用户名: 密码: 验证码:
高速公路沿线农田土壤和作物的重金属污染特征及规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公路交通是环境中重金属污染物的主要排放源之一。由于耕地资源有限,全球公路沿线的作物种植仍非常普遍。鉴于农产品质量安全的隐患,公路交通对沿线农田土壤和作物的重金属污染一直受到学者和公众的广泛关注。大量研究表明,公路沿线土壤和作物均受到了不同程度的Pb、Cd、Cr、Zn等重金属污染,但对其污染特征及规律的认识尚不非常清楚。公路沿线土壤中重金属含量相对较低,而沿线的水稻、小麦、蔬菜、水果等农产品中均存在Pb、Cd、Zn等重金属超标的现象;土壤中累积量较高的重金属元素,在作物中含量并不一定高,而土壤中累积量较低的元素,在作物中含量却较高。导致这些不确定性的主要原因可能是由于对公路沿线重金属污染途径、土壤中不同重金属的生物有效性及其影响因素等的认识不足。高速公路作为未来交通的主干网络,对沿线农田环境的影响尤其严重。因此,研究高速公路沿线农田土壤和作物中重金属分布特征、累积规律和影响因素,可为我国高等级公路沿线作物生产的产地环境保护和种植规划提供科学依据和技术支撑。
     本论文以江苏省交通流量最大的两条高速——沪宁高速和京沪高速为研究对象,于2007-2009年选择车流量不同的六个典型路段,采集公路两侧农田土壤和作物(水稻、小麦)样品,测定土壤中重金属(Pb、Cd、Cr、Zn和Cu)总量和有效态含量,以及作物籽粒中重金属含量;分析高速公路沿线土壤和作物中重金属含量的分布特征和影响因素。同时采用盆栽对比试验和稳定性Pb同位素示踪法,分析高速公路沿线水稻、小麦中重金属的主要来源(大气或土壤),以及不同器官中大气来源重金属和土壤来源重金属所占比例。在产地监测和作物试验的基础上,借助人工神经网络法对高速公路两侧农田土壤和作物中重金属含量进行模拟,建立高速公路沿线土壤和作物重金属含量的预测模型。本文获得的主要结论如下:
     1.沪宁和京沪高速六个路段两侧土壤、水稻和小麦均受到不同程度的重金属污染,污染边界最远已经达到了路两侧330m。土壤中Pb、Cd、Cr、Zn和Cu含量均高于对照区土壤,但没有超过国家土壤环境二级标准;水稻和小麦中上述五种重金属含量均高于对照样品,部分样品中Pb、Cd、Zn含量超出了国家食品安全限量标准,其中Pb和Cd的超标率较高。
     2.高速公路两侧土壤和作物中重金属含量的空间分布特征差异明显。公路两侧土壤中Cd、Cr、Zn和Cu含量随与公路距离的增加而不断降低,Pb含量随与公路距离的增加而先增加再不断降低。高速公路两侧水稻和小麦籽粒中五种重金属含量均随与公路距离的增加而先增加再不断降低。公路两侧,作物中重金属含量高值区的分布与土壤中重金属含量高值区的分布存在差异,土壤中重金属含量高的区域作物中重金属含量并不一定高。
     3.高速公路沿线水稻和小麦中的重金属污染来源于不同的途径,大气污染途径不可忽视。盆栽对比试验和作物中Pb稳定性同位素组成分析结果显示,高速公路沿线水稻中累积的Pb、Cd和Zn部分来源于叶片对大气中重金属的吸收,而Cr和Cu主要来源于根系对土壤中重金属的吸收。高速公路旁水稻叶片中,大约有20%的Pb、35%的Cd和60%的Zn来源于大气;在水稻籽粒中,约有46%的Pb和41%的Cd来自于叶片的吸收和转运;在水稻茎中,约有49%的Zn来自于叶片的吸收和转运。公路旁不同距离水稻叶、茎、籽粒中大气来源的Pb、Cd或Zn的比率随与公路距离增加而不断降低。高速公路沿线小麦中Cd和Zn部分来源于叶片对大气中重金属的吸收,而Pb、Cr和Cu主要来源于根系对土壤中重金属的吸收。在公路旁小麦叶片中,大约有22%的Cd和29%的Zn来自于叶片对大气中重金属的吸收,在小麦籽粒中,约有21%的Cd和20%的Zn来自于叶片的吸收和转运,在小麦茎中,Pb、Cd、Cr、Zn和Cu主要来自于根系的吸收和转运。公路旁不同距离小麦叶、籽粒中大气来源的Cd和Zn的比率随与公路距离增加而不断降低。
     5.车流量是高速公路沿线土壤中重金属累积最主要的影响因素,沿线作物中重金属的累积受到车流量、风向、土壤性质、重金属有效态含量等因素的综合影响。沪宁高速和京沪高速沿线六个路段土壤中Pb、Cd、Zn和Cu累积指数与车流量呈显著正相关,风向、土壤pH、有机质等因素的影响相对较小。沪宁高速和京沪高速沿线6个路段水稻中Pb和Cd累积指数、小麦籽粒中Cd和Zn累积指数与车流量呈显著正相关。沿线水稻、小麦籽粒中重金属的累积受到车流量、风向、土壤性质、重金属有效态含量等因素的综合影响,不同重金属元素累积的最主要的影响因素各有不同。
     6.BP神经网络具有很强的自学习、自组织与自适应功能,具有高度非线性函数映射功能,将其应用于高速公路沿线农田土壤和作物中重金属含量分布的预测与评价,拟合精度较高,泛化能力好。能够对高速公路两侧土壤中Pb、Cd、Zn和Cu含量、对两侧水稻籽粒中的Pb和Cd含量、小麦籽粒中的Pb、Cd和Zn含量进行较好的拟合和泛化。
The highway traffic is the main source of heavy metal pollution. Due to limited cropland area, it is very common to plant crops along the highways. So, in view of agricultural products safety, the heavy metal pollution by the highway traffic to the soils and crops along the highways is widely concerned by scientist and public. Lots of evidence has demonstrated that the soils and crops along the highway were contaminated at various degrees by heavy metals such as Pb, Cd, Cr and Zn etc. However, the traits and laws of the pollution were unclearly documented. The soils along the highway have lower heavy metal content while the crops, such as rice, wheat, vegetables and fruits, contain Pb, Cd, Cr and Zn over the national guidance limits. The heavy metal which is higher in soils is not necessarily higher in crops and which is lower in soils is higher in crops. These uncertainties may be mainly contributed to the uncertainties about the polluting pathways of the heavy metals, biological availability and its influence factors of heavy metal in soils. The express highway will impact agro-environment more seriously due to its main part in future traffic. Therefore, to study the distribution traits, accumulative laws and influence factors of heavy metals in agricultural soils and crops can provide scientific evidence and theoretical basis for the environmental protection and cultivation planning along the express highway.
