊正琴.中国农田N_2O排放的研究.第七次“土壤与环境”学术研讨会论文摘要,2001.
    79.邢光熹,颜晓元.中国农田N_2O排放的分析计算与减缓对策[J].农村生态环境,2000,16(4):1~6.
    80.徐华,邢光熹,蔡祖聪,鹤田治雄.土壤水分状况和质地对稻田N_2O排放的影响[J].土壤学报, 2000, 37(4): 499~505
    81.徐文彬,洪业汤,陈旭晖,C. S. Li.区域农业土壤N_2O释放研究—以贵州省为例[J].中国科学: D辑,1999, 9(5):450~456.
    82.徐文彬,洪业汤,陈旭晖,等.贵州省旱田土壤N_2O释放及其环境影响因素[J].环境科学,2000, 21(1):7~11.
    83.徐文彬,刘广深,洪业汤,Li Changsheng,成旭晖.DNDC模型对我国旱地N_2O释放的拟合对比分析[J].矿物学报,2002b,22(3): 222~228.
    84.徐文彬,刘维屏.温度对旱田土壤N_2O的影响研究[J].土壤学报,2002a,39(1):1~8.
    85.徐新华,吴强,姜虹,汪大翚.江浙沪地区氧化亚氮排放量估算[J].污染防治技术,1997,10(2):86~87.
    86.许秀成.人口、粮食、化肥[J].磷肥与复肥,2000,15(2):1~5.
    87.颜晓元,施书莲,杜丽娟,邢光熹.水分对农田土壤N_2O排放的影响[J].土壤学报,2000,37(4):482~487.
    88.杨劲峰,韩晓日,战秀梅,谢芳,孙杉杉.不同土壤处理对棕壤N_2O排放量的影响[J].生态环境,2007,16(2):560~563.
    89.杨益花.我国测土配方施肥存在问题及建议[J].安徽农学通报,2009,15(1):52~53.
    90.姚志生,郑循华,周再兴,谢宝华,梅宝玲,顾江新,王定勇.太湖地区冬小麦田与蔬菜地N_2O排放对比观测研究[J].气候与环境研究,2006,11(6):693~701.
    91.殷从飞,吴鹏,张悦.农户降低粮食作物施肥量意愿的研究[J].江苏农业科学,2010(1):384~387.
    92.尹钧,高志强,张布雷等.农田能量测算原理与指标体系的研究[J].山西农业大学学报,1998,18(2): 95~98.
    93.于克伟,陈冠雄,杨思河,吴杰,黄斌,黄国宏,徐慧.几种旱地农作物在农田N_2O释放中的作用及环境因素的影响[J].应用生态学报,1995,6(4):387~391.
    94.于克伟,黄斌,陈冠雄,吴杰.田间大豆植株N_2O通量的测定及光照的影响[J].应用生态学报,1997,8(2):171~176.
    95.於子方.合成氨行业能耗现状与主要节能途径[J].小氮肥,2009,37(2):1~5.
    96.虞立琪.碳交易:环保的“第三条道路”[J].商务周刊.2006年11月2日.56~59.
    97.曾国揆,谢建,尹芳.沼气发电技术及沼气燃料电池在我国的而应用状况与前景.可再生能源,2009(119):38~40.
    98.曾江海,王智平,张玉铭,宋文质,王少彬,苏维瀚.小麦-玉米轮作期土壤排放N_2O通量及估算[J].环境科学,1995,16(1):32~35,67.
    99.曾江海,王智平.农田土壤N_2O生成与排放研究[J].土壤通报,1995,26(3):132~134.
    100.张福锁,陈新平,陈清.中国主要作物施肥指南[M].中国农业大学,2009.
    101.张光亚,方柏山,闵航,陈美慈.设施栽培土壤N_2O排放及其影响因子的研究[J].农业环境科学学报,2004,23(1):144~147.
    102.张红宇,金继运.《中国肥料产业研究》.中国财政经济出版社,2003
    103.张民.史衍玺,杨守祥,杨约超.控释和缓释肥的研究现状与进展[J].化肥工业,2001,28(5):27~30.