     This study took the Shanghai-Nanjing and Beijing-Shanghai express highways which have the heaviest traffic flows as research objects. In 2008-2009, six typical sections with different traffic flows were selected for collection of the bilateral soils and crops (rice and wheat) along the highway. The total and available contents of heavy metals (Pb, Cd, Cr, Zn and Cu) in soil and the contents of heavy metal in grains of rice and wheat were measured. The distribution traits and influence factors of the heavy metal were analyzed. At the same time, by pot experiment and stable Pb isotope tracing method, source origin (atmosphere or soil) of the heavy metal in rice and wheat, and the proportion of the heavy metal from atmosphere or soils in different organs were analyzed. Based on the field monitoring and simulation experiment, the content of heavy metal in roadside agricultural soils and crops were simulated by the artificial neural network method. From the simulation, the prediction model of heavy metal contents in soils and crops were built. The main conclusions in our study were as follows:
     Along the six sections, the bilateral soil, rice and wheat were contaminated by heavy metal with the furthest border reaching 330 m. The Pb, Cd, Cr, Zn and Cu contents in soils were higher than the control but no more than the maximum allowable conentrations. These heavy metals in rice and wheat were also higher than control. The Pb, Cd and Zn contents in some plant samples were higher than the national guidance limit with higher over limit ratio existed in Pb and Cd.
     There existed obvious spatial distribution differences in heavy metal contents of roadside soils and crops. Along with the increased distance from highways, the Cd, Cr, Zn and Cu contents in soils decreased while Pb increased first and then decreased. And the five heavy metals in grains of rice and wheat all increased first and then decreased along with, the increased distance from highway. There were differences between the high value area of heavy metal content in soils and in crops. The area where the heavy metal was higher in soils hasn't had necessarily higher heavy metal in crops.
     The heavy metals in rice and wheat along the express highway came from different pathways among which the atmosphere pathway couldn't be neglected. Results from pot experiment and stable Pb isotope showed that part of Pb, Cd and Zn accumulated in rice were derived from the atmosphere via foliar uptake, while Cr and Cu were mainly from the soil via root uptake. In rice leaves, about 20% Pb,35% Cd and 60% Zn were from atmosphere. In rice grains, about 46% Pb and 41% Cd were derived from the atmosphere via foliar uptake. In rice stem,49% Zn were also derived from the atmosphere via foliar. The ratios of atmosphere-originated Pb, Cd and Zn in rice leaves, stem and grains decreased along with the increased distance from the highway. As for wheat, part of Cd and Zn in wheat came from atmosphere via foliar uptake, while Pb, Cr and Cu mainly came from the soil via root uptake. In wheat leaves, about 22% Cd and 29% Zn were from atmosphere. In wheat grains, about 21% Cd and 20% Zn were from the atmosphere. In wheat stem, Pb, Cd, Cr, Zn and Cu mainly came from absorption and transportation by roots. The ratios of atmosphere-originated Cd and Zn in rice leaves and grains decreased along with the increased distance from the highway.
     The traffic density had significant effect on the accumulation of heavy metals in soils. The accumulation of heavy metals in rice and wheat grains were affected by the traffic desenty, wind direction, soil pH and organic matter contents, and the total and available heavy metals contents. Accumulation coefficients of Pb, Cd, Zn and Cu in soils along the six sections had significant positive correlation with the traffic density. The influence of wind direction, soil pH and soil organic matter were releativly lower. The traffic fluxes were significantly positively correlated with the accumulation coefficients of Pb and Cd in rice and the accumulation coefficients of Cd and Zn in wheat grains. The accumulation of heavy metals in roadside rice and wheat was affected by the traffic density, wind direction, soil properties, and available contents. The most important factors for each heavy metals were different.
     The BP neural network has a strong ability of self-learning, self-organizing and self-adapting and a high function of nonlinear function mapping. So it will have high fitting precision and good generalization ability to apply the Bp neural network to the prediction and evaluation of the heavy metals distribution and content in soils and crops along with the express highway. And the BP neural network can fit and generate on the Pb, Cd, Zn and Cu content in soils, Pb and Cd contents in rice grains and Pb, Cd and Zn contents in wheat grains.
引文
[1]吕巧枝.我国农产品质量安全现状与发展对策[J].中国食物与营养,2007(4):10-13
    [2]徐晶,席兴军,李光宇,等.我国农产品质量安全的现状及对策[J].中国标准化,2007(5):21-22
    [3]张红凤,周峰.从食品安全规制看“三鹿奶粉”事件[J].理论探讨,2008,6:145-147
    [4]肖玫,袁界平,陈连勇.食品安全影响因素与保障措施探讨[J].农业工程学报,2007,23(2):286-289
    [5]钱永忠,王芳.我国农产品质量安全存在问题及成因分析[J].农业经济,2008:278-79
    [6]林玉锁.农产品产地环境安全与污染控制[J].科技与经济,2004,17(4):40-44
    [7]韩俊,罗丹.产地环境控制与食品安全[J].农业质量标准,2005,4:14-16
    [8]宋启道,方佳,李玉萍,等.农业产地环境污染与农产品质量安全探讨[J].农业环境与发展,2008,2:61-64
    [9]赵志刚.高速公路发展现状及前景分析[J].交通标准化,2009,16:71-72
    [10]中华人民共和国交通部.国家高速公路网规划[M].2005
    [11]李其林,刘光德,郭义.公路两侧土壤和蔬菜中重金属的含量特征[J].环境科学与技术,2004,27,(6):35-37
    [12]Bakirdere S, Yaman M. Determination of lead, cadmium and copper in roadside soil and plants in Elazig, Turkey. Environmental Monitoring and Assessment,2008,136:401-410
    [13]Saeedi M, Hosseinzadeh M, Jamshidi A, et al. Assessment of heavy metals contamination and leaching characteristics in highway side soils, Iran. Environmental Monitoring and Assessment, 2009,151(14):231-241
    [14]李剑,马建华,宋博.郑汴路路旁土壤-小麦系统重金属积累及其健康风险评价[J].植物生态学报,2009,33(03):624-628
    [15]Swaileh K M, Hussein R M, Abu-Elhaj S. Assessment of heavy metal contamination in roadside surface soil and vegetation from the West Bank. Archives of Environmental Contamination and Toxicology,2004,47(1):23-30
    [16]Nabulo G, Oryem-Origa H, Diamond M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environmental Research, 2006,101(1):42-52
    [17]赵慧,崔保山,白军红,等.纵向岭谷区高速公路对沿线土壤-植物系统的影响[J].科学通报,2007,50(S2):176-184
    [18]甄宏.沈大高速公路旁粮食和水果中重金属污染特征研究[J].气象与环境学报,2008,24(03):1-5
    [19]马建华,谷蕾,李文军.连霍高速郑商段路旁土壤重金属积累及潜在风险[J].环境科学,2009,30(03):894-899
    [20]Lin J, Du Z, Chen J A. Distribution of cadmium and lead in soil and rice along road polluted by traffic exhaust. Journal of Environment and Health,2002,19(2):119-121
    [21]Hjortenkrans D S, Bergback T. Transversal immission patterns and leachability of heavy metals in road side soils. Journal of Environmental Monitoring,2008,10(6):739-746
    [22]杨奕如,殷云龙,於朝广,等.205国道两侧农田土壤和水稻叶片及糙米中重金属含量的空间分布特征[J].植物资源与环境学报,2009,18(02):73-79
    [23]Bohemen, H D V, Janssen V D, Laak W H. The influence of road infrastructure and traffic on soil, water, and air quality. Environmental Management,2003,31(1):50-68
    [24]Hjortenkrans D, Bergback B, Haggerud A. New metal emission patterns in road traffic environments. Environmental Monitoring and Assessment,2006,117(1-3):85-98
    [25]Hamamci C, Gumgum B, Akba O, et al. Lead in urban street dust in Diyarbakir, Turkey.Fresenius Environmental Bulletin,1997,6(7-8):430-437
    [26]吴丽香,王卓.苯基荧光酮分光光度法测定原油中的铅[J].现代科学仪器,2006,6:109-111
    [27]GB17930-1999.车用无铅汽油标准
    [28]GB17930-2006.车用汽油
    [29]Cadle S H, Mulawa P A, Hunsanger E C, et al. Composition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado Area. Environmental Science & Technology,1999, 33(14):2328-2339