    104.张强,巨晓棠,张福锁.应用修正的IPCC2006方法对中国农田N_2O排放量重新估算[J],中国生态农业学报,2010,18(1):7~13
    105.张素玲.pH值变化对土壤中N_2O释放的影响[D].扬州大学,2001.
    106.张涛.两会代表、委员提出:用政策引导和资金扶持助推缓控施肥产业.《中国农资》周报,2011-3-25,11版.
    107.张小洪,袁红梅,蒋文举.油菜地CO2、N_2O排放及其影响因素[J].生态与农村环境学报,2007,23(3):5~8.
    108.张旭.四川省和重庆市农田N_2O排放量估算[硕士学位论文].西南大学.2008.
    109.张玉铭,胡春胜,董文旭.农田土壤N_2O生成与排放影响因素及N_2O总量估算的研究[J].中国生态农业学报,2004,12(3):119~123.
    110.张仲新,李玉娥,华珞,万运帆,姜宁宁.不同施肥量对设施菜地N_2O排放通量的影响[J].农业工程学报,2010,26(5):269~275.
    111.章升东.中国CDM林业碳汇项目运行机制研究[D].北京林业大学,2005.
    112.赵建波,迟淑筠,宁堂原,李增嘉,谷淑波,裘立群,吕美容,田慎重.保护性耕作条件下小麦田N_2O排放及影响因素研究[J].水土保持学报,2008,22(3):196~200.
    113.甄兰.应用DNDC模型和GIS技术研究区域氮肥管理的环境效应[D],2007.
    114.郑循华,王明星,王跃思.中国西南部稻麦伦作系统N_2O排放[J].应用生态学报,1997,8(5):494~499.
    115.郑循华,王明星,王跃思,沈壬兴,龚宴邦,骆冬梅,张文,金继生.稻麦轮作生态系统中土壤湿度对N_2O产生与排放的影响[J].应用生态学报,1996,7(3):273~279.
    116.中华人民共和国国家标准.综合能耗计算通则.2008-02-03发布,2008-06-01实施.
    117.中华人民共和国气候变化初始国家信息通报[M].中国计划出版社,2004.
    118.周捷.农村户用沼气池CDM项目案例研究[D].清华大学,2006.
    119.周文能.中国农业氧化亚氮的排放量和减缓对策[J].农业环境与发展,1994(1):27~32.
    120.朱兆良.农田中氮肥的损失和对策[J].土壤与环境,2000,9(1):1~6.
    121. Ball B C,Crichton I,Horgan G W.Dynamics of upward and downward N_2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence[J].Soil & Tillage Research,2008,101:20~30.
    122. Bouwman A F,Boumans L J M, Baties N H. Emissions of N_2O and NO from fertilized field: summary of available measurement data[J].Global Biogeochemical Cycles,2002,16(4):1~6.
    123. Brown L ,Syed B ,Jarvis S C et al .Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture[J].Atmospheric Environment, 2002,36: 917~928.
    124. Bruce C Ball,Albert Scott,John P Parker.Field N_2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland[J].Soil and Tillage Research,1999,53(1):29~39.
    125. Bruce J,Frome M, Haites E, Janzen H, Lal R, Paustian, K.Carbon sequestration in soils[J]. J.Water Conserv. 1998.54:382~389.
    126. Butterbach-Bahl K,Kesik M, Miehle P,Papen H, Li C.Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models[J], Plant and Soil, 2004, 60:311~329.
    127. Cai G X.N_2O emission from cropland in China[J].Nutrient Cycling in Agroecosystems, 1998, 52:249~254.
    128. Changsheng Li,Steve Frolking,Rovert Harriss.Modeling carbon biogeochemistry in agricultural soils[J].Global Biogeochemical Cycles,1994,8(3):237~254.
    129. Changsheng Li,Steve Frolking,Tod A. Frolking. A Model of Nitrous Oxide Evolution From Soil Driven by Rainfall Events:1.Model Struture and Sensitivity[J].Journal of Geophysical Research,1992,97(9):9759~9776.