    [30]徐晓辉,袁东,叶舜华.无铅汽油车排出颗粒物组分分析[J].中国卫生工程学,2003,2(1):1-3
    [31]Handler M, Puls C, Zbiral J, et al. A. size and composition of particulate emissions from motor vehicles in the Kaisermuhlen-Tunnel, Vienna. Atmospheric Environment.2008,42(9):2173-2186
    [32]Little P, Wiffen R D. Emission and deposition of lead from motor exhausts II:Airborne concentration, particle size and deposition of lead near motorways. Atmospheric Environment. 1978,121,331-1341
    [33]Wik A, Dave G. Occurrence and effects of tire wear particles in the environment-A critical review and an initial risk assessment. Environmental Pollution.2009,157(1):1-11
    [34]Adachi K, Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environment International.2004,30(8):1009-1017
    [35]Ichiki A, Ido F, Minami T. Runoff characteristics of highway pollutants based on a long-term survey through a year. Water Science and Technology.2008,57(11):1769-1776
    [36]Johansson C, Norman M, Burman L. Road traffic emission factors for heavy metals. Atmospheric Environment,2009,43(31):4681-4688
    [37]Lindgren. Asphalt wear and pollution transport. Science of The Total Environment,1996:281-286
    [38]Weckwerth G. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric Environment,2001,35(32):5525-5536
    [39]Kochr B W Q Stoffregen H. water and heavy metal transport in roadside soils. Pedosphere,2005, 15(6):746-753
    [40]Turer D, Maynard J B, Sansalone J J. Heavy metal contamination in soils of urban highways: Comparison between runoff and soil concentrations at Cincinnati, Ohio. Water Air and Soil Pollution,2001,132(3-4):293-314
    [41]Murakami M, Sato N, Anegawa A, et al. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration. Water Research.2008,42(10-11):2745-2755
    [42]Mattias B C I, Ulrika N, Karsten H. Speciation of heavy metals in road runoff and roadside total deposition. Water Air and Soil Pollution,2004,147(1-4):343-366
    [43]Omstedt G, Bringfelt B, Johansson C. A model for vehicle-induced non-tailpipe emissions of particles along Swedish roads. Atmospheric Environment.2005,39(33):6088-6097
    [44]Kummer U, Pacyna I, Pacyna E, et al. Assessment of heavy metal releases from the use phase of road transport in Europe. Atmospheric Environment.2009,43(3):640-64
    [45]Wong C S C, Li X D, Zhang G, et al. Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmospheric Environment.2003,37(6):767-776
    [46]Ai-Khlaifat A L, Al-Khashman O A. Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves. Atmospheric Environment.2007,41(39):8891-8897
    [47]Cao T, An L, Wang M, Lou Y, et al. Spatial and temporal changes of heavy metal concentrations in mosses and its indication to the environments in the past 40 years in the city of Shanghai, China. Atmospheric Environment.2008,42(21):5390-5402
    [48]Francek M A. Soil Lead levels in a small town environment-a case-study from Mt-Pleasant, Michigan. Environmental Pollution.1992,76(3):251-257
    [49]Monaci F, Moni F, Lanciotti E, Grechi D,et al. Biomonitoring of airborne metals in urban environments:new tracers of vehicle emission, in place of lead. Environmental Pollution.2000, 107(3):321-327
    [50]Lee C S, Li X, Shi W, et al. Metal contamination in urban, suburban, and country park soils of Hong Kong:A study based on GIS and multivariate statistics. Science of the Total Environment.2006, 356(1-3):45-61
    [51]Beckerman B, Jerrett M, Brook J R, et al. Correlation of nitrogen dioxide with other traffic pollutants near a major expressway. Atmospheric Environment.2008,42(2):275-290
    [52]Zhu W, Bian B, Li L. Heavy metal contamination of road-deposited sediments in a medium size city of China. Environmental Monitoring and Assessment.2008,147(1-3):171-181
    [53]王再岚,何江,刘玉虹,等.鄂尔多斯地区公路两侧土壤重金属污染特征[J].南京林业大学学报(自然科学版),2006,30(2):15-19
    [54]Christoforidis A, Stamatis N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece. Geoderma,2009,151(3-4):257-263
    [55]Ho Y B, Tai K M. Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong-Kong. Environmental Pollution.1988,49(1):37-51
    [56]Olajire A A, Ayodele E T. Contamination of roadside soil and grass with heavy metals. Environment International.1997,23(1):91-101
    [57]Moslehuddin A Z M, Laizoo S, Egashira K. Heavy metal pollution of soils along three major highways in Bangladesh. Journal of the Faculty of Agriculture Kyushu University.1998,42(3-4): 503-508
    [58]Imperato M, Adamo P, Naimo D, et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution.2003,124(2):247-256
    [59]Grigalaviciene I, Rutkoviene V, Marozas V. The accumulation of heavy metals Pb, Cu and Cd at roadside forest soil. Polish Journal of Environmental Studies.2005,14(1):109-115
    [60]Kochr B W Q Stoffregen H. water and heavy metal transport in roadside soils. Pedosphere.2005, 15(6):746-753
    [61]Turer D. Effect of non-vehicular sources on heavy metal concentrations of roadside soils. Water Air and Soil Pollution.2005,166(1-4):251-264
    [62]Bai J, Cui B, Wang Q, et al. Assessment of heavy metal contamination of roadside soils in Southwest China. Stochastic Environmental Research and Risk Assessment.2009,23(3):341-347
    [63]Suzuki K, Yabuki T, Ono Y. Roadside rhododendron pulchrum leaves as bioindicators of heavy metal pollution in traffic areas of Okayama, Japan. Environ Monit Assess.2009,149(1-4):133-141
    [64]沈明杰,胡守云,Laha U B,等.土壤剖面的磁学特征及其对交通污染的指示意义一以北京首都机场高速公路为例[J].第四世纪研究,2007,27(6):1113-1119
    [65]王初,陈振楼,王京,等.崇明岛公路两侧蔬菜地土壤和蔬菜重金属污染研究[J].生态与农村环境学报,2007,23(2):89-93
    [66]马东升,张辉.公路重金属污染的形态特征及其解吸、吸持能力探讨[J].环境化学,1998,17,(6):564-568
    [67]Legret M, Pagotto C. Heavy metal deposition and soil pollution along two major rural highways. Environmental Technology,2006,27(3):247-254
    [68]Zehetner F, Rosenfellner U, Mentler A, et al. Distribution of road salt residues, heavy metals and poly cyclic aromatic hydrocarbons across a Highway-Forest interface. Water Air and Soil Pollution, 2009,198(1-4):125-132
    [69]甄宏.沈大高速公路两侧土壤重金属污染分布特征研究[J].气象与环境学报,2008b,24(02):6-9
    [70]秦莹,娄翼来,姜勇,等.沈哈高速公路两侧土壤重金属污染特征及评价[J].农业环境科学学报,2009,28(04):663-667
    [71]朱建军,崔保山,杨志峰,等.纵向岭谷区公路沿线土壤表层重金属空间分异特征[J].生态学报,2006,28(10):146-153
    [72]王初,陈振楼,王京,等.上海崇明岛交通干线两侧农田土壤和蔬菜Pb、Cd污染研究[J].农业环境科学学报,2007a,26(2):634-638
    [73]李湘洲.机动车尾气对土壤铅累积的影响及分布格局[J].中南林学院学报,2001,21(04):36-39
    [74]Sutherland R A, Tolosa C A. Variation in total and extractable elements with distance from roads in an urban watershed, Honolulu, Hawaii. Water, Air, & Soil Pollution,2001,127(1):315-338
    [75]林健,杜恣闲,陈建安,等.公路交通污染土壤和稻谷中镉铅分布特征[J].环境与健康杂志,2002,19,(2):119-121
    [76]李波,林玉锁,张孝飞,等.宁连高速公路两侧土壤和农产品中重金属污染的研究[J].农业环境科学学报,2005,24(02):266-269
    [77]杜振宇,邢尚军,宋玉民,等.山东省高速公路两侧土壤的铅污染及绿化带的防护作用[J].水土保持学报,2007,21(5):175-179
    [78]陈建安,林建,兰天水,等.山区公路边土壤铅污染水平及其分布规律研究[J].海峡预防医学杂志,2001,7(2):5-8
    [79]Bohemen H D V, Janssen V D, Laak W H. The influence of road infrastructure and traffic on soil, water, and air quality. Environmental Management.2003,31(1):0050-0068
    [80]郭广慧,陈同斌,宋波,等.中国公路交通的重金属排放及其对土地污染的初步估算[J].地理研究,2007,26,(5):922-930
    [81]Ogunsola O J, Oluwole A F, Asubiojo O I, et al. Traffic pollution:preliminary elemental characterisation of roadside dust in Lagos, Nigeria. Science of The Total Environment,1994: 175-184
    [82]Chen T B, Wong J W C, Zhou H Y, et al. Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environmental Pollution,1997,96(1):61-68
    [83]Viard B, Pihan F, Promeyrat S, et al. Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution:bioaccumulation in soil, Graminaceae and land snails. Chemosphere,2004,55(10): 1349-1359
    [84]刘世梁,崔保山,温敏霞,等.路域土壤重金属含量空间变异的影响因子[J].环境科学学报,2008,28(2):253-260
    [85]Li L. Retention capacity and environmental mobility of Pb in soils along highway corridor. Water, Air, & Soil Pollution.2006,170(1):211-227
    [86]Wang H, Jia Y, Wang S, et al. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis. Journal of Hazardous Materials.2009a,167(1-3): 641-646
    [87]Simmons R W, Pongsakul P, Chaney R L. The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean:Implications for human health. Plant and Soil.2003,257(1):163-170
    [88]Li J X, Yang X E, He Z L, et al. Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma.2007,141,174-180
    [89]Torri S, Lavado R. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation. Journal of Hazardous Materials.2009,166(2-3):1459-1465
    [90]Wang S L, Nan Z R, Liu X W, et al. Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, northwest China. Geoderma.2009b,152(3-4): 290-295
    [91]Garcia M J. Chemical fractionation and solubility of lead in roadside soils of Caracas, Venezuela. Soil Science.1984,138(2):147-152.