    130. Changsheng Li,Steve Frolking,Xiangming Xiao,et al..Modeling impacts of farming management alternatives on CO2, CH4 and N_2O emissions: A case study for water management of rice agriculture of China[J].Global Biogeochemical Cycles,2005,19:GB3010, doi:10.1029/2004 GB 002341.
    131. China Council for International Cooperation on Environment and Development(CCICED).Policy Recommendations to Reduce Nonpoint Polluton from Crop Production in China.Task Force on Nonpoint pollution(Npp) from crop production policy brief,2002.
    132. Christophe Dambreville,Thierry Morvan,Jean-Claude Germon.N_2O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany[J].Agriculture, Ecosystems and Environment.2008,123:201~210.
    133. Council for Agricultural Science and Technology. Preparing US agriculture for global climate change. Task Force Report no.119 Aemes,Lowa,1992.
    134. Daan Beheydt,Pascal Boeckx, Steven Sleutel,Changsheng Li, Oswald Van Cleemput.Validation of DNDC for 22 long-term N_2O field emission measurements[J]. Atmospheric Environment, 2007: (41):6196~6211.
    135. Daniel L. Mummey,Jeffrey L. Smith,George Bluhm.Assessment of alternative soil management practices on N_2O emissions from US agriculture[J].Agriculture, Ecosystems & Environment, 1998,70(1):79~87.
    136. Del Grosso S J,Mosier A R,Parton W J, Ojima D S.DAYCENT model analysis of past andcontemporary soil N_2O and net greenhouse gas flux for major crops in the USA[J].Soil and Tillage Research,2005,83:9~24.
    137. Delgadoa J A, Shafferb M J,Lalc H,etc..Assessment of nitrogen losses to the environment with a Nitrogen Trading Tool(NTT)[J].Computers and electronics in agriculture,2008(63):193~206.
    138. Dmitri Chatskikh ,J?rgen E. Olesen.Soil tillage enhanced CO2 and N_2O emissions from loamy sand soil under spring barley[J].Soil & Tillage Research,2007, 97:5~18.
    139. Dobbie,K E, McTaggart, I P, Smith K A. Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors[J].Journal of Geophysical Research,1999,104:26891~26899.
    140. Dorland S, Beauchamp E. Denitrification and ammonification at low soil temperatures[J]. Soil Sic., 1991,(71):293~303.
    141. Eichnerm J.Nitrous oxide emissions from fertilized soils:Summary of available data[J].Environ Qual.,1990,19: 272~280.
    142. Energy Information Administration (EIA).Emissions of greenhouse gas in the United States. 1997DOE EIA-0573(97) Washing-ton D.C.1998.
    143. Feney J R.Emission of nitrous oxide from soils used for agriculture[J].Nutrient Cycling in Agroecosystem,1997,49: 1~6.
    144. Freibauer A,Kaltschmitt M.Controls and models for estimating direct nitrous oxide emissions from temperate and sub-boreal agricultural mineral soils in Europe[J].Biogeochemistry,2003,63:93~115.
    145. Frolking S E,Mosier A R, Ojima D S,Li C, Parton W J,Potter C S, Priesack E,Stenger R, Haberbosch C,Dorsch P, Flessa H, Smith K A.Comparison of N_2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models[J].Nutrient Cycling in Agroecosystems,1998,52:77~105.
    146. Gibson A I, Mitigation Options for Greenhouse Gas Emissions from Agriculture.Ph.D.Thesis, Imperial College of Science,Technology and Medicine,University of London,2001.
    147. Granli T,B?ckman O C. Nitrous oxide from agriculture[J].Norwegian Journal of Agricultural Science, 1994,12 (Suppl),1~128.
    148. H. Pathak,Arti Bhatia,Shiv Prasad,et al..Emission of Nitrous Oxide from Rice-Wheat Systems of Indo-Gangetic Plains of India[J].Environmental Monitoring and Assessment,2002,77(2):163~178.