    [92]Hooda P S, McNulty D,Alloway B J,et al. Plant availability of heavy metals in soils previously amended with heavy applications of sewage sludge. Journal of the Science of Food and Agriculture. 1997,73(4):446-454
    [93]Haar G. Air as a source of lead in edible crops. Environmental Science & Technology,1970,4(3): 226-229
    [94]Quarles H D, Odum W E. Lead in small mammals, plants, and soil at varying distances from a highway. Journal of Applied Ecology,1974,11(3):937-949
    [95]Bi X, Feng X, Yang Y, et al. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environmental Pollution,2009,157(3):834-839
    [96]Zhuang P, McBride M B, Xia H, et al. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ.2009,407(5):1551-1561
    [97]Quarles III H D, Hanawalt R B, Odum W E. Lead in small mammals, plants, and soil at varying distances from a highway. Journal of Applied Ecology.1974,11(3):937-949
    [98]Jassir A M, Shaker A, Khaliq M A. Deposition of heavy metals on green leafy vegerables sold on roadsides of Riyadh City, Saudi Arabia. Bulletin of Environmental Contamination and Toxicology. 2005,75(5):1020-1027
    [99]范文秀,谷永庆,荆瑞俊.公路两侧青饲料中铅含量的测定[J].河南职业技术师范学院学报,2003,31(4):69-70
    [100]陆东晖.南京市公路旁土壤一植物系统重金属污染研究[D].南京:南京农业大学,2006
    [101]陈建安,林建,兰天水,等.公路边农作物铅污染水平与相关因素研究[J].海峡预防医学杂志,2002,8(2):15-19
    [102]Tjell J C, Hovmand M F, Mosbaek H. Atmospheric lead pollution of grass grown in a background area in Denmark. Nature,1979,280(5721):425-426
    [103]Kemp K. Trends and sources for heavy metals in urban atmosphere. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.2002, 189(1-4):227-232
    [104]Lagerwerff J V. Uptake of cadmium, lead and zinc by radish from soil and air. Soil Science.1971, 111(2):129-133
    [105]Rabinowitz M. Plant uptake of soil and atmospheric lead in southern California. Chemosphere,1972,1(4):175-180
    [106]Little P. A study of heavy metal contamination of leaf surfaces. Environmental Pollution.1973,(5): 159-172
    [107]Arvik J H, Zimdahl R L. Barriers to the foliar uptake of lead. J Environ Qual.1974,3(4):369-373
    [108]Paterson S, Mackay D, McFarlane C. A model of organic chemical uptake by plants from soil and the atmosphere. Environmental Science & Technology.1994,28(13):2259-2266
    [109]Carini F, Lombi E. Foliar and soil uptake of 134Cs and 85Sr by grape vines. Science of The Total Environment.1997,207(2-3):157-164
    [110]Keyte I, Wild E, Dent J, et al. Investigating the foliar uptake and within-leaf migration of phenanthrene by moss (Hypnum Cupressiforme) using two-photon excitation microscopy with autofluorescence. Environmental Science & Technology.2009,43(15):5755-5761
    [111]Harrison R M, Chirgawi M B. The assessment of air and soil as contributors of some trace metals to vegetable plants I. Use of a filtered air growth cabinet. Science of The Total Environment,1989a, 83(12):13-34
    [112]Greger M, Johansson M, Stihl A, et al. Foliar uptake of Cd by pea (Pisum sativum) and sugar beet (Beta vulgaris). Physiologia Plantarum,1993,(88):563-570
    [113]Voutsa D, Grimanis A, Samara C. Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter. Environmental Pollution,1996,94(3):325-335
    [114]Harrison R M, Chirgawi M B. The assessment of air and soil as contributors of some trace metals to vegetable plants Ⅱ. Translocation of atmospheric and laboratory-generated cadmium aerosols to and within vegetable plants. Science of The Total Environment,1989b,83(12):35-45
    [115]Choi Y H, Lim K M, Yu D, et al. Transfer pathways of 54Mn,57Co,85Sr,103Ru and 134Cs in rice and radish plants directly contaminated at different growth stages. Annals of Nuclear Energy,2002, 29(4):429-446