    149. Hannu T.Koponen,Claudia Escude′Duran,Marja Maljanen, Jyrki Hyto¨nen,Pertti J. Martikainen.Temperature responses of NO and N_2O emissions from boreal organic soil[J]. Soil Biology & Biochemistry,2006,38:1779~1787.
    150. IPCC.2006年IPCC国家温室气体清单指南,2006.
    151. Jindal R; Swallow B,Kerr J.Forestry-based carbon sequestration projects in Africa:Potential benefits and challenges[J]. Natural Resources Forum.2008,32(2):116~130.
    152. Kaiser E A,Eiland F.What predicts nitrous oxide emissions and denitrification N-loss from European soils[J]. Zeitschrift fur Pflanzenenahrung und Bodenkunde,1996,159(6):541~547.
    153. Li C ,Frolking S ,Croker GJ et al.Simulating trends in soil organic carbon in long term experiments using the DNDC model[J].Geoderma , 1997, 81 :45~60.
    154. Li C S,Narayanan V,Harris R C.Model estimates of nitrous oxide emissions from agricultural lands in the United States[J]. Global Biogeochemical Cycles,1996,10(2):297~306.
    155. Li C S,Zhuang Y H, Cao M Q,Crill P,Dai Z H,Frolking S, Moore BⅢ,Salas W,Song W Z,Wang X K.Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N_2O emission from arable lands in China[J].Nutrient Cycling in Agro-ecosystem,2001,60:159~175.
    156. Li C,Mosier A,Wassmann R, Cai Z,Zheng X, Huang Y,Tsuruta H, Boonjawat J, and Lantin R.Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling[J].Global Biogeochemical Cycles, 2004,18, GB1043,doi:10.1029 /2003GB002045.
    157. Lim B, Boileau P, Bonduki Y, van Amstel A R,Janssen L H J M, Oliveier J G J, Kroeze C.Improving the quality of national greenhouse gas inventories[J].Environmental Science and Policy, 1999,2:335~346.
    158. Mackenize A F,Fanmx,Cadrin F.Nitrous oxide emission affected by tillage, Corn-soybean-alfalfa rotations and nitrogen fertilization[J].Can J Soil Sci.,1997,77:145~152.
    159. Mosier A C, Kroeze. A new approach to estimate emissions of nitrous oxide from agriculture and its implications for the global N_2O budget[J]. IGBP newsletter, 1998, (34):8~13.
    160. Mosier A, Kroeze C,Nevison C, Oenema O, Seitzinger S, van Cleemput O. An overview of the revised 1996 IPCC underlines for national greenhouse gas inventory methodology for nitrous oxide from agriculture[J]. Environmental Science and Policy, 1999,2:25~333.
    161. Mosier A R, et al.Field denitrification estimation by nitrogen-15 and acetylene inhibition techniques[J]. Soil Sci. Soc.Am.J.,1986,50:831~833.
    162. Mummey D L,Smith J L,Bluhm G.Assessment of alternative soil management practices on N_2O emissions from US agriculture[J]. Agriculture. Ecosystems and Environment,1998,70(3):79-87.
    163. Myers R J K. Temperature effects on ammonification and nitrification in a tropical soil[J]. Soil Biology and Biochemistry,1975(7):83~86.
    164. Neda Farahbakhshazad,Dana L. Dinnes,Changsheng Li,et al..Modeling biogeochemical impacts of alternative management practices for a row-crop field in Iowa[J].Agriculture,Ecosystems and Environment,2008,123:30~48.
    165. Nevison C D,Esser G,Holland E A. A global model of changing N_2O emissions from natural and perturbed soils[J].Climatic Change,1996,32:327~378.
    166. Olivier J G J,Bouwman A F,Berdouski J J M,Veldt C,Bloos J P J,Visschedijk A J H,van der Mass C W M,Zasndveld P Y J. Sectoral emission inventories of greenhouse gases for 1990 on a precountry basis as well as on 1°×1°[J]. Environmental Science and Policy,1999,2:241~263.
    167. Pallav Purohit.Economic potential of biomass gasification projects under clean development mechanism in India. Journal of Cleaner Production[J], 2009,17(2):181~193
    168. Parton W J,Mosier D S,Ojima D W.Generalized model for N2 and N_2O production from nitrification and denitrification[J].Global Biogeochemical Cycles,1996,10:401~412.
    169. Pathak H, Li C, assmann R. Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model[J]. Biogeosciences, 2005,1:113~123.
    170. Paula Pera¨la¨,Petri Kapuinen ,Martti Esala ,Sanna Tyynela¨,Kristiina Regina.Influence of slurry and mineral fertiliser application techniques on N_2O and CH4 fluxes from a barley field in southern Finland Agriculture[J], Ecosystems and Environment,20061,17:71~78.
    171. Plant R A J ,Veldkamp E , Li C.Modeling nitrous oxide emissions from a Costa Rican banana plantation. In : Plant R A J ed.Effects of Land Use on Regional Nitrous Oxide Emissions in the Humid Tropics of Costa Rica. Veenendaal:Universal Press,1998.41~50.
    172. Qiu Jianjun,Tang Huanjun.Mapping Single,Double-, and Triple-crop Agriculture in China at 0.50×0.50 by Combining Country-scale Census Data with a Remote Sensing-derived Land Corer Map [J].Geocarto International,2003,18:1~12.
    173. Smith P ,Smith J U ,Powlson D S. A comparison of the performance of nine soil organic matter models using datasets from seven long–term experiments[J].Geoderma ,1997, 81 :153~225.
    174. Smith WN ,Desjardins R L ,Grant B et al .Testing the DNDC model using N_2O emissions at two experimental sites in Canada[J].Canada Journal of Soil Science ,2002,82:365~374.
    175. Sozanska M, Skiba U,Metcalfe S. Developing an inventory of N_2O emissions from British soils[J].Atmospheric Environment, 2002,26:987~998.
    176. Stange F ,Butterbach2Bahl K,Papen H et al .A process2oriented model of N_2O and NO emission fromforest soils 2,sensitivity analysis and validation[J].Journal of Geophysical Research, 2000, 105(4):4385~4398.
    177. Stehfest E,Bouwman L.N_2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions [J].Nutrient Cycling in Agroecosystems, 2006,74:207~228.
    178. Stehfest E.Modeling of global crop production and resulting N_2O emissions.International Max Planck Research School on Earth System Modelling,2005.
    179. UNFCC.额外性论证评价工具要点分析.http://cdm.unfccc.int/methodologies/index.html,2009.
    180. Weiske A,Vabitsch A,Klemedtsson A K,et al.,Schelde K.GHG mitigation measures at the level of dairy production units and their ecological,economic and social consequences[R]. MIDAIR deliverable Report No.6.1, Institute for Energy and Environment,Leipzig,2004.
    181. Xing GX. N_2O emission from cropland in China [J].Nutrient cycling in Agroecosystems, 1998,52:249~254.
    182. Xu W, Hong Y,Chen X et a .Agricultural N_2O emissions at regional scale : A case study in Guizhou , China. Science in China,1999,29 :5.
    183. Zach willey,Bill Chameides.Harnessing farms and forests in the low-carbon economy how to create, measure and verify greenhouse gas offsets[M].Duke university press,2007.
    184. Zhang Linxiu,Huang Jikun,Qiao Fangbin,Scott Rozelle.Do China's Farmers Overuse Fertilize?[J]. Journal of Agricultural Economics, Forcecoming,2002.
    185. Zhang Y, Li C , Zhou X et al .A simulation model linking crop growth and soil biogeochemistryfor sustainable agriculture[J].Ecological Modeling ,2002 ,151:75~108.
    186. Zheng X H,Han S H,Huang Y,Wang Y S,Wang M X.Re-quantifying the emission factors based on field measurements and estimating the direct N_2O emission from Chinese croplands[J].Global Biogeochemical Cycles, doi:10,1029/2003GB002167: 2004.
    187. Zheng X H,Wang M X,Wang Y S, et al.Characters of greenhouse gas (CH4, N_2O, NO) emissions from croplands of southeast China[J].World Resource Review,1999,11(2):229~246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700