    [116]Cakmak I, Welch R M, Hart J, et al. Uptake and retranslocation of leaf-applied cadmium (109Cd) in diploid, tetraploid and hexaploid wheats. Journal of Experimental Botany,2000,51(343):221-226
    [117]Cheng H, Hu Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China:A review. Environmental Pollution.2009,158(5):1134-1146
    [118]Mukai H, Furuta N, FujiT, et al. Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environmental Science & Technology.1993,27(7):1347-1356
    [119]Komarek M, Ettler V, Chrastn V, et al. Lead isotopes in environmental sciences:A review. Environment International.2008,34(4):562-577
    [120]Hu X, Ding Z. Lead cadmium contamination and lead isotopic ratios in vegetables grown in Peri-Urban and mining smelting contaminated sites in Nanjing, China. Bulletin of Environmental Contamination and Toxicology,2009,82(1):80-84
    [121]日本通商产业省工业立地局.大气污染浓度预测技术手册[M].北京:气象出版社,1992
    [122]俎铁林.空气质量模式—在法规中的应用[M].北京:中国标准出版社,2009
    [123]王斌,丁桑岚.公路两侧土壤中铅的分布规律研究[J].重庆环境科学,1998,20(4):53-54
    [124]胡晓荣,查红平.成渝高速公路某段路旁土壤铅含量分布的研究[J].化学研究与应用,2006,18(8):1001-1004
    [125]师利明,郭军庆,罗德春.对公路两侧土壤中铅累积模式的理论探讨[J].长安大学学报(自然科学版),1998,18(3):13-15
    [126]王天巍,蔡崇法,李朝霞,等.道路边际土壤重金属分布格局的神经网络模拟一以现代黄河三角洲为例[J].生态学报,2009,29(6):3154-3162
    [127]Samecka-Cymerman A, Stankiewicz A, Kolon K, et al. Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.). Environmental Pollution.2009,157(7):2061-2065
    [128]Rao S, Mathur S. Modeling heavy metal (Cadmium) uptake by soil-plant root system. Journal of Irrigation and Drainage Engineering.1994,120(1):89-96
    [129]Guala S D, Vega FA, Covelo E F. The dynamics of heavy metals in plant-soil interactions. Ecological Modelling.2010,221(8):1148-1152
    [130]Leonzio C, Pisani A. An evaluative model for lead distribution in roadside ecosystems. Chemosphere,1987,16(7):1387-1394
    [131]Vissikirsky V A, Stepashko V S, Kalavrouziotis I K, et al. The road pollution impact on Zea mays: Inductive modeling and qualitative assessment. Water Air and Soil Pollution,2008, 195(14):301-310
    [132]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    [133]魏晓云.决策树分类方法研究[J].计算机系统应用.2007,9:42-45
    [134]罗晓曙.人工神经网络理论、模型、算法与应用[M]..南宁:广西师范大学出版社,2005
    [135]胡大伟,卞新民,李思米,等.基于神经网络的农田土壤重金属空间分布分析[J].农业环境科学学报,2007,26(1):216-223
    [136]欧阳均,王爱枝.基于Matlab的BP神经网络在大气污染物浓度预测中的应用[J].环境科学与管理,2009,34(11):176-180
    [137]郭广慧,雷梅,陈同斌,等.交通活动对公路两侧土壤和灰尘中重金属含量的影响[J].环境科学学报,2008,28(10):1937-1945
    [138]章明奎,黄昌勇.公路附近茶园土壤中铅和镉的化学形态[J].茶叶科学,2004,24(2):109-114
    [139]陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002:70-140
    [140]华明,朱佰万,廖启林,等.江苏主要公路两侧农田土壤重金属污染现状初步研究[J].地质学刊,2008,32(3):165-171
    [141]张永春,孙丽,苏国峰,等公路两侧农田土壤及作物中重金属的累积[J].江苏农业学报,2005,21(4):336-340
    [142]Piron-Frenet M, Bureau A. Lead accumulation in surface roadside soil:its relationship to traffic density and meteorological parameters. Science of The Total Environment,1994,144(13):297-304
    [143]Page A L, Ganje T J. Accumulations of lead in soils for regions of high and low motor vehicle traffic density. Environmental Science & Technology,1970,4(2):140-142
    [144]Harrison P R, Matson W R. Time variations of lead, copper and cadmium concentrations in aerosols in Ann Arbor, Michigan. Atmospheric Environment,1971,5(8):613-619
    [145]Imperato M P, Adamo D, Naimo M, et al. Spatial distribution of heavy metals in urban soils of Naples city, Italy. Environmental Pollution,2003,124(2):247-256
    [146]Kim KR, Owens G, Naidu R. Heavy metal distribution, bioaccessibility, and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia. Australian Journal of Soil Research,2009,47(2):166-176
    [147]常卫民,陈诚.104国道江苏段公路两侧重金属污染现状调查[J].能源环境保护,2009,23(3):43-46
    [148]艾海舰,张雄,刘翠英,等.陕蒙高速两旁粮食作物中重金属含量分析[J].安徽农业科学,2009,37(18):8669-8671
    [149]王昌全,代天飞,李冰,等.稻麦轮作下水稻土重金属形态特征及其生物有效性[J].生态学报,2007,3:889-897
    [150]刘毅.稻麦轮作下水稻土重金属形态特征及其生物有效性研究[D].成都:四川农业大学,2008
    [151]王子芳,高明,秦建成,等.稻田长期水旱轮作对土壤肥力的影响研究[J].西南农业大学学报,2003,25(6):514-517
    [152]张锡洲,李廷轩,余海英,等.水旱轮作条件下长期自然免耕对土壤理化性质的影响[J].水土保持学报,2006,20(6):145-147
    [153]T.r.著,涂仕华译.土壤和磷肥中的重金属[M].成都:四川大学出版社,2002
    [154]廖白基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,1989
    [155]Li J X, Yang X E. Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma,2007,141:174-180
    [156]Torri S, Lavado R. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation. Journal of Hazardous Materials,2009,166(2-3):1459-1465
    [157]李湘洲.公路系统沿线作物铅累积状况的研究[J].中南林学院学报,2002,22(1):40-42
    [158]Colle C, Madoz-Escande C, Leclerc E. Foliar transfer into the biosphere:review of translocation factors to cereal grains. Journal of Environmental Radioactivity,2009,100(9):683-689
    [159]Zereini F, Alt F, Messerschmidt J, et al. Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am main, Germany. Environmental Science & Technology, 2005,39(9):2983-2989
    [160]Brambilla M, Fortunati P, Carini F. Foliar and root uptake of 134Cs,85Sr and 65Zn in processing tomato plants (Lycopersicon esculentum Mill.). Journal of Environmental Radioactivity,2002, 60(3):351-363
    [161]Dollard G J. Glasshouse experiments on the uptake of foliar applied lead. Environmental Pollution,1986, A(40):109-119
    [162]Martin M H. A survey of zinc, lead and cadmium in soil and natural vegetation aroun a smelting complex. Environmental Pollution,1972,3:159-172
    [163]Chamberlain A C. Fallout of lead and uptake by crops. Atmospheric Environment (1967),1983, 17(4):693-706
    [164]Watmough S A, Hutchinson T C, Evans R D. The distribution of 67Zn and 207Pb applied to white spruce foliage at ambient concentrations under different pH regimes. Environmental and Experimental Botany,1999,41(1):83-92
    [165]Prasad M N V. Heavy metal stress in plants:from biomolecules to ecosystems. New York:Springer, Berlin,2004
    [166]Harris N S, Taylor G J. Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation. J. Exp. Bot,2001,52(360):1473-1481
    [167]Jiang W, Struik P C, Lingna J, et al. Uptake and distribution of root-applied or foliar-applied 65Zn after flowering in aerobic rice. Annals of Applied Biology,2007,150(3):383-391
    [168]朱德峰,林贤青,曹卫星.超高产水稻品种的分析分布特点[J].南京农业大学学报,2000,23(4):5-8
    [169]Zhang G L, Yang F G, Zhao W J, et al. Historical change of soil Pb content and Pb isotope signatures of the cultural layers in urban Nanjing. CATENA.,2007,69(1):51-56
    [170]Wang X S, Qin Y. Leaching characteristics of heavy metals and as from two urban roadside soils. Environmental Monitoring and Assessment,2007,132(13):83-92
    [171]Sharma R K, Agrawal M, Marshall F M. Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City, India. Environmental Monitoring and Assessment,2008,142(1-3):269-278
    [172]Rabinowitz M. Plant uptake of soil and atmospheric lead in southern California. Chemosphere, 1972,14:175-180
    [173]Percy K E, Baker E A. Effects of simulated acid rain on leaf wettability, rain retention and uptake of some inorganic ions. New Phytologist,1988,108(1):75-82
    [174]Carini F, Lombi E. Foliar and soil uptake of 134Cs and 85Sr by grape vines. Science of The Total Environment,1997,207(23):157-164
    [175]Garcia R, Millan E. Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere.,1998,37(8):1615-1625

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700